[CRYPTO] padlock-aes: Use generic setkey function

The Padlock AES setkey routine is the same as exported by the generic
implementation. So we could use it.

Signed-off-by: Sebastian Siewior <sebastian@breakpoint.cc>
Cc: Michal Ludvig <michal@logix.cz>
Tested-by: Stefan Hellermann <stefan@the2masters.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
diff --git a/drivers/crypto/Kconfig b/drivers/crypto/Kconfig
index e15dbc6..43b71b6 100644
--- a/drivers/crypto/Kconfig
+++ b/drivers/crypto/Kconfig
@@ -27,6 +27,7 @@
 	tristate "PadLock driver for AES algorithm"
 	depends on CRYPTO_DEV_PADLOCK
 	select CRYPTO_BLKCIPHER
+	select CRYPTO_AES
 	help
 	  Use VIA PadLock for AES algorithm.
 
diff --git a/drivers/crypto/padlock-aes.c b/drivers/crypto/padlock-aes.c
index 2f3ad3f..bb30eb9 100644
--- a/drivers/crypto/padlock-aes.c
+++ b/drivers/crypto/padlock-aes.c
@@ -5,42 +5,6 @@
  *
  * Copyright (c) 2004  Michal Ludvig <michal@logix.cz>
  *
- * Key expansion routine taken from crypto/aes_generic.c
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation; either version 2 of the License, or
- * (at your option) any later version.
- *
- * ---------------------------------------------------------------------------
- * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
- * All rights reserved.
- *
- * LICENSE TERMS
- *
- * The free distribution and use of this software in both source and binary
- * form is allowed (with or without changes) provided that:
- *
- *   1. distributions of this source code include the above copyright
- *      notice, this list of conditions and the following disclaimer;
- *
- *   2. distributions in binary form include the above copyright
- *      notice, this list of conditions and the following disclaimer
- *      in the documentation and/or other associated materials;
- *
- *   3. the copyright holder's name is not used to endorse products
- *      built using this software without specific written permission.
- *
- * ALTERNATIVELY, provided that this notice is retained in full, this product
- * may be distributed under the terms of the GNU General Public License (GPL),
- * in which case the provisions of the GPL apply INSTEAD OF those given above.
- *
- * DISCLAIMER
- *
- * This software is provided 'as is' with no explicit or implied warranties
- * in respect of its properties, including, but not limited to, correctness
- * and/or fitness for purpose.
- * ---------------------------------------------------------------------------
  */
 
 #include <crypto/algapi.h>
@@ -54,9 +18,6 @@
 #include <asm/byteorder.h>
 #include "padlock.h"
 
-#define AES_EXTENDED_KEY_SIZE	64	/* in uint32_t units */
-#define AES_EXTENDED_KEY_SIZE_B	(AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
-
 /* Control word. */
 struct cword {
 	unsigned int __attribute__ ((__packed__))
@@ -70,218 +31,23 @@
 
 /* Whenever making any changes to the following
  * structure *make sure* you keep E, d_data
- * and cword aligned on 16 Bytes boundaries!!! */
+ * and cword aligned on 16 Bytes boundaries and
+ * the Hardware can access 16 * 16 bytes of E and d_data
+ * (only the first 15 * 16 bytes matter but the HW reads
+ * more).
+ */
 struct aes_ctx {
+	u32 E[AES_MAX_KEYLENGTH_U32]
+		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
+	u32 d_data[AES_MAX_KEYLENGTH_U32]
+		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 	struct {
 		struct cword encrypt;
 		struct cword decrypt;
 	} cword;
 	u32 *D;
-	int key_length;
-	u32 E[AES_EXTENDED_KEY_SIZE]
-		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
-	u32 d_data[AES_EXTENDED_KEY_SIZE]
-		__attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
 };
 
-/* ====== Key management routines ====== */
-
-static inline uint32_t
-generic_rotr32 (const uint32_t x, const unsigned bits)
-{
-	const unsigned n = bits % 32;
-	return (x >> n) | (x << (32 - n));
-}
-
-static inline uint32_t
-generic_rotl32 (const uint32_t x, const unsigned bits)
-{
-	const unsigned n = bits % 32;
-	return (x << n) | (x >> (32 - n));
-}
-
-#define rotl generic_rotl32
-#define rotr generic_rotr32
-
-/*
- * #define byte(x, nr) ((unsigned char)((x) >> (nr*8))) 
- */
-static inline uint8_t
-byte(const uint32_t x, const unsigned n)
-{
-	return x >> (n << 3);
-}
-
-#define E_KEY ctx->E
-#define D_KEY ctx->D
-
-static uint8_t pow_tab[256];
-static uint8_t log_tab[256];
-static uint8_t sbx_tab[256];
-static uint8_t isb_tab[256];
-static uint32_t rco_tab[10];
-static uint32_t ft_tab[4][256];
-static uint32_t it_tab[4][256];
-
-static uint32_t fl_tab[4][256];
-static uint32_t il_tab[4][256];
-
-static inline uint8_t
-f_mult (uint8_t a, uint8_t b)
-{
-	uint8_t aa = log_tab[a], cc = aa + log_tab[b];
-
-	return pow_tab[cc + (cc < aa ? 1 : 0)];
-}
-
-#define ff_mult(a,b)    (a && b ? f_mult(a, b) : 0)
-
-#define f_rn(bo, bi, n, k)					\
-    bo[n] =  ft_tab[0][byte(bi[n],0)] ^				\
-             ft_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
-             ft_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
-             ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
-
-#define i_rn(bo, bi, n, k)					\
-    bo[n] =  it_tab[0][byte(bi[n],0)] ^				\
-             it_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
-             it_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
-             it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
-
-#define ls_box(x)				\
-    ( fl_tab[0][byte(x, 0)] ^			\
-      fl_tab[1][byte(x, 1)] ^			\
-      fl_tab[2][byte(x, 2)] ^			\
-      fl_tab[3][byte(x, 3)] )
-
-#define f_rl(bo, bi, n, k)					\
-    bo[n] =  fl_tab[0][byte(bi[n],0)] ^				\
-             fl_tab[1][byte(bi[(n + 1) & 3],1)] ^		\
-             fl_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
-             fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
-
-#define i_rl(bo, bi, n, k)					\
-    bo[n] =  il_tab[0][byte(bi[n],0)] ^				\
-             il_tab[1][byte(bi[(n + 3) & 3],1)] ^		\
-             il_tab[2][byte(bi[(n + 2) & 3],2)] ^		\
-             il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
-
-static void
-gen_tabs (void)
-{
-	uint32_t i, t;
-	uint8_t p, q;
-
-	/* log and power tables for GF(2**8) finite field with
-	   0x011b as modular polynomial - the simplest prmitive
-	   root is 0x03, used here to generate the tables */
-
-	for (i = 0, p = 1; i < 256; ++i) {
-		pow_tab[i] = (uint8_t) p;
-		log_tab[p] = (uint8_t) i;
-
-		p ^= (p << 1) ^ (p & 0x80 ? 0x01b : 0);
-	}
-
-	log_tab[1] = 0;
-
-	for (i = 0, p = 1; i < 10; ++i) {
-		rco_tab[i] = p;
-
-		p = (p << 1) ^ (p & 0x80 ? 0x01b : 0);
-	}
-
-	for (i = 0; i < 256; ++i) {
-		p = (i ? pow_tab[255 - log_tab[i]] : 0);
-		q = ((p >> 7) | (p << 1)) ^ ((p >> 6) | (p << 2));
-		p ^= 0x63 ^ q ^ ((q >> 6) | (q << 2));
-		sbx_tab[i] = p;
-		isb_tab[p] = (uint8_t) i;
-	}
-
-	for (i = 0; i < 256; ++i) {
-		p = sbx_tab[i];
-
-		t = p;
-		fl_tab[0][i] = t;
-		fl_tab[1][i] = rotl (t, 8);
-		fl_tab[2][i] = rotl (t, 16);
-		fl_tab[3][i] = rotl (t, 24);
-
-		t = ((uint32_t) ff_mult (2, p)) |
-		    ((uint32_t) p << 8) |
-		    ((uint32_t) p << 16) | ((uint32_t) ff_mult (3, p) << 24);
-
-		ft_tab[0][i] = t;
-		ft_tab[1][i] = rotl (t, 8);
-		ft_tab[2][i] = rotl (t, 16);
-		ft_tab[3][i] = rotl (t, 24);
-
-		p = isb_tab[i];
-
-		t = p;
-		il_tab[0][i] = t;
-		il_tab[1][i] = rotl (t, 8);
-		il_tab[2][i] = rotl (t, 16);
-		il_tab[3][i] = rotl (t, 24);
-
-		t = ((uint32_t) ff_mult (14, p)) |
-		    ((uint32_t) ff_mult (9, p) << 8) |
-		    ((uint32_t) ff_mult (13, p) << 16) |
-		    ((uint32_t) ff_mult (11, p) << 24);
-
-		it_tab[0][i] = t;
-		it_tab[1][i] = rotl (t, 8);
-		it_tab[2][i] = rotl (t, 16);
-		it_tab[3][i] = rotl (t, 24);
-	}
-}
-
-#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
-
-#define imix_col(y,x)       \
-    u   = star_x(x);        \
-    v   = star_x(u);        \
-    w   = star_x(v);        \
-    t   = w ^ (x);          \
-   (y)  = u ^ v ^ w;        \
-   (y) ^= rotr(u ^ t,  8) ^ \
-          rotr(v ^ t, 16) ^ \
-          rotr(t,24)
-
-/* initialise the key schedule from the user supplied key */
-
-#define loop4(i)                                    \
-{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
-    t ^= E_KEY[4 * i];     E_KEY[4 * i + 4] = t;    \
-    t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t;    \
-    t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t;    \
-    t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t;    \
-}
-
-#define loop6(i)                                    \
-{   t = rotr(t,  8); t = ls_box(t) ^ rco_tab[i];    \
-    t ^= E_KEY[6 * i];     E_KEY[6 * i + 6] = t;    \
-    t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t;    \
-    t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t;    \
-    t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t;    \
-    t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t;   \
-    t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t;   \
-}
-
-#define loop8(i)                                    \
-{   t = rotr(t,  8); ; t = ls_box(t) ^ rco_tab[i];  \
-    t ^= E_KEY[8 * i];     E_KEY[8 * i + 8] = t;    \
-    t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t;    \
-    t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t;   \
-    t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t;   \
-    t  = E_KEY[8 * i + 4] ^ ls_box(t);    \
-    E_KEY[8 * i + 12] = t;                \
-    t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t;   \
-    t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t;   \
-    t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t;   \
-}
-
 /* Tells whether the ACE is capable to generate
    the extended key for a given key_len. */
 static inline int
@@ -321,17 +87,13 @@
 	struct aes_ctx *ctx = aes_ctx(tfm);
 	const __le32 *key = (const __le32 *)in_key;
 	u32 *flags = &tfm->crt_flags;
-	uint32_t i, t, u, v, w;
-	uint32_t P[AES_EXTENDED_KEY_SIZE];
-	uint32_t rounds;
+	struct crypto_aes_ctx gen_aes;
 
 	if (key_len % 8) {
 		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
 		return -EINVAL;
 	}
 
-	ctx->key_length = key_len;
-
 	/*
 	 * If the hardware is capable of generating the extended key
 	 * itself we must supply the plain key for both encryption
@@ -339,10 +101,10 @@
 	 */
 	ctx->D = ctx->E;
 
-	E_KEY[0] = le32_to_cpu(key[0]);
-	E_KEY[1] = le32_to_cpu(key[1]);
-	E_KEY[2] = le32_to_cpu(key[2]);
-	E_KEY[3] = le32_to_cpu(key[3]);
+	ctx->E[0] = le32_to_cpu(key[0]);
+	ctx->E[1] = le32_to_cpu(key[1]);
+	ctx->E[2] = le32_to_cpu(key[2]);
+	ctx->E[3] = le32_to_cpu(key[3]);
 
 	/* Prepare control words. */
 	memset(&ctx->cword, 0, sizeof(ctx->cword));
@@ -361,56 +123,13 @@
 	ctx->cword.encrypt.keygen = 1;
 	ctx->cword.decrypt.keygen = 1;
 
-	switch (key_len) {
-	case 16:
-		t = E_KEY[3];
-		for (i = 0; i < 10; ++i)
-			loop4 (i);
-		break;
-
-	case 24:
-		E_KEY[4] = le32_to_cpu(key[4]);
-		t = E_KEY[5] = le32_to_cpu(key[5]);
-		for (i = 0; i < 8; ++i)
-			loop6 (i);
-		break;
-
-	case 32:
-		E_KEY[4] = le32_to_cpu(key[4]);
-		E_KEY[5] = le32_to_cpu(key[5]);
-		E_KEY[6] = le32_to_cpu(key[6]);
-		t = E_KEY[7] = le32_to_cpu(key[7]);
-		for (i = 0; i < 7; ++i)
-			loop8 (i);
-		break;
+	if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
+		*flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
+		return -EINVAL;
 	}
 
-	D_KEY[0] = E_KEY[0];
-	D_KEY[1] = E_KEY[1];
-	D_KEY[2] = E_KEY[2];
-	D_KEY[3] = E_KEY[3];
-
-	for (i = 4; i < key_len + 24; ++i) {
-		imix_col (D_KEY[i], E_KEY[i]);
-	}
-
-	/* PadLock needs a different format of the decryption key. */
-	rounds = 10 + (key_len - 16) / 4;
-
-	for (i = 0; i < rounds; i++) {
-		P[((i + 1) * 4) + 0] = D_KEY[((rounds - i - 1) * 4) + 0];
-		P[((i + 1) * 4) + 1] = D_KEY[((rounds - i - 1) * 4) + 1];
-		P[((i + 1) * 4) + 2] = D_KEY[((rounds - i - 1) * 4) + 2];
-		P[((i + 1) * 4) + 3] = D_KEY[((rounds - i - 1) * 4) + 3];
-	}
-
-	P[0] = E_KEY[(rounds * 4) + 0];
-	P[1] = E_KEY[(rounds * 4) + 1];
-	P[2] = E_KEY[(rounds * 4) + 2];
-	P[3] = E_KEY[(rounds * 4) + 3];
-
-	memcpy(D_KEY, P, AES_EXTENDED_KEY_SIZE_B);
-
+	memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
+	memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
 	return 0;
 }
 
@@ -675,7 +394,6 @@
 		return -ENODEV;
 	}
 
-	gen_tabs();
 	if ((ret = crypto_register_alg(&aes_alg)))
 		goto aes_err;