blob: 7c96c777f12c370e85a5a89c7447a23c5c470a91 [file] [log] [blame]
#!/usr/bin/python
# Copyright (C) 2012 The Android Open Source Project
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import scipy as sp
import scipy.fftpack as fft
import scipy.linalg as la
import math
def calc_thd(data, signalFrequency, samplingRate, frequencyMargin):
# only care about magnitude
fftData = abs(fft.fft(data * np.hanning(len(data))))
fftData[0] = 0 # ignore DC
fftLen = len(fftData)/2
baseI = fftLen * signalFrequency * 2 / samplingRate
iMargain = baseI * frequencyMargin
baseSignalLoc = baseI - iMargain / 2 + \
np.argmax(fftData[baseI - iMargain /2: baseI + iMargain/2])
peakLoc = np.argmax(fftData[:fftLen])
if peakLoc != baseSignalLoc:
print "**ERROR Wrong peak signal", peakLoc, baseSignalLoc
return 1.0
print baseI, baseSignalLoc
P0 = math.pow(la.norm(fftData[baseSignalLoc - iMargain/2: baseSignalLoc + iMargain/2]), 2)
i = baseSignalLoc * 2
Pothers = 0.0
while i < fftLen:
Pothers += math.pow(la.norm(fftData[i - iMargain/2: i + iMargain/2]), 2)
i += baseSignalLoc
print "P0", P0, "Pothers", Pothers
return Pothers / P0
# test code
if __name__=="__main__":
samplingRate = 44100
durationInSec = 10
signalFrequency = 1000
samples = float(samplingRate) * float(durationInSec)
index = np.linspace(0.0, samples, num=samples, endpoint=False)
time = index / samplingRate
multiplier = 2.0 * np.pi * signalFrequency / float(samplingRate)
data = np.sin(index * multiplier)
thd = calc_thd(data, signalFrequency, samplingRate, 0.02)
print "THD", thd