| // Copyright (c) 2011 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef BASE_MESSAGE_LOOP_H_ |
| #define BASE_MESSAGE_LOOP_H_ |
| #pragma once |
| |
| #include <queue> |
| #include <string> |
| |
| #include "base/base_api.h" |
| #include "base/basictypes.h" |
| #include "base/memory/ref_counted.h" |
| #include "base/message_pump.h" |
| #include "base/observer_list.h" |
| #include "base/synchronization/lock.h" |
| #include "base/task.h" |
| |
| #if defined(OS_WIN) |
| // We need this to declare base::MessagePumpWin::Dispatcher, which we should |
| // really just eliminate. |
| #include "base/message_pump_win.h" |
| #elif defined(OS_POSIX) |
| #include "base/message_pump_libevent.h" |
| #if !defined(OS_MACOSX) |
| #include "base/message_pump_glib.h" |
| typedef struct _XDisplay Display; |
| #endif |
| #endif |
| #if defined(TOUCH_UI) |
| #include "base/message_pump_glib_x_dispatch.h" |
| #endif |
| |
| namespace base { |
| class Histogram; |
| } |
| |
| // A MessageLoop is used to process events for a particular thread. There is |
| // at most one MessageLoop instance per thread. |
| // |
| // Events include at a minimum Task instances submitted to PostTask or those |
| // managed by TimerManager. Depending on the type of message pump used by the |
| // MessageLoop other events such as UI messages may be processed. On Windows |
| // APC calls (as time permits) and signals sent to a registered set of HANDLEs |
| // may also be processed. |
| // |
| // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called |
| // on the thread where the MessageLoop's Run method executes. |
| // |
| // NOTE: MessageLoop has task reentrancy protection. This means that if a |
| // task is being processed, a second task cannot start until the first task is |
| // finished. Reentrancy can happen when processing a task, and an inner |
| // message pump is created. That inner pump then processes native messages |
| // which could implicitly start an inner task. Inner message pumps are created |
| // with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions |
| // (DoDragDrop), printer functions (StartDoc) and *many* others. |
| // |
| // Sample workaround when inner task processing is needed: |
| // bool old_state = MessageLoop::current()->NestableTasksAllowed(); |
| // MessageLoop::current()->SetNestableTasksAllowed(true); |
| // HRESULT hr = DoDragDrop(...); // Implicitly runs a modal message loop here. |
| // MessageLoop::current()->SetNestableTasksAllowed(old_state); |
| // // Process hr (the result returned by DoDragDrop(). |
| // |
| // Please be SURE your task is reentrant (nestable) and all global variables |
| // are stable and accessible before calling SetNestableTasksAllowed(true). |
| // |
| class BASE_API MessageLoop : public base::MessagePump::Delegate { |
| public: |
| #if defined(OS_WIN) |
| typedef base::MessagePumpWin::Dispatcher Dispatcher; |
| typedef base::MessagePumpForUI::Observer Observer; |
| #elif !defined(OS_MACOSX) |
| #if defined(TOUCH_UI) |
| typedef base::MessagePumpGlibXDispatcher Dispatcher; |
| #else |
| typedef base::MessagePumpForUI::Dispatcher Dispatcher; |
| #endif |
| typedef base::MessagePumpForUI::Observer Observer; |
| #endif |
| |
| // A MessageLoop has a particular type, which indicates the set of |
| // asynchronous events it may process in addition to tasks and timers. |
| // |
| // TYPE_DEFAULT |
| // This type of ML only supports tasks and timers. |
| // |
| // TYPE_UI |
| // This type of ML also supports native UI events (e.g., Windows messages). |
| // See also MessageLoopForUI. |
| // |
| // TYPE_IO |
| // This type of ML also supports asynchronous IO. See also |
| // MessageLoopForIO. |
| // |
| enum Type { |
| TYPE_DEFAULT, |
| TYPE_UI, |
| TYPE_IO |
| }; |
| |
| // Normally, it is not necessary to instantiate a MessageLoop. Instead, it |
| // is typical to make use of the current thread's MessageLoop instance. |
| explicit MessageLoop(Type type = TYPE_DEFAULT); |
| ~MessageLoop(); |
| |
| // Returns the MessageLoop object for the current thread, or null if none. |
| static MessageLoop* current(); |
| |
| static void EnableHistogrammer(bool enable_histogrammer); |
| |
| // A DestructionObserver is notified when the current MessageLoop is being |
| // destroyed. These obsevers are notified prior to MessageLoop::current() |
| // being changed to return NULL. This gives interested parties the chance to |
| // do final cleanup that depends on the MessageLoop. |
| // |
| // NOTE: Any tasks posted to the MessageLoop during this notification will |
| // not be run. Instead, they will be deleted. |
| // |
| class BASE_API DestructionObserver { |
| public: |
| virtual void WillDestroyCurrentMessageLoop() = 0; |
| |
| protected: |
| virtual ~DestructionObserver(); |
| }; |
| |
| // Add a DestructionObserver, which will start receiving notifications |
| // immediately. |
| void AddDestructionObserver(DestructionObserver* destruction_observer); |
| |
| // Remove a DestructionObserver. It is safe to call this method while a |
| // DestructionObserver is receiving a notification callback. |
| void RemoveDestructionObserver(DestructionObserver* destruction_observer); |
| |
| // The "PostTask" family of methods call the task's Run method asynchronously |
| // from within a message loop at some point in the future. |
| // |
| // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed |
| // with normal UI or IO event processing. With the PostDelayedTask variant, |
| // tasks are called after at least approximately 'delay_ms' have elapsed. |
| // |
| // The NonNestable variants work similarly except that they promise never to |
| // dispatch the task from a nested invocation of MessageLoop::Run. Instead, |
| // such tasks get deferred until the top-most MessageLoop::Run is executing. |
| // |
| // The MessageLoop takes ownership of the Task, and deletes it after it has |
| // been Run(). |
| // |
| // NOTE: These methods may be called on any thread. The Task will be invoked |
| // on the thread that executes MessageLoop::Run(). |
| |
| void PostTask( |
| const tracked_objects::Location& from_here, Task* task); |
| |
| void PostDelayedTask( |
| const tracked_objects::Location& from_here, Task* task, int64 delay_ms); |
| |
| void PostNonNestableTask( |
| const tracked_objects::Location& from_here, Task* task); |
| |
| void PostNonNestableDelayedTask( |
| const tracked_objects::Location& from_here, Task* task, int64 delay_ms); |
| |
| // A variant on PostTask that deletes the given object. This is useful |
| // if the object needs to live until the next run of the MessageLoop (for |
| // example, deleting a RenderProcessHost from within an IPC callback is not |
| // good). |
| // |
| // NOTE: This method may be called on any thread. The object will be deleted |
| // on the thread that executes MessageLoop::Run(). If this is not the same |
| // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit |
| // from RefCountedThreadSafe<T>! |
| template <class T> |
| void DeleteSoon(const tracked_objects::Location& from_here, const T* object) { |
| PostNonNestableTask(from_here, new DeleteTask<T>(object)); |
| } |
| |
| // A variant on PostTask that releases the given reference counted object |
| // (by calling its Release method). This is useful if the object needs to |
| // live until the next run of the MessageLoop, or if the object needs to be |
| // released on a particular thread. |
| // |
| // NOTE: This method may be called on any thread. The object will be |
| // released (and thus possibly deleted) on the thread that executes |
| // MessageLoop::Run(). If this is not the same as the thread that calls |
| // PostDelayedTask(FROM_HERE, ), then T MUST inherit from |
| // RefCountedThreadSafe<T>! |
| template <class T> |
| void ReleaseSoon(const tracked_objects::Location& from_here, |
| const T* object) { |
| PostNonNestableTask(from_here, new ReleaseTask<T>(object)); |
| } |
| |
| // Run the message loop. |
| void Run(); |
| |
| // Process all pending tasks, windows messages, etc., but don't wait/sleep. |
| // Return as soon as all items that can be run are taken care of. |
| void RunAllPending(); |
| |
| // Signals the Run method to return after it is done processing all pending |
| // messages. This method may only be called on the same thread that called |
| // Run, and Run must still be on the call stack. |
| // |
| // Use QuitTask if you need to Quit another thread's MessageLoop, but note |
| // that doing so is fairly dangerous if the target thread makes nested calls |
| // to MessageLoop::Run. The problem being that you won't know which nested |
| // run loop you are quiting, so be careful! |
| // |
| void Quit(); |
| |
| // This method is a variant of Quit, that does not wait for pending messages |
| // to be processed before returning from Run. |
| void QuitNow(); |
| |
| // Invokes Quit on the current MessageLoop when run. Useful to schedule an |
| // arbitrary MessageLoop to Quit. |
| class QuitTask : public Task { |
| public: |
| virtual void Run() { |
| MessageLoop::current()->Quit(); |
| } |
| }; |
| |
| // Returns the type passed to the constructor. |
| Type type() const { return type_; } |
| |
| // Optional call to connect the thread name with this loop. |
| void set_thread_name(const std::string& thread_name) { |
| DCHECK(thread_name_.empty()) << "Should not rename this thread!"; |
| thread_name_ = thread_name; |
| } |
| const std::string& thread_name() const { return thread_name_; } |
| |
| // Enables or disables the recursive task processing. This happens in the case |
| // of recursive message loops. Some unwanted message loop may occurs when |
| // using common controls or printer functions. By default, recursive task |
| // processing is disabled. |
| // |
| // The specific case where tasks get queued is: |
| // - The thread is running a message loop. |
| // - It receives a task #1 and execute it. |
| // - The task #1 implicitly start a message loop, like a MessageBox in the |
| // unit test. This can also be StartDoc or GetSaveFileName. |
| // - The thread receives a task #2 before or while in this second message |
| // loop. |
| // - With NestableTasksAllowed set to true, the task #2 will run right away. |
| // Otherwise, it will get executed right after task #1 completes at "thread |
| // message loop level". |
| void SetNestableTasksAllowed(bool allowed); |
| bool NestableTasksAllowed() const; |
| |
| // Enables nestable tasks on |loop| while in scope. |
| class ScopedNestableTaskAllower { |
| public: |
| explicit ScopedNestableTaskAllower(MessageLoop* loop) |
| : loop_(loop), |
| old_state_(loop_->NestableTasksAllowed()) { |
| loop_->SetNestableTasksAllowed(true); |
| } |
| ~ScopedNestableTaskAllower() { |
| loop_->SetNestableTasksAllowed(old_state_); |
| } |
| |
| private: |
| MessageLoop* loop_; |
| bool old_state_; |
| }; |
| |
| // Enables or disables the restoration during an exception of the unhandled |
| // exception filter that was active when Run() was called. This can happen |
| // if some third party code call SetUnhandledExceptionFilter() and never |
| // restores the previous filter. |
| void set_exception_restoration(bool restore) { |
| exception_restoration_ = restore; |
| } |
| |
| // Returns true if we are currently running a nested message loop. |
| bool IsNested(); |
| |
| // A TaskObserver is an object that receives task notifications from the |
| // MessageLoop. |
| // |
| // NOTE: A TaskObserver implementation should be extremely fast! |
| class BASE_API TaskObserver { |
| public: |
| TaskObserver(); |
| |
| // This method is called before processing a task. |
| virtual void WillProcessTask(const Task* task) = 0; |
| |
| // This method is called after processing a task. |
| virtual void DidProcessTask(const Task* task) = 0; |
| |
| protected: |
| virtual ~TaskObserver(); |
| }; |
| |
| // These functions can only be called on the same thread that |this| is |
| // running on. |
| void AddTaskObserver(TaskObserver* task_observer); |
| void RemoveTaskObserver(TaskObserver* task_observer); |
| |
| // Returns true if the message loop has high resolution timers enabled. |
| // Provided for testing. |
| bool high_resolution_timers_enabled() { |
| #if defined(OS_WIN) |
| return !high_resolution_timer_expiration_.is_null(); |
| #else |
| return true; |
| #endif |
| } |
| |
| // When we go into high resolution timer mode, we will stay in hi-res mode |
| // for at least 1s. |
| static const int kHighResolutionTimerModeLeaseTimeMs = 1000; |
| |
| // Asserts that the MessageLoop is "idle". |
| void AssertIdle() const; |
| |
| #if defined(OS_WIN) |
| void set_os_modal_loop(bool os_modal_loop) { |
| os_modal_loop_ = os_modal_loop; |
| } |
| |
| bool os_modal_loop() const { |
| return os_modal_loop_; |
| } |
| #endif // OS_WIN |
| |
| //---------------------------------------------------------------------------- |
| protected: |
| struct RunState { |
| // Used to count how many Run() invocations are on the stack. |
| int run_depth; |
| |
| // Used to record that Quit() was called, or that we should quit the pump |
| // once it becomes idle. |
| bool quit_received; |
| |
| #if !defined(OS_MACOSX) |
| Dispatcher* dispatcher; |
| #endif |
| }; |
| |
| class AutoRunState : RunState { |
| public: |
| explicit AutoRunState(MessageLoop* loop); |
| ~AutoRunState(); |
| private: |
| MessageLoop* loop_; |
| RunState* previous_state_; |
| }; |
| |
| // This structure is copied around by value. |
| struct PendingTask { |
| PendingTask(Task* task, bool nestable) |
| : task(task), sequence_num(0), nestable(nestable) { |
| } |
| |
| // Used to support sorting. |
| bool operator<(const PendingTask& other) const; |
| |
| Task* task; // The task to run. |
| base::TimeTicks delayed_run_time; // The time when the task should be run. |
| int sequence_num; // Secondary sort key for run time. |
| bool nestable; // OK to dispatch from a nested loop. |
| }; |
| |
| class TaskQueue : public std::queue<PendingTask> { |
| public: |
| void Swap(TaskQueue* queue) { |
| c.swap(queue->c); // Calls std::deque::swap |
| } |
| }; |
| |
| typedef std::priority_queue<PendingTask> DelayedTaskQueue; |
| |
| #if defined(OS_WIN) |
| base::MessagePumpWin* pump_win() { |
| return static_cast<base::MessagePumpWin*>(pump_.get()); |
| } |
| #elif defined(OS_POSIX) |
| base::MessagePumpLibevent* pump_libevent() { |
| return static_cast<base::MessagePumpLibevent*>(pump_.get()); |
| } |
| #endif |
| |
| // A function to encapsulate all the exception handling capability in the |
| // stacks around the running of a main message loop. It will run the message |
| // loop in a SEH try block or not depending on the set_SEH_restoration() |
| // flag invoking respectively RunInternalInSEHFrame() or RunInternal(). |
| void RunHandler(); |
| |
| #if defined(OS_WIN) |
| __declspec(noinline) void RunInternalInSEHFrame(); |
| #endif |
| |
| // A surrounding stack frame around the running of the message loop that |
| // supports all saving and restoring of state, as is needed for any/all (ugly) |
| // recursive calls. |
| void RunInternal(); |
| |
| // Called to process any delayed non-nestable tasks. |
| bool ProcessNextDelayedNonNestableTask(); |
| |
| // Runs the specified task and deletes it. |
| void RunTask(Task* task); |
| |
| // Calls RunTask or queues the pending_task on the deferred task list if it |
| // cannot be run right now. Returns true if the task was run. |
| bool DeferOrRunPendingTask(const PendingTask& pending_task); |
| |
| // Adds the pending task to delayed_work_queue_. |
| void AddToDelayedWorkQueue(const PendingTask& pending_task); |
| |
| // Load tasks from the incoming_queue_ into work_queue_ if the latter is |
| // empty. The former requires a lock to access, while the latter is directly |
| // accessible on this thread. |
| void ReloadWorkQueue(); |
| |
| // Delete tasks that haven't run yet without running them. Used in the |
| // destructor to make sure all the task's destructors get called. Returns |
| // true if some work was done. |
| bool DeletePendingTasks(); |
| |
| // Post a task to our incomming queue. |
| void PostTask_Helper(const tracked_objects::Location& from_here, Task* task, |
| int64 delay_ms, bool nestable); |
| |
| // Start recording histogram info about events and action IF it was enabled |
| // and IF the statistics recorder can accept a registration of our histogram. |
| void StartHistogrammer(); |
| |
| // Add occurence of event to our histogram, so that we can see what is being |
| // done in a specific MessageLoop instance (i.e., specific thread). |
| // If message_histogram_ is NULL, this is a no-op. |
| void HistogramEvent(int event); |
| |
| // base::MessagePump::Delegate methods: |
| virtual bool DoWork(); |
| virtual bool DoDelayedWork(base::TimeTicks* next_delayed_work_time); |
| virtual bool DoIdleWork(); |
| |
| Type type_; |
| |
| // A list of tasks that need to be processed by this instance. Note that |
| // this queue is only accessed (push/pop) by our current thread. |
| TaskQueue work_queue_; |
| |
| // Contains delayed tasks, sorted by their 'delayed_run_time' property. |
| DelayedTaskQueue delayed_work_queue_; |
| |
| // A recent snapshot of Time::Now(), used to check delayed_work_queue_. |
| base::TimeTicks recent_time_; |
| |
| // A queue of non-nestable tasks that we had to defer because when it came |
| // time to execute them we were in a nested message loop. They will execute |
| // once we're out of nested message loops. |
| TaskQueue deferred_non_nestable_work_queue_; |
| |
| scoped_refptr<base::MessagePump> pump_; |
| |
| ObserverList<DestructionObserver> destruction_observers_; |
| |
| // A recursion block that prevents accidentally running additonal tasks when |
| // insider a (accidentally induced?) nested message pump. |
| bool nestable_tasks_allowed_; |
| |
| bool exception_restoration_; |
| |
| std::string thread_name_; |
| // A profiling histogram showing the counts of various messages and events. |
| base::Histogram* message_histogram_; |
| |
| // A null terminated list which creates an incoming_queue of tasks that are |
| // acquired under a mutex for processing on this instance's thread. These |
| // tasks have not yet been sorted out into items for our work_queue_ vs |
| // items that will be handled by the TimerManager. |
| TaskQueue incoming_queue_; |
| // Protect access to incoming_queue_. |
| mutable base::Lock incoming_queue_lock_; |
| |
| RunState* state_; |
| |
| #if defined(OS_WIN) |
| base::TimeTicks high_resolution_timer_expiration_; |
| // Should be set to true before calling Windows APIs like TrackPopupMenu, etc |
| // which enter a modal message loop. |
| bool os_modal_loop_; |
| #endif |
| |
| // The next sequence number to use for delayed tasks. |
| int next_sequence_num_; |
| |
| ObserverList<TaskObserver> task_observers_; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(MessageLoop); |
| }; |
| |
| //----------------------------------------------------------------------------- |
| // MessageLoopForUI extends MessageLoop with methods that are particular to a |
| // MessageLoop instantiated with TYPE_UI. |
| // |
| // This class is typically used like so: |
| // MessageLoopForUI::current()->...call some method... |
| // |
| class BASE_API MessageLoopForUI : public MessageLoop { |
| public: |
| MessageLoopForUI() : MessageLoop(TYPE_UI) { |
| } |
| |
| // Returns the MessageLoopForUI of the current thread. |
| static MessageLoopForUI* current() { |
| MessageLoop* loop = MessageLoop::current(); |
| DCHECK_EQ(MessageLoop::TYPE_UI, loop->type()); |
| return static_cast<MessageLoopForUI*>(loop); |
| } |
| |
| #if defined(OS_WIN) |
| void DidProcessMessage(const MSG& message); |
| #endif // defined(OS_WIN) |
| |
| #if defined(USE_X11) |
| // Returns the Xlib Display that backs the MessagePump for this MessageLoop. |
| // |
| // This allows for raw access to the X11 server in situations where our |
| // abstractions do not provide enough power. |
| // |
| // Be careful how this is used. The MessagePump in general expects |
| // exclusive access to the Display. Calling things like XNextEvent() will |
| // likely break things in subtle, hard to detect, ways. |
| Display* GetDisplay(); |
| #endif // defined(OS_X11) |
| |
| #if !defined(OS_MACOSX) |
| // Please see message_pump_win/message_pump_glib for definitions of these |
| // methods. |
| void AddObserver(Observer* observer); |
| void RemoveObserver(Observer* observer); |
| void Run(Dispatcher* dispatcher); |
| |
| protected: |
| // TODO(rvargas): Make this platform independent. |
| base::MessagePumpForUI* pump_ui() { |
| return static_cast<base::MessagePumpForUI*>(pump_.get()); |
| } |
| #endif // !defined(OS_MACOSX) |
| }; |
| |
| // Do not add any member variables to MessageLoopForUI! This is important b/c |
| // MessageLoopForUI is often allocated via MessageLoop(TYPE_UI). Any extra |
| // data that you need should be stored on the MessageLoop's pump_ instance. |
| COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForUI), |
| MessageLoopForUI_should_not_have_extra_member_variables); |
| |
| //----------------------------------------------------------------------------- |
| // MessageLoopForIO extends MessageLoop with methods that are particular to a |
| // MessageLoop instantiated with TYPE_IO. |
| // |
| // This class is typically used like so: |
| // MessageLoopForIO::current()->...call some method... |
| // |
| class BASE_API MessageLoopForIO : public MessageLoop { |
| public: |
| #if defined(OS_WIN) |
| typedef base::MessagePumpForIO::IOHandler IOHandler; |
| typedef base::MessagePumpForIO::IOContext IOContext; |
| typedef base::MessagePumpForIO::IOObserver IOObserver; |
| #elif defined(OS_POSIX) |
| typedef base::MessagePumpLibevent::Watcher Watcher; |
| typedef base::MessagePumpLibevent::FileDescriptorWatcher |
| FileDescriptorWatcher; |
| typedef base::MessagePumpLibevent::IOObserver IOObserver; |
| |
| enum Mode { |
| WATCH_READ = base::MessagePumpLibevent::WATCH_READ, |
| WATCH_WRITE = base::MessagePumpLibevent::WATCH_WRITE, |
| WATCH_READ_WRITE = base::MessagePumpLibevent::WATCH_READ_WRITE |
| }; |
| |
| #endif |
| |
| MessageLoopForIO() : MessageLoop(TYPE_IO) { |
| } |
| |
| // Returns the MessageLoopForIO of the current thread. |
| static MessageLoopForIO* current() { |
| MessageLoop* loop = MessageLoop::current(); |
| DCHECK_EQ(MessageLoop::TYPE_IO, loop->type()); |
| return static_cast<MessageLoopForIO*>(loop); |
| } |
| |
| void AddIOObserver(IOObserver* io_observer) { |
| pump_io()->AddIOObserver(io_observer); |
| } |
| |
| void RemoveIOObserver(IOObserver* io_observer) { |
| pump_io()->RemoveIOObserver(io_observer); |
| } |
| |
| #if defined(OS_WIN) |
| // Please see MessagePumpWin for definitions of these methods. |
| void RegisterIOHandler(HANDLE file_handle, IOHandler* handler); |
| bool WaitForIOCompletion(DWORD timeout, IOHandler* filter); |
| |
| protected: |
| // TODO(rvargas): Make this platform independent. |
| base::MessagePumpForIO* pump_io() { |
| return static_cast<base::MessagePumpForIO*>(pump_.get()); |
| } |
| |
| #elif defined(OS_POSIX) |
| // Please see MessagePumpLibevent for definition. |
| bool WatchFileDescriptor(int fd, |
| bool persistent, |
| Mode mode, |
| FileDescriptorWatcher *controller, |
| Watcher *delegate); |
| |
| private: |
| base::MessagePumpLibevent* pump_io() { |
| return static_cast<base::MessagePumpLibevent*>(pump_.get()); |
| } |
| #endif // defined(OS_POSIX) |
| }; |
| |
| // Do not add any member variables to MessageLoopForIO! This is important b/c |
| // MessageLoopForIO is often allocated via MessageLoop(TYPE_IO). Any extra |
| // data that you need should be stored on the MessageLoop's pump_ instance. |
| COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForIO), |
| MessageLoopForIO_should_not_have_extra_member_variables); |
| |
| #endif // BASE_MESSAGE_LOOP_H_ |