blob: aeb1c7d7d155b6ddb6b14af3f915ffa9c610a94a [file] [log] [blame]
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/base/x509_certificate.h"
#include <cert.h>
#include <cryptohi.h>
#include <keyhi.h>
#include <nss.h>
#include <pk11pub.h>
#include <prerror.h>
#include <prtime.h>
#include <secder.h>
#include <secerr.h>
#include <sechash.h>
#include <sslerr.h>
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/pickle.h"
#include "base/time.h"
#include "crypto/nss_util.h"
#include "crypto/rsa_private_key.h"
#include "net/base/cert_status_flags.h"
#include "net/base/cert_verify_result.h"
#include "net/base/ev_root_ca_metadata.h"
#include "net/base/net_errors.h"
namespace net {
namespace {
class ScopedCERTCertificatePolicies {
public:
explicit ScopedCERTCertificatePolicies(CERTCertificatePolicies* policies)
: policies_(policies) {}
~ScopedCERTCertificatePolicies() {
if (policies_)
CERT_DestroyCertificatePoliciesExtension(policies_);
}
private:
CERTCertificatePolicies* policies_;
DISALLOW_COPY_AND_ASSIGN(ScopedCERTCertificatePolicies);
};
// ScopedCERTValOutParam manages destruction of values in the CERTValOutParam
// array that cvout points to. cvout must be initialized as passed to
// CERT_PKIXVerifyCert, so that the array must be terminated with
// cert_po_end type.
// When it goes out of scope, it destroys values of cert_po_trustAnchor
// and cert_po_certList types, but doesn't release the array itself.
class ScopedCERTValOutParam {
public:
explicit ScopedCERTValOutParam(CERTValOutParam* cvout)
: cvout_(cvout) {}
~ScopedCERTValOutParam() {
if (cvout_ == NULL)
return;
for (CERTValOutParam *p = cvout_; p->type != cert_po_end; p++) {
switch (p->type) {
case cert_po_trustAnchor:
if (p->value.pointer.cert) {
CERT_DestroyCertificate(p->value.pointer.cert);
p->value.pointer.cert = NULL;
}
break;
case cert_po_certList:
if (p->value.pointer.chain) {
CERT_DestroyCertList(p->value.pointer.chain);
p->value.pointer.chain = NULL;
}
break;
default:
break;
}
}
}
private:
CERTValOutParam* cvout_;
DISALLOW_COPY_AND_ASSIGN(ScopedCERTValOutParam);
};
// Map PORT_GetError() return values to our network error codes.
int MapSecurityError(int err) {
switch (err) {
case PR_DIRECTORY_LOOKUP_ERROR: // DNS lookup error.
return ERR_NAME_NOT_RESOLVED;
case SEC_ERROR_INVALID_ARGS:
return ERR_INVALID_ARGUMENT;
case SSL_ERROR_BAD_CERT_DOMAIN:
return ERR_CERT_COMMON_NAME_INVALID;
case SEC_ERROR_INVALID_TIME:
case SEC_ERROR_EXPIRED_CERTIFICATE:
case SEC_ERROR_EXPIRED_ISSUER_CERTIFICATE:
return ERR_CERT_DATE_INVALID;
case SEC_ERROR_UNKNOWN_ISSUER:
case SEC_ERROR_UNTRUSTED_ISSUER:
case SEC_ERROR_CA_CERT_INVALID:
return ERR_CERT_AUTHORITY_INVALID;
case SEC_ERROR_REVOKED_CERTIFICATE:
case SEC_ERROR_UNTRUSTED_CERT: // Treat as revoked.
return ERR_CERT_REVOKED;
case SEC_ERROR_BAD_DER:
case SEC_ERROR_BAD_SIGNATURE:
case SEC_ERROR_CERT_NOT_VALID:
// TODO(port): add an ERR_CERT_WRONG_USAGE error code.
case SEC_ERROR_CERT_USAGES_INVALID:
case SEC_ERROR_INADEQUATE_KEY_USAGE:
case SEC_ERROR_INADEQUATE_CERT_TYPE:
case SEC_ERROR_POLICY_VALIDATION_FAILED:
case SEC_ERROR_CERT_NOT_IN_NAME_SPACE:
case SEC_ERROR_PATH_LEN_CONSTRAINT_INVALID:
case SEC_ERROR_UNKNOWN_CRITICAL_EXTENSION:
case SEC_ERROR_EXTENSION_VALUE_INVALID:
return ERR_CERT_INVALID;
default:
LOG(WARNING) << "Unknown error " << err << " mapped to net::ERR_FAILED";
return ERR_FAILED;
}
}
// Map PORT_GetError() return values to our cert status flags.
int MapCertErrorToCertStatus(int err) {
switch (err) {
case SSL_ERROR_BAD_CERT_DOMAIN:
return CERT_STATUS_COMMON_NAME_INVALID;
case SEC_ERROR_INVALID_TIME:
case SEC_ERROR_EXPIRED_CERTIFICATE:
case SEC_ERROR_EXPIRED_ISSUER_CERTIFICATE:
return CERT_STATUS_DATE_INVALID;
case SEC_ERROR_UNKNOWN_ISSUER:
case SEC_ERROR_UNTRUSTED_ISSUER:
case SEC_ERROR_CA_CERT_INVALID:
return CERT_STATUS_AUTHORITY_INVALID;
// TODO(port): map CERT_STATUS_NO_REVOCATION_MECHANISM.
case SEC_ERROR_OCSP_BAD_HTTP_RESPONSE:
case SEC_ERROR_OCSP_SERVER_ERROR:
return CERT_STATUS_UNABLE_TO_CHECK_REVOCATION;
case SEC_ERROR_REVOKED_CERTIFICATE:
case SEC_ERROR_UNTRUSTED_CERT: // Treat as revoked.
return CERT_STATUS_REVOKED;
case SEC_ERROR_BAD_DER:
case SEC_ERROR_BAD_SIGNATURE:
case SEC_ERROR_CERT_NOT_VALID:
// TODO(port): add a CERT_STATUS_WRONG_USAGE error code.
case SEC_ERROR_CERT_USAGES_INVALID:
case SEC_ERROR_INADEQUATE_KEY_USAGE: // Key usage.
case SEC_ERROR_INADEQUATE_CERT_TYPE: // Extended key usage and whether
// the certificate is a CA.
case SEC_ERROR_POLICY_VALIDATION_FAILED:
case SEC_ERROR_CERT_NOT_IN_NAME_SPACE:
case SEC_ERROR_PATH_LEN_CONSTRAINT_INVALID:
case SEC_ERROR_UNKNOWN_CRITICAL_EXTENSION:
case SEC_ERROR_EXTENSION_VALUE_INVALID:
return CERT_STATUS_INVALID;
default:
return 0;
}
}
// Saves some information about the certificate chain cert_list in
// *verify_result. The caller MUST initialize *verify_result before calling
// this function.
// Note that cert_list[0] is the end entity certificate and cert_list doesn't
// contain the root CA certificate.
void GetCertChainInfo(CERTCertList* cert_list,
CertVerifyResult* verify_result) {
// NOTE: Using a NSS library before 3.12.3.1 will crash below. To see the
// NSS version currently in use:
// 1. use ldd on the chrome executable for NSS's location (ie. libnss3.so*)
// 2. use ident libnss3.so* for the library's version
DCHECK(cert_list);
int i = 0;
for (CERTCertListNode* node = CERT_LIST_HEAD(cert_list);
!CERT_LIST_END(node, cert_list);
node = CERT_LIST_NEXT(node), i++) {
SECAlgorithmID& signature = node->cert->signature;
SECOidTag oid_tag = SECOID_FindOIDTag(&signature.algorithm);
switch (oid_tag) {
case SEC_OID_PKCS1_MD5_WITH_RSA_ENCRYPTION:
verify_result->has_md5 = true;
if (i != 0)
verify_result->has_md5_ca = true;
break;
case SEC_OID_PKCS1_MD2_WITH_RSA_ENCRYPTION:
verify_result->has_md2 = true;
if (i != 0)
verify_result->has_md2_ca = true;
break;
case SEC_OID_PKCS1_MD4_WITH_RSA_ENCRYPTION:
verify_result->has_md4 = true;
break;
default:
break;
}
}
}
// IsKnownRoot returns true if the given certificate is one that we believe
// is a standard (as opposed to user-installed) root.
bool IsKnownRoot(CERTCertificate* root) {
if (!root->slot)
return false;
// This magic name is taken from
// http://bonsai.mozilla.org/cvsblame.cgi?file=mozilla/security/nss/lib/ckfw/builtins/constants.c&rev=1.13&mark=86,89#79
return 0 == strcmp(PK11_GetSlotName(root->slot),
"NSS Builtin Objects");
}
typedef char* (*CERTGetNameFunc)(CERTName* name);
void ParsePrincipal(CERTName* name,
CertPrincipal* principal) {
// TODO(jcampan): add business_category and serial_number.
// TODO(wtc): NSS has the CERT_GetOrgName, CERT_GetOrgUnitName, and
// CERT_GetDomainComponentName functions, but they return only the most
// general (the first) RDN. NSS doesn't have a function for the street
// address.
static const SECOidTag kOIDs[] = {
SEC_OID_AVA_STREET_ADDRESS,
SEC_OID_AVA_ORGANIZATION_NAME,
SEC_OID_AVA_ORGANIZATIONAL_UNIT_NAME,
SEC_OID_AVA_DC };
std::vector<std::string>* values[] = {
&principal->street_addresses,
&principal->organization_names,
&principal->organization_unit_names,
&principal->domain_components };
DCHECK(arraysize(kOIDs) == arraysize(values));
CERTRDN** rdns = name->rdns;
for (size_t rdn = 0; rdns[rdn]; ++rdn) {
CERTAVA** avas = rdns[rdn]->avas;
for (size_t pair = 0; avas[pair] != 0; ++pair) {
SECOidTag tag = CERT_GetAVATag(avas[pair]);
for (size_t oid = 0; oid < arraysize(kOIDs); ++oid) {
if (kOIDs[oid] == tag) {
SECItem* decode_item = CERT_DecodeAVAValue(&avas[pair]->value);
if (!decode_item)
break;
// TODO(wtc): Pass decode_item to CERT_RFC1485_EscapeAndQuote.
std::string value(reinterpret_cast<char*>(decode_item->data),
decode_item->len);
values[oid]->push_back(value);
SECITEM_FreeItem(decode_item, PR_TRUE);
break;
}
}
}
}
// Get CN, L, S, and C.
CERTGetNameFunc get_name_funcs[4] = {
CERT_GetCommonName, CERT_GetLocalityName,
CERT_GetStateName, CERT_GetCountryName };
std::string* single_values[4] = {
&principal->common_name, &principal->locality_name,
&principal->state_or_province_name, &principal->country_name };
for (size_t i = 0; i < arraysize(get_name_funcs); ++i) {
char* value = get_name_funcs[i](name);
if (value) {
single_values[i]->assign(value);
PORT_Free(value);
}
}
}
void ParseDate(SECItem* der_date, base::Time* result) {
PRTime prtime;
SECStatus rv = DER_DecodeTimeChoice(&prtime, der_date);
DCHECK(rv == SECSuccess);
*result = crypto::PRTimeToBaseTime(prtime);
}
void GetCertSubjectAltNamesOfType(X509Certificate::OSCertHandle cert_handle,
CERTGeneralNameType name_type,
std::vector<std::string>* result) {
// For future extension: We only support general names of types
// RFC822Name, DNSName or URI.
DCHECK(name_type == certRFC822Name ||
name_type == certDNSName ||
name_type == certURI);
SECItem alt_name;
SECStatus rv = CERT_FindCertExtension(cert_handle,
SEC_OID_X509_SUBJECT_ALT_NAME, &alt_name);
if (rv != SECSuccess)
return;
PRArenaPool* arena = PORT_NewArena(DER_DEFAULT_CHUNKSIZE);
DCHECK(arena != NULL);
CERTGeneralName* alt_name_list;
alt_name_list = CERT_DecodeAltNameExtension(arena, &alt_name);
SECITEM_FreeItem(&alt_name, PR_FALSE);
CERTGeneralName* name = alt_name_list;
while (name) {
// All of the general name types we support are encoded as
// IA5String. In general, we should be switching off
// |name->type| and doing type-appropriate conversions.
if (name->type == name_type) {
unsigned char* p = name->name.other.data;
int len = name->name.other.len;
std::string value = std::string(reinterpret_cast<char*>(p), len);
result->push_back(value);
}
name = CERT_GetNextGeneralName(name);
if (name == alt_name_list)
break;
}
PORT_FreeArena(arena, PR_FALSE);
}
// Forward declarations.
SECStatus RetryPKIXVerifyCertWithWorkarounds(
X509Certificate::OSCertHandle cert_handle, int num_policy_oids,
std::vector<CERTValInParam>* cvin, CERTValOutParam* cvout);
SECOidTag GetFirstCertPolicy(X509Certificate::OSCertHandle cert_handle);
// Call CERT_PKIXVerifyCert for the cert_handle.
// Verification results are stored in an array of CERTValOutParam.
// If policy_oids is not NULL and num_policy_oids is positive, policies
// are also checked.
// Caller must initialize cvout before calling this function.
SECStatus PKIXVerifyCert(X509Certificate::OSCertHandle cert_handle,
bool check_revocation,
const SECOidTag* policy_oids,
int num_policy_oids,
CERTValOutParam* cvout) {
bool use_crl = check_revocation;
bool use_ocsp = check_revocation;
// These CAs have multiple keys, which trigger two bugs in NSS's CRL code.
// 1. NSS may use one key to verify a CRL signed with another key,
// incorrectly concluding that the CRL's signature is invalid.
// Hopefully this bug will be fixed in NSS 3.12.9.
// 2. NSS considers all certificates issued by the CA as revoked when it
// receives a CRL with an invalid signature. This overly strict policy
// has been relaxed in NSS 3.12.7. See
// https://bugzilla.mozilla.org/show_bug.cgi?id=562542.
// So we have to turn off CRL checking for these CAs. See
// http://crbug.com/55695.
static const char* const kMultipleKeyCA[] = {
"CN=Microsoft Secure Server Authority,"
"DC=redmond,DC=corp,DC=microsoft,DC=com",
"CN=Microsoft Secure Server Authority",
};
if (!NSS_VersionCheck("3.12.7")) {
for (size_t i = 0; i < arraysize(kMultipleKeyCA); ++i) {
if (strcmp(cert_handle->issuerName, kMultipleKeyCA[i]) == 0) {
use_crl = false;
break;
}
}
}
PRUint64 revocation_method_flags =
CERT_REV_M_DO_NOT_TEST_USING_THIS_METHOD |
CERT_REV_M_ALLOW_NETWORK_FETCHING |
CERT_REV_M_IGNORE_IMPLICIT_DEFAULT_SOURCE |
CERT_REV_M_IGNORE_MISSING_FRESH_INFO |
CERT_REV_M_STOP_TESTING_ON_FRESH_INFO;
PRUint64 revocation_method_independent_flags =
CERT_REV_MI_TEST_ALL_LOCAL_INFORMATION_FIRST;
if (policy_oids && num_policy_oids > 0) {
// EV verification requires revocation checking. Consider the certificate
// revoked if we don't have revocation info.
// TODO(wtc): Add a bool parameter to expressly specify we're doing EV
// verification or we want strict revocation flags.
revocation_method_flags |= CERT_REV_M_REQUIRE_INFO_ON_MISSING_SOURCE;
revocation_method_independent_flags |=
CERT_REV_MI_REQUIRE_SOME_FRESH_INFO_AVAILABLE;
} else {
revocation_method_flags |= CERT_REV_M_SKIP_TEST_ON_MISSING_SOURCE;
revocation_method_independent_flags |=
CERT_REV_MI_NO_OVERALL_INFO_REQUIREMENT;
}
PRUint64 method_flags[2];
method_flags[cert_revocation_method_crl] = revocation_method_flags;
method_flags[cert_revocation_method_ocsp] = revocation_method_flags;
if (use_crl) {
method_flags[cert_revocation_method_crl] |=
CERT_REV_M_TEST_USING_THIS_METHOD;
}
if (use_ocsp) {
method_flags[cert_revocation_method_ocsp] |=
CERT_REV_M_TEST_USING_THIS_METHOD;
}
CERTRevocationMethodIndex preferred_revocation_methods[1];
if (use_ocsp) {
preferred_revocation_methods[0] = cert_revocation_method_ocsp;
} else {
preferred_revocation_methods[0] = cert_revocation_method_crl;
}
CERTRevocationFlags revocation_flags;
revocation_flags.leafTests.number_of_defined_methods =
arraysize(method_flags);
revocation_flags.leafTests.cert_rev_flags_per_method = method_flags;
revocation_flags.leafTests.number_of_preferred_methods =
arraysize(preferred_revocation_methods);
revocation_flags.leafTests.preferred_methods = preferred_revocation_methods;
revocation_flags.leafTests.cert_rev_method_independent_flags =
revocation_method_independent_flags;
revocation_flags.chainTests.number_of_defined_methods =
arraysize(method_flags);
revocation_flags.chainTests.cert_rev_flags_per_method = method_flags;
revocation_flags.chainTests.number_of_preferred_methods =
arraysize(preferred_revocation_methods);
revocation_flags.chainTests.preferred_methods = preferred_revocation_methods;
revocation_flags.chainTests.cert_rev_method_independent_flags =
revocation_method_independent_flags;
std::vector<CERTValInParam> cvin;
cvin.reserve(5);
CERTValInParam in_param;
// No need to set cert_pi_trustAnchors here.
in_param.type = cert_pi_revocationFlags;
in_param.value.pointer.revocation = &revocation_flags;
cvin.push_back(in_param);
if (policy_oids && num_policy_oids > 0) {
in_param.type = cert_pi_policyOID;
in_param.value.arraySize = num_policy_oids;
in_param.value.array.oids = policy_oids;
cvin.push_back(in_param);
}
in_param.type = cert_pi_end;
cvin.push_back(in_param);
SECStatus rv = CERT_PKIXVerifyCert(cert_handle, certificateUsageSSLServer,
&cvin[0], cvout, NULL);
if (rv != SECSuccess) {
rv = RetryPKIXVerifyCertWithWorkarounds(cert_handle, num_policy_oids,
&cvin, cvout);
}
return rv;
}
// PKIXVerifyCert calls this function to work around some bugs in
// CERT_PKIXVerifyCert. All the arguments of this function are either the
// arguments or local variables of PKIXVerifyCert.
SECStatus RetryPKIXVerifyCertWithWorkarounds(
X509Certificate::OSCertHandle cert_handle, int num_policy_oids,
std::vector<CERTValInParam>* cvin, CERTValOutParam* cvout) {
// We call this function when the first CERT_PKIXVerifyCert call in
// PKIXVerifyCert failed, so we initialize |rv| to SECFailure.
SECStatus rv = SECFailure;
int nss_error = PORT_GetError();
CERTValInParam in_param;
// If we get SEC_ERROR_UNKNOWN_ISSUER, we may be missing an intermediate
// CA certificate, so we retry with cert_pi_useAIACertFetch.
// cert_pi_useAIACertFetch has several bugs in its error handling and
// error reporting (NSS bug 528743), so we don't use it by default.
// Note: When building a certificate chain, CERT_PKIXVerifyCert may
// incorrectly pick a CA certificate with the same subject name as the
// missing intermediate CA certificate, and fail with the
// SEC_ERROR_BAD_SIGNATURE error (NSS bug 524013), so we also retry with
// cert_pi_useAIACertFetch on SEC_ERROR_BAD_SIGNATURE.
if (nss_error == SEC_ERROR_UNKNOWN_ISSUER ||
nss_error == SEC_ERROR_BAD_SIGNATURE) {
DCHECK_EQ(cvin->back().type, cert_pi_end);
cvin->pop_back();
in_param.type = cert_pi_useAIACertFetch;
in_param.value.scalar.b = PR_TRUE;
cvin->push_back(in_param);
in_param.type = cert_pi_end;
cvin->push_back(in_param);
rv = CERT_PKIXVerifyCert(cert_handle, certificateUsageSSLServer,
&(*cvin)[0], cvout, NULL);
if (rv == SECSuccess)
return rv;
int new_nss_error = PORT_GetError();
if (new_nss_error == SEC_ERROR_INVALID_ARGS ||
new_nss_error == SEC_ERROR_UNKNOWN_AIA_LOCATION_TYPE ||
new_nss_error == SEC_ERROR_BAD_HTTP_RESPONSE ||
new_nss_error == SEC_ERROR_BAD_LDAP_RESPONSE ||
!IS_SEC_ERROR(new_nss_error)) {
// Use the original error code because of cert_pi_useAIACertFetch's
// bad error reporting.
PORT_SetError(nss_error);
return rv;
}
nss_error = new_nss_error;
}
// If an intermediate CA certificate has requireExplicitPolicy in its
// policyConstraints extension, CERT_PKIXVerifyCert fails with
// SEC_ERROR_POLICY_VALIDATION_FAILED because we didn't specify any
// certificate policy (NSS bug 552775). So we retry with the certificate
// policy found in the server certificate.
if (nss_error == SEC_ERROR_POLICY_VALIDATION_FAILED &&
num_policy_oids == 0) {
SECOidTag policy = GetFirstCertPolicy(cert_handle);
if (policy != SEC_OID_UNKNOWN) {
DCHECK_EQ(cvin->back().type, cert_pi_end);
cvin->pop_back();
in_param.type = cert_pi_policyOID;
in_param.value.arraySize = 1;
in_param.value.array.oids = &policy;
cvin->push_back(in_param);
in_param.type = cert_pi_end;
cvin->push_back(in_param);
rv = CERT_PKIXVerifyCert(cert_handle, certificateUsageSSLServer,
&(*cvin)[0], cvout, NULL);
if (rv != SECSuccess) {
// Use the original error code.
PORT_SetError(nss_error);
}
}
}
return rv;
}
// Decodes the certificatePolicies extension of the certificate. Returns
// NULL if the certificate doesn't have the extension or the extension can't
// be decoded. The returned value must be freed with a
// CERT_DestroyCertificatePoliciesExtension call.
CERTCertificatePolicies* DecodeCertPolicies(
X509Certificate::OSCertHandle cert_handle) {
SECItem policy_ext;
SECStatus rv = CERT_FindCertExtension(
cert_handle, SEC_OID_X509_CERTIFICATE_POLICIES, &policy_ext);
if (rv != SECSuccess)
return NULL;
CERTCertificatePolicies* policies =
CERT_DecodeCertificatePoliciesExtension(&policy_ext);
SECITEM_FreeItem(&policy_ext, PR_FALSE);
return policies;
}
// Returns the OID tag for the first certificate policy in the certificate's
// certificatePolicies extension. Returns SEC_OID_UNKNOWN if the certificate
// has no certificate policy.
SECOidTag GetFirstCertPolicy(X509Certificate::OSCertHandle cert_handle) {
CERTCertificatePolicies* policies = DecodeCertPolicies(cert_handle);
if (!policies)
return SEC_OID_UNKNOWN;
ScopedCERTCertificatePolicies scoped_policies(policies);
CERTPolicyInfo* policy_info = policies->policyInfos[0];
if (!policy_info)
return SEC_OID_UNKNOWN;
if (policy_info->oid != SEC_OID_UNKNOWN)
return policy_info->oid;
// The certificate policy is unknown to NSS. We need to create a dynamic
// OID tag for the policy.
SECOidData od;
od.oid.len = policy_info->policyID.len;
od.oid.data = policy_info->policyID.data;
od.offset = SEC_OID_UNKNOWN;
// NSS doesn't allow us to pass an empty description, so I use a hardcoded,
// default description here. The description doesn't need to be unique for
// each OID.
od.desc = "a certificate policy";
od.mechanism = CKM_INVALID_MECHANISM;
od.supportedExtension = INVALID_CERT_EXTENSION;
return SECOID_AddEntry(&od);
}
bool CheckCertPolicies(X509Certificate::OSCertHandle cert_handle,
SECOidTag ev_policy_tag) {
CERTCertificatePolicies* policies = DecodeCertPolicies(cert_handle);
if (!policies) {
LOG(ERROR) << "Cert has no policies extension or extension couldn't be "
"decoded.";
return false;
}
ScopedCERTCertificatePolicies scoped_policies(policies);
CERTPolicyInfo** policy_infos = policies->policyInfos;
while (*policy_infos != NULL) {
CERTPolicyInfo* policy_info = *policy_infos++;
SECOidTag oid_tag = policy_info->oid;
if (oid_tag == SEC_OID_UNKNOWN)
continue;
if (oid_tag == ev_policy_tag)
return true;
}
LOG(ERROR) << "No EV Policy Tag";
return false;
}
SECStatus PR_CALLBACK
CollectCertsCallback(void* arg, SECItem** certs, int num_certs) {
X509Certificate::OSCertHandles* results =
reinterpret_cast<X509Certificate::OSCertHandles*>(arg);
for (int i = 0; i < num_certs; ++i) {
X509Certificate::OSCertHandle handle =
X509Certificate::CreateOSCertHandleFromBytes(
reinterpret_cast<char*>(certs[i]->data), certs[i]->len);
if (handle)
results->push_back(handle);
}
return SECSuccess;
}
SHA1Fingerprint CertPublicKeyHash(CERTCertificate* cert) {
SHA1Fingerprint hash;
SECStatus rv = HASH_HashBuf(HASH_AlgSHA1, hash.data,
cert->derPublicKey.data, cert->derPublicKey.len);
DCHECK_EQ(rv, SECSuccess);
return hash;
}
void AppendPublicKeyHashes(CERTCertList* cert_list,
CERTCertificate* root_cert,
std::vector<SHA1Fingerprint>* hashes) {
for (CERTCertListNode* node = CERT_LIST_HEAD(cert_list);
!CERT_LIST_END(node, cert_list);
node = CERT_LIST_NEXT(node)) {
hashes->push_back(CertPublicKeyHash(node->cert));
}
hashes->push_back(CertPublicKeyHash(root_cert));
}
} // namespace
void X509Certificate::Initialize() {
ParsePrincipal(&cert_handle_->subject, &subject_);
ParsePrincipal(&cert_handle_->issuer, &issuer_);
ParseDate(&cert_handle_->validity.notBefore, &valid_start_);
ParseDate(&cert_handle_->validity.notAfter, &valid_expiry_);
fingerprint_ = CalculateFingerprint(cert_handle_);
serial_number_ = std::string(
reinterpret_cast<char*>(cert_handle_->serialNumber.data),
cert_handle_->serialNumber.len);
// Remove leading zeros.
while (serial_number_.size() > 1 && serial_number_[0] == 0)
serial_number_ = serial_number_.substr(1, serial_number_.size() - 1);
}
// static
X509Certificate* X509Certificate::CreateSelfSigned(
crypto::RSAPrivateKey* key,
const std::string& subject,
uint32 serial_number,
base::TimeDelta valid_duration) {
DCHECK(key);
// Create info about public key.
CERTSubjectPublicKeyInfo* spki =
SECKEY_CreateSubjectPublicKeyInfo(key->public_key());
if (!spki)
return NULL;
// Create the certificate request.
CERTName* subject_name =
CERT_AsciiToName(const_cast<char*>(subject.c_str()));
CERTCertificateRequest* cert_request =
CERT_CreateCertificateRequest(subject_name, spki, NULL);
SECKEY_DestroySubjectPublicKeyInfo(spki);
if (!cert_request) {
PRErrorCode prerr = PR_GetError();
LOG(ERROR) << "Failed to create certificate request: " << prerr;
CERT_DestroyName(subject_name);
return NULL;
}
PRTime now = PR_Now();
PRTime not_after = now + valid_duration.InMicroseconds();
// Note that the time is now in micro-second unit.
CERTValidity* validity = CERT_CreateValidity(now, not_after);
CERTCertificate* cert = CERT_CreateCertificate(serial_number, subject_name,
validity, cert_request);
if (!cert) {
PRErrorCode prerr = PR_GetError();
LOG(ERROR) << "Failed to create certificate: " << prerr;
}
// Cleanup for resources used to generate the cert.
CERT_DestroyName(subject_name);
CERT_DestroyValidity(validity);
CERT_DestroyCertificateRequest(cert_request);
// Sign the cert here. The logic of this method references SignCert() in NSS
// utility certutil: http://mxr.mozilla.org/security/ident?i=SignCert.
// |arena| is used to encode the cert.
PRArenaPool* arena = cert->arena;
SECOidTag algo_id = SEC_GetSignatureAlgorithmOidTag(key->key()->keyType,
SEC_OID_SHA1);
if (algo_id == SEC_OID_UNKNOWN) {
CERT_DestroyCertificate(cert);
return NULL;
}
SECStatus rv = SECOID_SetAlgorithmID(arena, &cert->signature, algo_id, 0);
if (rv != SECSuccess) {
CERT_DestroyCertificate(cert);
return NULL;
}
// Generate a cert of version 3.
*(cert->version.data) = 2;
cert->version.len = 1;
SECItem der;
der.len = 0;
der.data = NULL;
// Use ASN1 DER to encode the cert.
void* encode_result = SEC_ASN1EncodeItem(
arena, &der, cert, SEC_ASN1_GET(CERT_CertificateTemplate));
if (!encode_result) {
CERT_DestroyCertificate(cert);
return NULL;
}
// Allocate space to contain the signed cert.
SECItem* result = SECITEM_AllocItem(arena, NULL, 0);
if (!result) {
CERT_DestroyCertificate(cert);
return NULL;
}
// Sign the ASN1 encoded cert and save it to |result|.
rv = SEC_DerSignData(arena, result, der.data, der.len, key->key(), algo_id);
if (rv != SECSuccess) {
CERT_DestroyCertificate(cert);
return NULL;
}
// Save the signed result to the cert.
cert->derCert = *result;
X509Certificate* x509_cert =
CreateFromHandle(cert, SOURCE_LONE_CERT_IMPORT, OSCertHandles());
CERT_DestroyCertificate(cert);
return x509_cert;
}
void X509Certificate::GetDNSNames(std::vector<std::string>* dns_names) const {
dns_names->clear();
// Compare with CERT_VerifyCertName().
GetCertSubjectAltNamesOfType(cert_handle_, certDNSName, dns_names);
if (dns_names->empty())
dns_names->push_back(subject_.common_name);
}
int X509Certificate::Verify(const std::string& hostname,
int flags,
CertVerifyResult* verify_result) const {
verify_result->Reset();
if (IsBlacklisted()) {
verify_result->cert_status |= CERT_STATUS_REVOKED;
return ERR_CERT_REVOKED;
}
// Make sure that the hostname matches with the common name of the cert.
SECStatus status = CERT_VerifyCertName(cert_handle_, hostname.c_str());
if (status != SECSuccess)
verify_result->cert_status |= CERT_STATUS_COMMON_NAME_INVALID;
// Make sure that the cert is valid now.
SECCertTimeValidity validity = CERT_CheckCertValidTimes(
cert_handle_, PR_Now(), PR_TRUE);
if (validity != secCertTimeValid)
verify_result->cert_status |= CERT_STATUS_DATE_INVALID;
CERTValOutParam cvout[3];
int cvout_index = 0;
cvout[cvout_index].type = cert_po_certList;
cvout[cvout_index].value.pointer.chain = NULL;
int cvout_cert_list_index = cvout_index;
cvout_index++;
cvout[cvout_index].type = cert_po_trustAnchor;
cvout[cvout_index].value.pointer.cert = NULL;
int cvout_trust_anchor_index = cvout_index;
cvout_index++;
cvout[cvout_index].type = cert_po_end;
ScopedCERTValOutParam scoped_cvout(cvout);
bool check_revocation = (flags & VERIFY_REV_CHECKING_ENABLED);
if (check_revocation) {
verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED;
} else {
// EV requires revocation checking.
flags &= ~VERIFY_EV_CERT;
}
status = PKIXVerifyCert(cert_handle_, check_revocation, NULL, 0, cvout);
if (status != SECSuccess) {
int err = PORT_GetError();
LOG(ERROR) << "CERT_PKIXVerifyCert for " << hostname
<< " failed err=" << err;
// CERT_PKIXVerifyCert rerports the wrong error code for
// expired certificates (NSS bug 491174)
if (err == SEC_ERROR_CERT_NOT_VALID &&
(verify_result->cert_status & CERT_STATUS_DATE_INVALID) != 0)
err = SEC_ERROR_EXPIRED_CERTIFICATE;
int cert_status = MapCertErrorToCertStatus(err);
if (cert_status) {
verify_result->cert_status |= cert_status;
return MapCertStatusToNetError(verify_result->cert_status);
}
// |err| is not a certificate error.
return MapSecurityError(err);
}
GetCertChainInfo(cvout[cvout_cert_list_index].value.pointer.chain,
verify_result);
if (IsCertStatusError(verify_result->cert_status))
return MapCertStatusToNetError(verify_result->cert_status);
AppendPublicKeyHashes(cvout[cvout_cert_list_index].value.pointer.chain,
cvout[cvout_trust_anchor_index].value.pointer.cert,
&verify_result->public_key_hashes);
verify_result->is_issued_by_known_root =
IsKnownRoot(cvout[cvout_trust_anchor_index].value.pointer.cert);
if ((flags & VERIFY_EV_CERT) && VerifyEV())
verify_result->cert_status |= CERT_STATUS_IS_EV;
if (IsPublicKeyBlacklisted(verify_result->public_key_hashes)) {
verify_result->cert_status |= CERT_STATUS_AUTHORITY_INVALID;
return MapCertStatusToNetError(verify_result->cert_status);
}
return OK;
}
bool X509Certificate::VerifyNameMatch(const std::string& hostname) const {
return CERT_VerifyCertName(cert_handle_, hostname.c_str()) == SECSuccess;
}
// Studied Mozilla's code (esp. security/manager/ssl/src/nsIdentityChecking.cpp
// and nsNSSCertHelper.cpp) to learn how to verify EV certificate.
// TODO(wtc): A possible optimization is that we get the trust anchor from
// the first PKIXVerifyCert call. We look up the EV policy for the trust
// anchor. If the trust anchor has no EV policy, we know the cert isn't EV.
// Otherwise, we pass just that EV policy (as opposed to all the EV policies)
// to the second PKIXVerifyCert call.
bool X509Certificate::VerifyEV() const {
EVRootCAMetadata* metadata = EVRootCAMetadata::GetInstance();
CERTValOutParam cvout[3];
int cvout_index = 0;
cvout[cvout_index].type = cert_po_trustAnchor;
cvout[cvout_index].value.pointer.cert = NULL;
int cvout_trust_anchor_index = cvout_index;
cvout_index++;
cvout[cvout_index].type = cert_po_end;
ScopedCERTValOutParam scoped_cvout(cvout);
SECStatus status = PKIXVerifyCert(cert_handle_,
true,
metadata->GetPolicyOIDs(),
metadata->NumPolicyOIDs(),
cvout);
if (status != SECSuccess)
return false;
CERTCertificate* root_ca =
cvout[cvout_trust_anchor_index].value.pointer.cert;
if (root_ca == NULL)
return false;
SHA1Fingerprint fingerprint =
X509Certificate::CalculateFingerprint(root_ca);
SECOidTag ev_policy_tag = SEC_OID_UNKNOWN;
if (!metadata->GetPolicyOID(fingerprint, &ev_policy_tag))
return false;
if (!CheckCertPolicies(cert_handle_, ev_policy_tag))
return false;
return true;
}
bool X509Certificate::GetDEREncoded(std::string* encoded) {
if (!cert_handle_->derCert.len)
return false;
encoded->clear();
encoded->append(reinterpret_cast<char*>(cert_handle_->derCert.data),
cert_handle_->derCert.len);
return true;
}
// static
bool X509Certificate::IsSameOSCert(X509Certificate::OSCertHandle a,
X509Certificate::OSCertHandle b) {
DCHECK(a && b);
if (a == b)
return true;
return a->derCert.len == b->derCert.len &&
memcmp(a->derCert.data, b->derCert.data, a->derCert.len) == 0;
}
// static
X509Certificate::OSCertHandle X509Certificate::CreateOSCertHandleFromBytes(
const char* data, int length) {
if (length < 0)
return NULL;
crypto::EnsureNSSInit();
if (!NSS_IsInitialized())
return NULL;
SECItem der_cert;
der_cert.data = reinterpret_cast<unsigned char*>(const_cast<char*>(data));
der_cert.len = length;
der_cert.type = siDERCertBuffer;
// Parse into a certificate structure.
return CERT_NewTempCertificate(CERT_GetDefaultCertDB(), &der_cert, NULL,
PR_FALSE, PR_TRUE);
}
// static
X509Certificate::OSCertHandles X509Certificate::CreateOSCertHandlesFromBytes(
const char* data, int length, Format format) {
OSCertHandles results;
if (length < 0)
return results;
crypto::EnsureNSSInit();
if (!NSS_IsInitialized())
return results;
switch (format) {
case FORMAT_SINGLE_CERTIFICATE: {
OSCertHandle handle = CreateOSCertHandleFromBytes(data, length);
if (handle)
results.push_back(handle);
break;
}
case FORMAT_PKCS7: {
// Make a copy since CERT_DecodeCertPackage may modify it
std::vector<char> data_copy(data, data + length);
SECStatus result = CERT_DecodeCertPackage(&data_copy[0],
length, CollectCertsCallback, &results);
if (result != SECSuccess)
results.clear();
break;
}
default:
NOTREACHED() << "Certificate format " << format << " unimplemented";
break;
}
return results;
}
// static
X509Certificate::OSCertHandle X509Certificate::DupOSCertHandle(
OSCertHandle cert_handle) {
return CERT_DupCertificate(cert_handle);
}
// static
void X509Certificate::FreeOSCertHandle(OSCertHandle cert_handle) {
CERT_DestroyCertificate(cert_handle);
}
// static
SHA1Fingerprint X509Certificate::CalculateFingerprint(
OSCertHandle cert) {
SHA1Fingerprint sha1;
memset(sha1.data, 0, sizeof(sha1.data));
DCHECK(NULL != cert->derCert.data);
DCHECK(0 != cert->derCert.len);
SECStatus rv = HASH_HashBuf(HASH_AlgSHA1, sha1.data,
cert->derCert.data, cert->derCert.len);
DCHECK(rv == SECSuccess);
return sha1;
}
// static
X509Certificate::OSCertHandle
X509Certificate::ReadCertHandleFromPickle(const Pickle& pickle,
void** pickle_iter) {
const char* data;
int length;
if (!pickle.ReadData(pickle_iter, &data, &length))
return NULL;
return CreateOSCertHandleFromBytes(data, length);
}
// static
bool X509Certificate::WriteCertHandleToPickle(OSCertHandle cert_handle,
Pickle* pickle) {
return pickle->WriteData(
reinterpret_cast<const char*>(cert_handle->derCert.data),
cert_handle->derCert.len);
}
} // namespace net