| /* |
| * |
| * Copyright (C) 2001 MontaVista Software, ppopov@mvista.com |
| * Copied and modified Carsten Langgaard's time.c |
| * |
| * Carsten Langgaard, carstenl@mips.com |
| * Copyright (C) 1999,2000 MIPS Technologies, Inc. All rights reserved. |
| * |
| * ######################################################################## |
| * |
| * This program is free software; you can distribute it and/or modify it |
| * under the terms of the GNU General Public License (Version 2) as |
| * published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, write to the Free Software Foundation, Inc., |
| * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. |
| * |
| * ######################################################################## |
| * |
| * Setting up the clock on the MIPS boards. |
| * |
| * Update. Always configure the kernel with CONFIG_NEW_TIME_C. This |
| * will use the user interface gettimeofday() functions from the |
| * arch/mips/kernel/time.c, and we provide the clock interrupt processing |
| * and the timer offset compute functions. If CONFIG_PM is selected, |
| * we also ensure the 32KHz timer is available. -- Dan |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/init.h> |
| #include <linux/kernel_stat.h> |
| #include <linux/sched.h> |
| #include <linux/spinlock.h> |
| #include <linux/hardirq.h> |
| |
| #include <asm/compiler.h> |
| #include <asm/mipsregs.h> |
| #include <asm/ptrace.h> |
| #include <asm/time.h> |
| #include <asm/div64.h> |
| #include <asm/mach-au1x00/au1000.h> |
| |
| #include <linux/mc146818rtc.h> |
| #include <linux/timex.h> |
| |
| static unsigned long r4k_offset; /* Amount to increment compare reg each time */ |
| static unsigned long r4k_cur; /* What counter should be at next timer irq */ |
| int no_au1xxx_32khz; |
| extern int allow_au1k_wait; /* default off for CP0 Counter */ |
| |
| /* Cycle counter value at the previous timer interrupt.. */ |
| static unsigned int timerhi = 0, timerlo = 0; |
| |
| #ifdef CONFIG_PM |
| #if HZ < 100 || HZ > 1000 |
| #error "unsupported HZ value! Must be in [100,1000]" |
| #endif |
| #define MATCH20_INC (328*100/HZ) /* magic number 328 is for HZ=100... */ |
| extern void startup_match20_interrupt(irqreturn_t (*handler)(int, void *, struct pt_regs *)); |
| static unsigned long last_pc0, last_match20; |
| #endif |
| |
| static DEFINE_SPINLOCK(time_lock); |
| |
| static inline void ack_r4ktimer(unsigned long newval) |
| { |
| write_c0_compare(newval); |
| } |
| |
| /* |
| * There are a lot of conceptually broken versions of the MIPS timer interrupt |
| * handler floating around. This one is rather different, but the algorithm |
| * is provably more robust. |
| */ |
| unsigned long wtimer; |
| void mips_timer_interrupt(struct pt_regs *regs) |
| { |
| int irq = 63; |
| unsigned long count; |
| |
| irq_enter(); |
| kstat_this_cpu.irqs[irq]++; |
| |
| if (r4k_offset == 0) |
| goto null; |
| |
| do { |
| count = read_c0_count(); |
| timerhi += (count < timerlo); /* Wrap around */ |
| timerlo = count; |
| |
| kstat_this_cpu.irqs[irq]++; |
| do_timer(regs); |
| #ifndef CONFIG_SMP |
| update_process_times(user_mode(regs)); |
| #endif |
| r4k_cur += r4k_offset; |
| ack_r4ktimer(r4k_cur); |
| |
| } while (((unsigned long)read_c0_count() |
| - r4k_cur) < 0x7fffffff); |
| |
| irq_exit(); |
| return; |
| |
| null: |
| ack_r4ktimer(0); |
| irq_exit(); |
| } |
| |
| #ifdef CONFIG_PM |
| irqreturn_t counter0_irq(int irq, void *dev_id, struct pt_regs *regs) |
| { |
| unsigned long pc0; |
| int time_elapsed; |
| static int jiffie_drift = 0; |
| |
| if (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20) { |
| /* should never happen! */ |
| printk(KERN_WARNING "counter 0 w status error\n"); |
| return IRQ_NONE; |
| } |
| |
| pc0 = au_readl(SYS_TOYREAD); |
| if (pc0 < last_match20) { |
| /* counter overflowed */ |
| time_elapsed = (0xffffffff - last_match20) + pc0; |
| } |
| else { |
| time_elapsed = pc0 - last_match20; |
| } |
| |
| while (time_elapsed > 0) { |
| do_timer(regs); |
| #ifndef CONFIG_SMP |
| update_process_times(user_mode(regs)); |
| #endif |
| time_elapsed -= MATCH20_INC; |
| last_match20 += MATCH20_INC; |
| jiffie_drift++; |
| } |
| |
| last_pc0 = pc0; |
| au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2); |
| au_sync(); |
| |
| /* our counter ticks at 10.009765625 ms/tick, we we're running |
| * almost 10uS too slow per tick. |
| */ |
| |
| if (jiffie_drift >= 999) { |
| jiffie_drift -= 999; |
| do_timer(regs); /* increment jiffies by one */ |
| #ifndef CONFIG_SMP |
| update_process_times(user_mode(regs)); |
| #endif |
| } |
| |
| return IRQ_HANDLED; |
| } |
| |
| /* When we wakeup from sleep, we have to "catch up" on all of the |
| * timer ticks we have missed. |
| */ |
| void |
| wakeup_counter0_adjust(void) |
| { |
| unsigned long pc0; |
| int time_elapsed; |
| |
| pc0 = au_readl(SYS_TOYREAD); |
| if (pc0 < last_match20) { |
| /* counter overflowed */ |
| time_elapsed = (0xffffffff - last_match20) + pc0; |
| } |
| else { |
| time_elapsed = pc0 - last_match20; |
| } |
| |
| while (time_elapsed > 0) { |
| time_elapsed -= MATCH20_INC; |
| last_match20 += MATCH20_INC; |
| } |
| |
| last_pc0 = pc0; |
| au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2); |
| au_sync(); |
| |
| } |
| |
| /* This is just for debugging to set the timer for a sleep delay. |
| */ |
| void |
| wakeup_counter0_set(int ticks) |
| { |
| unsigned long pc0; |
| |
| pc0 = au_readl(SYS_TOYREAD); |
| last_pc0 = pc0; |
| au_writel(last_match20 + (MATCH20_INC * ticks), SYS_TOYMATCH2); |
| au_sync(); |
| } |
| #endif |
| |
| /* I haven't found anyone that doesn't use a 12 MHz source clock, |
| * but just in case..... |
| */ |
| #ifdef CONFIG_AU1000_SRC_CLK |
| #define AU1000_SRC_CLK CONFIG_AU1000_SRC_CLK |
| #else |
| #define AU1000_SRC_CLK 12000000 |
| #endif |
| |
| /* |
| * We read the real processor speed from the PLL. This is important |
| * because it is more accurate than computing it from the 32KHz |
| * counter, if it exists. If we don't have an accurate processor |
| * speed, all of the peripherals that derive their clocks based on |
| * this advertised speed will introduce error and sometimes not work |
| * properly. This function is futher convoluted to still allow configurations |
| * to do that in case they have really, really old silicon with a |
| * write-only PLL register, that we need the 32KHz when power management |
| * "wait" is enabled, and we need to detect if the 32KHz isn't present |
| * but requested......got it? :-) -- Dan |
| */ |
| unsigned long cal_r4koff(void) |
| { |
| unsigned long count; |
| unsigned long cpu_speed; |
| unsigned long flags; |
| unsigned long counter; |
| |
| spin_lock_irqsave(&time_lock, flags); |
| |
| /* Power management cares if we don't have a 32KHz counter. |
| */ |
| no_au1xxx_32khz = 0; |
| counter = au_readl(SYS_COUNTER_CNTRL); |
| if (counter & SYS_CNTRL_E0) { |
| int trim_divide = 16; |
| |
| au_writel(counter | SYS_CNTRL_EN1, SYS_COUNTER_CNTRL); |
| |
| while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_T1S); |
| /* RTC now ticks at 32.768/16 kHz */ |
| au_writel(trim_divide-1, SYS_RTCTRIM); |
| while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_T1S); |
| |
| while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C1S); |
| au_writel (0, SYS_TOYWRITE); |
| while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C1S); |
| |
| #if defined(CONFIG_AU1000_USE32K) |
| { |
| unsigned long start, end; |
| |
| start = au_readl(SYS_RTCREAD); |
| start += 2; |
| /* wait for the beginning of a new tick |
| */ |
| while (au_readl(SYS_RTCREAD) < start); |
| |
| /* Start r4k counter. |
| */ |
| write_c0_count(0); |
| |
| /* Wait 0.5 seconds. |
| */ |
| end = start + (32768 / trim_divide)/2; |
| |
| while (end > au_readl(SYS_RTCREAD)); |
| |
| count = read_c0_count(); |
| cpu_speed = count * 2; |
| } |
| #else |
| cpu_speed = (au_readl(SYS_CPUPLL) & 0x0000003f) * |
| AU1000_SRC_CLK; |
| count = cpu_speed / 2; |
| #endif |
| } |
| else { |
| /* The 32KHz oscillator isn't running, so assume there |
| * isn't one and grab the processor speed from the PLL. |
| * NOTE: some old silicon doesn't allow reading the PLL. |
| */ |
| cpu_speed = (au_readl(SYS_CPUPLL) & 0x0000003f) * AU1000_SRC_CLK; |
| count = cpu_speed / 2; |
| no_au1xxx_32khz = 1; |
| } |
| mips_hpt_frequency = count; |
| // Equation: Baudrate = CPU / (SD * 2 * CLKDIV * 16) |
| set_au1x00_uart_baud_base(cpu_speed / (2 * ((int)(au_readl(SYS_POWERCTRL)&0x03) + 2) * 16)); |
| spin_unlock_irqrestore(&time_lock, flags); |
| return (cpu_speed / HZ); |
| } |
| |
| /* This is for machines which generate the exact clock. */ |
| #define USECS_PER_JIFFY (1000000/HZ) |
| #define USECS_PER_JIFFY_FRAC (0x100000000LL*1000000/HZ&0xffffffff) |
| |
| static unsigned long |
| div64_32(unsigned long v1, unsigned long v2, unsigned long v3) |
| { |
| unsigned long r0; |
| do_div64_32(r0, v1, v2, v3); |
| return r0; |
| } |
| |
| static unsigned long do_fast_cp0_gettimeoffset(void) |
| { |
| u32 count; |
| unsigned long res, tmp; |
| unsigned long r0; |
| |
| /* Last jiffy when do_fast_gettimeoffset() was called. */ |
| static unsigned long last_jiffies=0; |
| unsigned long quotient; |
| |
| /* |
| * Cached "1/(clocks per usec)*2^32" value. |
| * It has to be recalculated once each jiffy. |
| */ |
| static unsigned long cached_quotient=0; |
| |
| tmp = jiffies; |
| |
| quotient = cached_quotient; |
| |
| if (tmp && last_jiffies != tmp) { |
| last_jiffies = tmp; |
| if (last_jiffies != 0) { |
| r0 = div64_32(timerhi, timerlo, tmp); |
| quotient = div64_32(USECS_PER_JIFFY, USECS_PER_JIFFY_FRAC, r0); |
| cached_quotient = quotient; |
| } |
| } |
| |
| /* Get last timer tick in absolute kernel time */ |
| count = read_c0_count(); |
| |
| /* .. relative to previous jiffy (32 bits is enough) */ |
| count -= timerlo; |
| |
| __asm__("multu\t%1,%2\n\t" |
| "mfhi\t%0" |
| : "=r" (res) |
| : "r" (count), "r" (quotient) |
| : "hi", "lo", GCC_REG_ACCUM); |
| |
| /* |
| * Due to possible jiffies inconsistencies, we need to check |
| * the result so that we'll get a timer that is monotonic. |
| */ |
| if (res >= USECS_PER_JIFFY) |
| res = USECS_PER_JIFFY-1; |
| |
| return res; |
| } |
| |
| #ifdef CONFIG_PM |
| static unsigned long do_fast_pm_gettimeoffset(void) |
| { |
| unsigned long pc0; |
| unsigned long offset; |
| |
| pc0 = au_readl(SYS_TOYREAD); |
| au_sync(); |
| offset = pc0 - last_pc0; |
| if (offset > 2*MATCH20_INC) { |
| printk("huge offset %x, last_pc0 %x last_match20 %x pc0 %x\n", |
| (unsigned)offset, (unsigned)last_pc0, |
| (unsigned)last_match20, (unsigned)pc0); |
| } |
| offset = (unsigned long)((offset * 305) / 10); |
| return offset; |
| } |
| #endif |
| |
| void __init au1xxx_timer_setup(struct irqaction *irq) |
| { |
| unsigned int est_freq; |
| |
| printk("calculating r4koff... "); |
| r4k_offset = cal_r4koff(); |
| printk("%08lx(%d)\n", r4k_offset, (int) r4k_offset); |
| |
| //est_freq = 2*r4k_offset*HZ; |
| est_freq = r4k_offset*HZ; |
| est_freq += 5000; /* round */ |
| est_freq -= est_freq%10000; |
| printk("CPU frequency %d.%02d MHz\n", est_freq/1000000, |
| (est_freq%1000000)*100/1000000); |
| set_au1x00_speed(est_freq); |
| set_au1x00_lcd_clock(); // program the LCD clock |
| |
| r4k_cur = (read_c0_count() + r4k_offset); |
| write_c0_compare(r4k_cur); |
| |
| #ifdef CONFIG_PM |
| /* |
| * setup counter 0, since it keeps ticking after a |
| * 'wait' instruction has been executed. The CP0 timer and |
| * counter 1 do NOT continue running after 'wait' |
| * |
| * It's too early to call request_irq() here, so we handle |
| * counter 0 interrupt as a special irq and it doesn't show |
| * up under /proc/interrupts. |
| * |
| * Check to ensure we really have a 32KHz oscillator before |
| * we do this. |
| */ |
| if (no_au1xxx_32khz) { |
| unsigned int c0_status; |
| |
| printk("WARNING: no 32KHz clock found.\n"); |
| do_gettimeoffset = do_fast_cp0_gettimeoffset; |
| |
| /* Ensure we get CPO_COUNTER interrupts. |
| */ |
| c0_status = read_c0_status(); |
| c0_status |= IE_IRQ5; |
| write_c0_status(c0_status); |
| } |
| else { |
| while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C0S); |
| au_writel(0, SYS_TOYWRITE); |
| while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_C0S); |
| |
| au_writel(au_readl(SYS_WAKEMSK) | (1<<8), SYS_WAKEMSK); |
| au_writel(~0, SYS_WAKESRC); |
| au_sync(); |
| while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20); |
| |
| /* setup match20 to interrupt once every HZ */ |
| last_pc0 = last_match20 = au_readl(SYS_TOYREAD); |
| au_writel(last_match20 + MATCH20_INC, SYS_TOYMATCH2); |
| au_sync(); |
| while (au_readl(SYS_COUNTER_CNTRL) & SYS_CNTRL_M20); |
| startup_match20_interrupt(counter0_irq); |
| |
| do_gettimeoffset = do_fast_pm_gettimeoffset; |
| |
| /* We can use the real 'wait' instruction. |
| */ |
| allow_au1k_wait = 1; |
| } |
| |
| #else |
| /* We have to do this here instead of in timer_init because |
| * the generic code in arch/mips/kernel/time.c will write |
| * over our function pointer. |
| */ |
| do_gettimeoffset = do_fast_cp0_gettimeoffset; |
| #endif |
| } |
| |
| void __init au1xxx_time_init(void) |
| { |
| } |