| // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| /** |
| * @fileoverview Imports text files in the Linux event trace format into the |
| * timeline model. This format is output both by sched_trace and by Linux's perf |
| * tool. |
| * |
| * This importer assumes the events arrive as a string. The unit tests provide |
| * examples of the trace format. |
| * |
| * Linux scheduler traces use a definition for 'pid' that is different than |
| * tracing uses. Whereas tracing uses pid to identify a specific process, a pid |
| * in a linux trace refers to a specific thread within a process. Within this |
| * file, we the definition used in Linux traces, as it improves the importing |
| * code's readability. |
| */ |
| cr.define('tracing', function() { |
| /** |
| * Represents the scheduling state for a single thread. |
| * @constructor |
| */ |
| function CpuState(cpu) { |
| this.cpu = cpu; |
| } |
| |
| CpuState.prototype = { |
| __proto__: Object.prototype, |
| |
| /** |
| * Switches the active pid on this Cpu. If necessary, add a TimelineSlice |
| * to the cpu representing the time spent on that Cpu since the last call to |
| * switchRunningLinuxPid. |
| */ |
| switchRunningLinuxPid: function(importer, prevState, ts, pid, comm, prio) { |
| // Generate a slice if the last active pid was not the idle task |
| if (this.lastActivePid !== undefined && this.lastActivePid != 0) { |
| var duration = ts - this.lastActiveTs; |
| var thread = importer.threadsByLinuxPid[this.lastActivePid]; |
| if (thread) |
| name = thread.userFriendlyName; |
| else |
| name = this.lastActiveComm; |
| |
| var slice = new tracing.TimelineSlice(name, |
| tracing.getStringColorId(name), |
| this.lastActiveTs, |
| {comm: this.lastActiveComm, |
| tid: this.lastActivePid, |
| prio: this.lastActivePrio, |
| stateWhenDescheduled: prevState |
| }, |
| duration); |
| this.cpu.slices.push(slice); |
| } |
| |
| this.lastActiveTs = ts; |
| this.lastActivePid = pid; |
| this.lastActiveComm = comm; |
| this.lastActivePrio = prio; |
| } |
| }; |
| |
| function ThreadState(tid) { |
| this.openSlices = []; |
| } |
| |
| /** |
| * Imports linux perf events into a specified model. |
| * @constructor |
| */ |
| function LinuxPerfImporter(model, events, isAdditionalImport) { |
| this.isAdditionalImport_ = isAdditionalImport; |
| this.model_ = model; |
| this.events_ = events; |
| this.clockSyncRecords_ = []; |
| this.cpuStates_ = {}; |
| this.kernelThreadStates_ = {}; |
| this.buildMapFromLinuxPidsToTimelineThreads(); |
| |
| // To allow simple indexing of threads, we store all the threads by their |
| // kernel KPID. The KPID is a unique key for a thread in the trace. |
| this.threadStateByKPID_ = {}; |
| } |
| |
| TestExports = {}; |
| |
| // Matches the generic trace record: |
| // <idle>-0 [001] 1.23: sched_switch |
| var lineRE = /^\s*(.+?)\s+\[(\d+)\]\s*(\d+\.\d+):\s+(\S+):\s(.*)$/; |
| TestExports.lineRE = lineRE; |
| |
| // Matches the sched_switch record |
| var schedSwitchRE = new RegExp( |
| 'prev_comm=(.+) prev_pid=(\\d+) prev_prio=(\\d+) prev_state=(\\S) ==> ' + |
| 'next_comm=(.+) next_pid=(\\d+) next_prio=(\\d+)'); |
| TestExports.schedSwitchRE = schedSwitchRE; |
| |
| // Matches the sched_wakeup record |
| var schedWakeupRE = |
| /comm=(.+) pid=(\d+) prio=(\d+) success=(\d+) target_cpu=(\d+)/; |
| TestExports.schedWakeupRE = schedWakeupRE; |
| |
| // Matches the trace_event_clock_sync record |
| // 0: trace_event_clock_sync: parent_ts=19581477508 |
| var traceEventClockSyncRE = /trace_event_clock_sync: parent_ts=(\d+\.?\d*)/; |
| TestExports.traceEventClockSyncRE = traceEventClockSyncRE; |
| |
| // Matches the workqueue_execute_start record |
| // workqueue_execute_start: work struct c7a8a89c: function MISRWrapper |
| var workqueueExecuteStartRE = /work struct (.+): function (\S+)/; |
| |
| // Matches the workqueue_execute_start record |
| // workqueue_execute_end: work struct c7a8a89c |
| var workqueueExecuteEndRE = /work struct (.+)/; |
| |
| /** |
| * Guesses whether the provided events is a Linux perf string. |
| * Looks for the magic string "# tracer" at the start of the file, |
| * or the typical task-pid-cpu-timestamp-function sequence of a typical |
| * trace's body. |
| * |
| * @return {boolean} True when events is a linux perf array. |
| */ |
| LinuxPerfImporter.canImport = function(events) { |
| if (!(typeof(events) === 'string' || events instanceof String)) |
| return false; |
| |
| if (/^# tracer:/.exec(events)) |
| return true; |
| |
| var m = /^(.+)\n/.exec(events); |
| if (m) |
| events = m[1]; |
| if (lineRE.exec(events)) |
| return true; |
| |
| return false; |
| }; |
| |
| LinuxPerfImporter.prototype = { |
| __proto__: Object.prototype, |
| |
| /** |
| * Precomputes a lookup table from linux pids back to existing |
| * TimelineThreads. This is used during importing to add information to each |
| * timeline thread about whether it was running, descheduled, sleeping, et |
| * cetera. |
| */ |
| buildMapFromLinuxPidsToTimelineThreads: function() { |
| this.threadsByLinuxPid = {}; |
| this.model_.getAllThreads().forEach( |
| function(thread) { |
| this.threadsByLinuxPid[thread.tid] = thread; |
| }.bind(this)); |
| }, |
| |
| /** |
| * @return {CpuState} A CpuState corresponding to the given cpuNumber. |
| */ |
| getOrCreateCpuState: function(cpuNumber) { |
| if (!this.cpuStates_[cpuNumber]) { |
| var cpu = this.model_.getOrCreateCpu(cpuNumber); |
| this.cpuStates_[cpuNumber] = new CpuState(cpu); |
| } |
| return this.cpuStates_[cpuNumber]; |
| }, |
| |
| /** |
| * @return {number} The pid extracted from the kernel thread name. |
| */ |
| parsePid: function(kernelThreadName) { |
| var pid = /.+-(\d+)/.exec(kernelThreadName)[1]; |
| pid = parseInt(pid); |
| return pid; |
| }, |
| |
| /** |
| * @return {number} The string portion of the thread extracted from the |
| * kernel thread name. |
| */ |
| parseThreadName: function(kernelThreadName) { |
| return /(.+)-\d+/.exec(kernelThreadName)[1]; |
| }, |
| |
| /** |
| * @return {TimelinThread} A thread corresponding to the kernelThreadName |
| */ |
| getOrCreateKernelThread: function(kernelThreadName) { |
| if (!this.kernelThreadStates_[kernelThreadName]) { |
| pid = this.parsePid(kernelThreadName); |
| |
| var thread = this.model_.getOrCreateProcess(pid).getOrCreateThread(pid); |
| thread.name = kernelThreadName; |
| this.kernelThreadStates_[kernelThreadName] = { |
| pid: pid, |
| thread: thread, |
| openSlice: undefined, |
| openSliceTS: undefined |
| }; |
| this.threadsByLinuxPid[pid] = thread; |
| } |
| return this.kernelThreadStates_[kernelThreadName]; |
| }, |
| |
| /** |
| * Imports the data in this.events_ into model_. |
| */ |
| importEvents: function() { |
| this.importCpuData(); |
| if (!this.alignClocks()) |
| return; |
| this.buildPerThreadCpuSlicesFromCpuState(); |
| }, |
| |
| /** |
| * Builds the cpuSlices array on each thread based on our knowledge of what |
| * each Cpu is doing. This is done only for TimelineThreads that are |
| * already in the model, on the assumption that not having any traced data |
| * on a thread means that it is not of interest to the user. |
| */ |
| buildPerThreadCpuSlicesFromCpuState: function() { |
| // Push the cpu slices to the threads that they run on. |
| for (var cpuNumber in this.cpuStates_) { |
| var cpuState = this.cpuStates_[cpuNumber]; |
| var cpu = cpuState.cpu; |
| |
| for (var i = 0; i < cpu.slices.length; i++) { |
| var slice = cpu.slices[i]; |
| |
| var thread = this.threadsByLinuxPid[slice.args.tid]; |
| if (!thread) |
| continue; |
| if (!thread.tempCpuSlices) |
| thread.tempCpuSlices = []; |
| |
| // Because Chrome's Array.sort is not a stable sort, we need to keep |
| // the slice index around to keep slices with identical start times in |
| // the proper order when sorting them. |
| slice.index = i; |
| |
| thread.tempCpuSlices.push(slice); |
| } |
| } |
| |
| // Create slices for when the thread is not running. |
| var runningId = tracing.getColorIdByName('running'); |
| var runnableId = tracing.getColorIdByName('runnable'); |
| var sleepingId = tracing.getColorIdByName('sleeping'); |
| var ioWaitId = tracing.getColorIdByName('iowait'); |
| this.model_.getAllThreads().forEach(function(thread) { |
| if (!thread.tempCpuSlices) |
| return; |
| var origSlices = thread.tempCpuSlices; |
| delete thread.tempCpuSlices; |
| |
| origSlices.sort(function(x, y) { |
| var delta = x.start - y.start; |
| if (delta == 0) { |
| // Break ties using the original slice ordering. |
| return x.index - y.index; |
| } else { |
| return delta; |
| } |
| }); |
| |
| // Walk the slice list and put slices between each original slice |
| // to show when the thread isn't running |
| var slices = []; |
| if (origSlices.length) { |
| var slice = origSlices[0]; |
| slices.push(new tracing.TimelineSlice('Running', runningId, |
| slice.start, {}, slice.duration)); |
| } |
| for (var i = 1; i < origSlices.length; i++) { |
| var prevSlice = origSlices[i - 1]; |
| var nextSlice = origSlices[i]; |
| var midDuration = nextSlice.start - prevSlice.end; |
| if (prevSlice.args.stateWhenDescheduled == 'S') { |
| slices.push(new tracing.TimelineSlice('Sleeping', sleepingId, |
| prevSlice.end, {}, midDuration)); |
| } else if (prevSlice.args.stateWhenDescheduled == 'R') { |
| slices.push(new tracing.TimelineSlice('Runnable', runnableId, |
| prevSlice.end, {}, midDuration)); |
| } else if (prevSlice.args.stateWhenDescheduled == 'D') { |
| slices.push(new tracing.TimelineSlice('I/O Wait', ioWaitId, |
| prevSlice.end, {}, midDuration)); |
| } else if (prevSlice.args.stateWhenDescheduled == 'T') { |
| slices.push(new tracing.TimelineSlice('__TASK_STOPPED', ioWaitId, |
| prevSlice.end, {}, midDuration)); |
| } else if (prevSlice.args.stateWhenDescheduled == 't') { |
| slices.push(new tracing.TimelineSlice('debug', ioWaitId, |
| prevSlice.end, {}, midDuration)); |
| } else if (prevSlice.args.stateWhenDescheduled == 'Z') { |
| slices.push(new tracing.TimelineSlice('Zombie', ioWaitId, |
| prevSlice.end, {}, midDuration)); |
| } else if (prevSlice.args.stateWhenDescheduled == 'X') { |
| slices.push(new tracing.TimelineSlice('Exit Dead', ioWaitId, |
| prevSlice.end, {}, midDuration)); |
| } else if (prevSlice.args.stateWhenDescheduled == 'x') { |
| slices.push(new tracing.TimelineSlice('Task Dead', ioWaitId, |
| prevSlice.end, {}, midDuration)); |
| } else if (prevSlice.args.stateWhenDescheduled == 'W') { |
| slices.push(new tracing.TimelineSlice('WakeKill', ioWaitId, |
| prevSlice.end, {}, midDuration)); |
| } else { |
| throw 'Unrecognized state: ' + prevSlice.args.stateWhenDescheduled; |
| } |
| |
| slices.push(new tracing.TimelineSlice('Running', runningId, |
| nextSlice.start, {}, nextSlice.duration)); |
| } |
| thread.cpuSlices = slices; |
| }); |
| }, |
| |
| /** |
| * Walks the slices stored on this.cpuStates_ and adjusts their timestamps |
| * based on any alignment metadata we discovered. |
| */ |
| alignClocks: function() { |
| if (this.clockSyncRecords_.length == 0) { |
| // If this is an additional import, and no clock syncing records were |
| // found, then abort the import. Otherwise, just skip clock alignment. |
| if (!this.isAdditionalImport_) |
| return; |
| |
| // Remove the newly imported CPU slices from the model. |
| this.abortImport(); |
| return false; |
| } |
| |
| // Shift all the slice times based on the sync record. |
| var sync = this.clockSyncRecords_[0]; |
| var timeShift = sync.parentTS - sync.perfTS; |
| for (var cpuNumber in this.cpuStates_) { |
| var cpuState = this.cpuStates_[cpuNumber]; |
| var cpu = cpuState.cpu; |
| |
| for (var i = 0; i < cpu.slices.length; i++) { |
| var slice = cpu.slices[i]; |
| slice.start = slice.start + timeShift; |
| slice.duration = slice.duration; |
| } |
| |
| for (var counterName in cpu.counters) { |
| var counter = cpu.counters[counterName]; |
| for (var sI = 0; sI < counter.timestamps.length; sI++) |
| counter.timestamps[sI] = (counter.timestamps[sI] + timeShift); |
| } |
| } |
| for (var kernelThreadName in this.kernelThreadStates_) { |
| var kthread = this.kernelThreadStates_[kernelThreadName]; |
| var thread = kthread.thread; |
| for (var i = 0; i < thread.subRows[0].length; i++) { |
| thread.subRows[0][i].start += timeShift; |
| } |
| } |
| return true; |
| }, |
| |
| /** |
| * Removes any data that has been added to the model because of an error |
| * detected during the import. |
| */ |
| abortImport: function() { |
| if (this.pushedEventsToThreads) |
| throw 'Cannot abort, have alrady pushedCpuDataToThreads.'; |
| |
| for (var cpuNumber in this.cpuStates_) |
| delete this.model_.cpus[cpuNumber]; |
| for (var kernelThreadName in this.kernelThreadStates_) { |
| var kthread = this.kernelThreadStates_[kernelThreadName]; |
| var thread = kthread.thread; |
| var process = thread.parent; |
| delete process.threads[thread.tid]; |
| delete this.model_.processes[process.pid]; |
| } |
| this.model_.importErrors.push( |
| 'Cannot import kernel trace without a clock sync.'); |
| }, |
| |
| /** |
| * Records the fact that a pid has become runnable. This data will |
| * eventually get used to derive each thread's cpuSlices array. |
| */ |
| markPidRunnable: function(ts, pid, comm, prio) { |
| // TODO(nduca): implement this functionality. |
| }, |
| |
| /** |
| * Helper to process a 'begin' event (e.g. initiate a slice). |
| * @param {ThreadState} state Thread state (holds slices). |
| * @param {string} name The trace event name. |
| * @param {number} ts The trace event begin timestamp. |
| */ |
| processBegin: function(state, tname, name, ts, pid, tid) { |
| var colorId = tracing.getStringColorId(name); |
| var slice = new tracing.TimelineSlice(name, colorId, ts, null); |
| // XXX: Should these be removed from the slice before putting it into the |
| // model? |
| slice.pid = pid; |
| slice.tid = tid; |
| slice.threadName = tname; |
| state.openSlices.push(slice); |
| }, |
| |
| /** |
| * Helper to process an 'end' event (e.g. close a slice). |
| * @param {ThreadState} state Thread state (holds slices). |
| * @param {number} ts The trace event begin timestamp. |
| */ |
| processEnd: function(state, ts) { |
| if (state.openSlices.length == 0) { |
| // Ignore E events that are unmatched. |
| return; |
| } |
| var slice = state.openSlices.pop(); |
| slice.duration = ts - slice.start; |
| |
| // Store the slice on the correct subrow. |
| var thread = this.model_.getOrCreateProcess(slice.pid). |
| getOrCreateThread(slice.tid); |
| if (!thread.name) |
| thread.name = slice.threadName; |
| this.threadsByLinuxPid[slice.tid] = thread; |
| var subRowIndex = state.openSlices.length; |
| thread.getSubrow(subRowIndex).push(slice); |
| |
| // Add the slice to the subSlices array of its parent. |
| if (state.openSlices.length) { |
| var parentSlice = state.openSlices[state.openSlices.length - 1]; |
| parentSlice.subSlices.push(slice); |
| } |
| }, |
| |
| /** |
| * Helper function that closes any open slices. This happens when a trace |
| * ends before an 'E' phase event can get posted. When that happens, this |
| * closes the slice at the highest timestamp we recorded and sets the |
| * didNotFinish flag to true. |
| */ |
| autoCloseOpenSlices: function() { |
| // We need to know the model bounds in order to assign an end-time to |
| // the open slices. |
| this.model_.updateBounds(); |
| |
| // The model's max value in the trace is wrong at this point if there are |
| // un-closed events. To close those events, we need the true global max |
| // value. To compute this, build a list of timestamps that weren't |
| // included in the max calculation, then compute the real maximum based |
| // on that. |
| var openTimestamps = []; |
| for (var kpid in this.threadStateByKPID_) { |
| var state = this.threadStateByKPID_[kpid]; |
| for (var i = 0; i < state.openSlices.length; i++) { |
| var slice = state.openSlices[i]; |
| openTimestamps.push(slice.start); |
| for (var s = 0; s < slice.subSlices.length; s++) { |
| var subSlice = slice.subSlices[s]; |
| openTimestamps.push(subSlice.start); |
| if (subSlice.duration) |
| openTimestamps.push(subSlice.end); |
| } |
| } |
| } |
| |
| // Figure out the maximum value of model.maxTimestamp and |
| // Math.max(openTimestamps). Made complicated by the fact that the model |
| // timestamps might be undefined. |
| var realMaxTimestamp; |
| if (this.model_.maxTimestamp) { |
| realMaxTimestamp = Math.max(this.model_.maxTimestamp, |
| Math.max.apply(Math, openTimestamps)); |
| } else { |
| realMaxTimestamp = Math.max.apply(Math, openTimestamps); |
| } |
| |
| // Automatically close any slices are still open. These occur in a number |
| // of reasonable situations, e.g. deadlock. This pass ensures the open |
| // slices make it into the final model. |
| for (var kpid in this.threadStateByKPID_) { |
| var state = this.threadStateByKPID_[kpid]; |
| while (state.openSlices.length > 0) { |
| var slice = state.openSlices.pop(); |
| slice.duration = realMaxTimestamp - slice.start; |
| slice.didNotFinish = true; |
| |
| // Store the slice on the correct subrow. |
| var thread = this.model_.getOrCreateProcess(slice.pid) |
| .getOrCreateThread(slice.tid); |
| var subRowIndex = state.openSlices.length; |
| thread.getSubrow(subRowIndex).push(slice); |
| |
| // Add the slice to the subSlices array of its parent. |
| if (state.openSlices.length) { |
| var parentSlice = state.openSlices[state.openSlices.length - 1]; |
| parentSlice.subSlices.push(slice); |
| } |
| } |
| } |
| }, |
| |
| /** |
| * Helper that creates and adds samples to a TimelineCounter object based on |
| * 'C' phase events. |
| */ |
| processCounter: function(name, ts, value, pid) { |
| var ctr = this.model_.getOrCreateProcess(pid) |
| .getOrCreateCounter('', name); |
| |
| // Initialize the counter's series fields if needed. |
| // |
| if (ctr.numSeries == 0) { |
| ctr.seriesNames.push('state'); |
| ctr.seriesColors.push( |
| tracing.getStringColorId(ctr.name + '.' + 'state')); |
| } |
| |
| // Add the sample values. |
| ctr.timestamps.push(ts); |
| ctr.samples.push(value); |
| }, |
| |
| |
| /** |
| * Walks the this.events_ structure and creates TimelineCpu objects. |
| */ |
| importCpuData: function() { |
| this.lines_ = this.events_.split('\n'); |
| |
| for (var lineNumber = 0; lineNumber < this.lines_.length; ++lineNumber) { |
| var line = this.lines_[lineNumber]; |
| if (/^#/.exec(line) || line.length == 0) |
| continue; |
| var eventBase = lineRE.exec(line); |
| if (!eventBase) { |
| this.model_.importErrors.push('Line ' + (lineNumber + 1) + |
| ': Unrecognized line: ' + line); |
| continue; |
| } |
| |
| var cpuState = this.getOrCreateCpuState(parseInt(eventBase[2])); |
| var ts = parseFloat(eventBase[3]) * 1000; |
| |
| var eventName = eventBase[4]; |
| |
| if (eventName == 'sched_switch') { |
| var event = schedSwitchRE.exec(eventBase[5]); |
| if (!event) { |
| this.model_.importErrors.push('Line ' + (lineNumber + 1) + |
| ': Malformed sched_switch event'); |
| continue; |
| } |
| |
| var prevState = event[4]; |
| var nextComm = event[5]; |
| var nextPid = parseInt(event[6]); |
| var nextPrio = parseInt(event[7]); |
| cpuState.switchRunningLinuxPid( |
| this, prevState, ts, nextPid, nextComm, nextPrio); |
| |
| } else if (eventName == 'sched_wakeup') { |
| var event = schedWakeupRE.exec(eventBase[5]); |
| if (!event) { |
| this.model_.importErrors.push('Line ' + (lineNumber + 1) + |
| ': Malformed sched_wakeup event'); |
| continue; |
| } |
| |
| var comm = event[1]; |
| var pid = parseInt(event[2]); |
| var prio = parseInt(event[3]); |
| this.markPidRunnable(ts, pid, comm, prio); |
| |
| } else if (eventName == 'cpu_frequency') { |
| var event = /state=(\d+) cpu_id=(\d+)/.exec(eventBase[5]); |
| if (!event) { |
| this.model_.importErrors.push('Line ' + (lineNumber + 1) + |
| ': Malformed cpu_frequency event'); |
| continue; |
| } |
| var targetCpuNumber = parseInt(event[2]); |
| var targetCpu = this.getOrCreateCpuState(targetCpuNumber); |
| var freqCounter = |
| targetCpu.cpu.getOrCreateCounter('', 'Frequency'); |
| if (freqCounter.numSeries == 0) { |
| freqCounter.seriesNames.push('state'); |
| freqCounter.seriesColors.push( |
| tracing.getStringColorId(freqCounter.name + '.' + 'state')); |
| } |
| var freqState = parseInt(event[1]); |
| freqCounter.timestamps.push(ts); |
| freqCounter.samples.push(freqState); |
| } else if (eventName == 'cpufreq_interactive_already' || |
| eventName == 'cpufreq_interactive_target') { |
| var event = /cpu=(\d+) load=(\d+) cur=(\d+) targ=(\d+)/. |
| exec(eventBase[5]); |
| if (!event) { |
| this.model_.importErrors.push('Line ' + (lineNumber + 1) + |
| ': Malformed cpufreq_interactive_* event'); |
| continue; |
| } |
| var targetCpuNumber = parseInt(event[1]); |
| var targetCpu = this.getOrCreateCpuState(targetCpuNumber); |
| var loadCounter = |
| targetCpu.cpu.getOrCreateCounter('', 'Load'); |
| if (loadCounter.numSeries == 0) { |
| loadCounter.seriesNames.push('state'); |
| loadCounter.seriesColors.push( |
| tracing.getStringColorId(loadCounter.name + '.' + 'state')); |
| } |
| var loadState = parseInt(event[2]); |
| loadCounter.timestamps.push(ts); |
| loadCounter.samples.push(loadState); |
| loadCounter.maxTotal = 100; |
| loadCounter.skipUpdateBounds = true; |
| } else if (eventName == 'workqueue_execute_start') { |
| var event = workqueueExecuteStartRE.exec(eventBase[5]); |
| if (!event) { |
| this.model_.importErrors.push('Line ' + (lineNumber + 1) + |
| ': Malformed workqueue_execute_start event'); |
| continue; |
| } |
| var kthread = this.getOrCreateKernelThread(eventBase[1]); |
| kthread.openSliceTS = ts; |
| kthread.openSlice = event[2]; |
| |
| } else if (eventName == 'workqueue_execute_end') { |
| var event = workqueueExecuteEndRE.exec(eventBase[5]); |
| if (!event) { |
| this.model_.importErrors.push('Line ' + (lineNumber + 1) + |
| ': Malformed workqueue_execute_start event'); |
| continue; |
| } |
| var kthread = this.getOrCreateKernelThread(eventBase[1]); |
| if (kthread.openSlice) { |
| var slice = new tracing.TimelineSlice(kthread.openSlice, |
| tracing.getStringColorId(kthread.openSlice), |
| kthread.openSliceTS, |
| {}, |
| ts - kthread.openSliceTS); |
| |
| kthread.thread.subRows[0].push(slice); |
| } |
| kthread.openSlice = undefined; |
| |
| } else if (eventName == '0') { // trace_mark's show up with 0 prefixes. |
| var event = traceEventClockSyncRE.exec(eventBase[5]); |
| if (event) |
| this.clockSyncRecords_.push({ |
| perfTS: ts, |
| parentTS: event[1] * 1000 |
| }); |
| else { |
| var tid = this.parsePid(eventBase[1]); |
| var tname = this.parseThreadName(eventBase[1]); |
| var kpid = tid; |
| |
| if (!(kpid in this.threadStateByKPID_)) |
| this.threadStateByKPID_[kpid] = new ThreadState(); |
| var state = this.threadStateByKPID_[kpid]; |
| |
| var event = eventBase[5].split('|') |
| switch (event[0]) { |
| case 'B': |
| var pid = parseInt(event[1]); |
| var name = event[2]; |
| this.processBegin(state, tname, name, ts, pid, tid); |
| break; |
| case 'E': |
| this.processEnd(state, ts); |
| break; |
| case 'C': |
| var pid = parseInt(event[1]); |
| var name = event[2]; |
| var value = parseInt(event[3]); |
| this.processCounter(name, ts, value, pid); |
| break; |
| default: |
| this.model_.importErrors.push('Line ' + (lineNumber + 1) + |
| ': Unrecognized event: ' + eventBase[5]); |
| } |
| } |
| } |
| } |
| |
| // Autoclose any open slices. |
| var hasOpenSlices = false; |
| for (var kpid in this.threadStateByKPID_) { |
| var state = this.threadStateByKPID_[kpid]; |
| hasOpenSlices |= state.openSlices.length > 0; |
| } |
| if (hasOpenSlices) |
| this.autoCloseOpenSlices(); |
| } |
| }; |
| |
| tracing.TimelineModel.registerImporter(LinuxPerfImporter); |
| |
| return { |
| LinuxPerfImporter: LinuxPerfImporter, |
| _LinuxPerfImporterTestExports: TestExports |
| }; |
| |
| }); |