| //=-- ExprEngine.cpp - Path-Sensitive Expression-Level Dataflow ---*- C++ -*-= |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines a meta-engine for path-sensitive dataflow analysis that |
| // is built on GREngine, but provides the boilerplate to execute transfer |
| // functions and build the ExplodedGraph at the expression level. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "ExprEngine" |
| |
| #include "clang/StaticAnalyzer/Core/PathSensitive/ExprEngine.h" |
| #include "clang/AST/CharUnits.h" |
| #include "clang/AST/ParentMap.h" |
| #include "clang/AST/StmtCXX.h" |
| #include "clang/AST/StmtObjC.h" |
| #include "clang/Basic/Builtins.h" |
| #include "clang/Basic/PrettyStackTrace.h" |
| #include "clang/Basic/SourceManager.h" |
| #include "clang/StaticAnalyzer/Core/BugReporter/BugType.h" |
| #include "clang/StaticAnalyzer/Core/CheckerManager.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/AnalysisManager.h" |
| #include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h" |
| #include "llvm/ADT/ImmutableList.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #ifndef NDEBUG |
| #include "llvm/Support/GraphWriter.h" |
| #endif |
| |
| using namespace clang; |
| using namespace ento; |
| using llvm::APSInt; |
| |
| STATISTIC(NumRemoveDeadBindings, |
| "The # of times RemoveDeadBindings is called"); |
| STATISTIC(NumMaxBlockCountReached, |
| "The # of aborted paths due to reaching the maximum block count in " |
| "a top level function"); |
| STATISTIC(NumMaxBlockCountReachedInInlined, |
| "The # of aborted paths due to reaching the maximum block count in " |
| "an inlined function"); |
| STATISTIC(NumTimesRetriedWithoutInlining, |
| "The # of times we re-evaluated a call without inlining"); |
| |
| //===----------------------------------------------------------------------===// |
| // Engine construction and deletion. |
| //===----------------------------------------------------------------------===// |
| |
| ExprEngine::ExprEngine(AnalysisManager &mgr, bool gcEnabled, |
| SetOfConstDecls *VisitedCalleesIn, |
| FunctionSummariesTy *FS, |
| InliningModes HowToInlineIn) |
| : AMgr(mgr), |
| AnalysisDeclContexts(mgr.getAnalysisDeclContextManager()), |
| Engine(*this, FS), |
| G(Engine.getGraph()), |
| StateMgr(getContext(), mgr.getStoreManagerCreator(), |
| mgr.getConstraintManagerCreator(), G.getAllocator(), |
| this), |
| SymMgr(StateMgr.getSymbolManager()), |
| svalBuilder(StateMgr.getSValBuilder()), |
| currStmtIdx(0), currBldrCtx(0), |
| ObjCNoRet(mgr.getASTContext()), |
| ObjCGCEnabled(gcEnabled), BR(mgr, *this), |
| VisitedCallees(VisitedCalleesIn), |
| HowToInline(HowToInlineIn) |
| { |
| unsigned TrimInterval = mgr.options.getGraphTrimInterval(); |
| if (TrimInterval != 0) { |
| // Enable eager node reclaimation when constructing the ExplodedGraph. |
| G.enableNodeReclamation(TrimInterval); |
| } |
| } |
| |
| ExprEngine::~ExprEngine() { |
| BR.FlushReports(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Utility methods. |
| //===----------------------------------------------------------------------===// |
| |
| ProgramStateRef ExprEngine::getInitialState(const LocationContext *InitLoc) { |
| ProgramStateRef state = StateMgr.getInitialState(InitLoc); |
| const Decl *D = InitLoc->getDecl(); |
| |
| // Preconditions. |
| // FIXME: It would be nice if we had a more general mechanism to add |
| // such preconditions. Some day. |
| do { |
| |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| // Precondition: the first argument of 'main' is an integer guaranteed |
| // to be > 0. |
| const IdentifierInfo *II = FD->getIdentifier(); |
| if (!II || !(II->getName() == "main" && FD->getNumParams() > 0)) |
| break; |
| |
| const ParmVarDecl *PD = FD->getParamDecl(0); |
| QualType T = PD->getType(); |
| if (!T->isIntegerType()) |
| break; |
| |
| const MemRegion *R = state->getRegion(PD, InitLoc); |
| if (!R) |
| break; |
| |
| SVal V = state->getSVal(loc::MemRegionVal(R)); |
| SVal Constraint_untested = evalBinOp(state, BO_GT, V, |
| svalBuilder.makeZeroVal(T), |
| getContext().IntTy); |
| |
| Optional<DefinedOrUnknownSVal> Constraint = |
| Constraint_untested.getAs<DefinedOrUnknownSVal>(); |
| |
| if (!Constraint) |
| break; |
| |
| if (ProgramStateRef newState = state->assume(*Constraint, true)) |
| state = newState; |
| } |
| break; |
| } |
| while (0); |
| |
| if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) { |
| // Precondition: 'self' is always non-null upon entry to an Objective-C |
| // method. |
| const ImplicitParamDecl *SelfD = MD->getSelfDecl(); |
| const MemRegion *R = state->getRegion(SelfD, InitLoc); |
| SVal V = state->getSVal(loc::MemRegionVal(R)); |
| |
| if (Optional<Loc> LV = V.getAs<Loc>()) { |
| // Assume that the pointer value in 'self' is non-null. |
| state = state->assume(*LV, true); |
| assert(state && "'self' cannot be null"); |
| } |
| } |
| |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) { |
| if (!MD->isStatic()) { |
| // Precondition: 'this' is always non-null upon entry to the |
| // top-level function. This is our starting assumption for |
| // analyzing an "open" program. |
| const StackFrameContext *SFC = InitLoc->getCurrentStackFrame(); |
| if (SFC->getParent() == 0) { |
| loc::MemRegionVal L = svalBuilder.getCXXThis(MD, SFC); |
| SVal V = state->getSVal(L); |
| if (Optional<Loc> LV = V.getAs<Loc>()) { |
| state = state->assume(*LV, true); |
| assert(state && "'this' cannot be null"); |
| } |
| } |
| } |
| } |
| |
| return state; |
| } |
| |
| ProgramStateRef |
| ExprEngine::createTemporaryRegionIfNeeded(ProgramStateRef State, |
| const LocationContext *LC, |
| const Expr *Ex, |
| const Expr *Result) { |
| SVal V = State->getSVal(Ex, LC); |
| if (!Result && !V.getAs<NonLoc>()) |
| return State; |
| |
| ProgramStateManager &StateMgr = State->getStateManager(); |
| MemRegionManager &MRMgr = StateMgr.getRegionManager(); |
| StoreManager &StoreMgr = StateMgr.getStoreManager(); |
| |
| // We need to be careful about treating a derived type's value as |
| // bindings for a base type. Start by stripping and recording base casts. |
| SmallVector<const CastExpr *, 4> Casts; |
| const Expr *Inner = Ex->IgnoreParens(); |
| if (V.getAs<NonLoc>()) { |
| while (const CastExpr *CE = dyn_cast<CastExpr>(Inner)) { |
| if (CE->getCastKind() == CK_DerivedToBase || |
| CE->getCastKind() == CK_UncheckedDerivedToBase) |
| Casts.push_back(CE); |
| else if (CE->getCastKind() != CK_NoOp) |
| break; |
| |
| Inner = CE->getSubExpr()->IgnoreParens(); |
| } |
| } |
| |
| // Create a temporary object region for the inner expression (which may have |
| // a more derived type) and bind the NonLoc value into it. |
| SVal Reg = loc::MemRegionVal(MRMgr.getCXXTempObjectRegion(Inner, LC)); |
| State = State->bindLoc(Reg, V); |
| |
| // Re-apply the casts (from innermost to outermost) for type sanity. |
| for (SmallVectorImpl<const CastExpr *>::reverse_iterator I = Casts.rbegin(), |
| E = Casts.rend(); |
| I != E; ++I) { |
| Reg = StoreMgr.evalDerivedToBase(Reg, *I); |
| } |
| |
| State = State->BindExpr(Result ? Result : Ex, LC, Reg); |
| return State; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Top-level transfer function logic (Dispatcher). |
| //===----------------------------------------------------------------------===// |
| |
| /// evalAssume - Called by ConstraintManager. Used to call checker-specific |
| /// logic for handling assumptions on symbolic values. |
| ProgramStateRef ExprEngine::processAssume(ProgramStateRef state, |
| SVal cond, bool assumption) { |
| return getCheckerManager().runCheckersForEvalAssume(state, cond, assumption); |
| } |
| |
| bool ExprEngine::wantsRegionChangeUpdate(ProgramStateRef state) { |
| return getCheckerManager().wantsRegionChangeUpdate(state); |
| } |
| |
| ProgramStateRef |
| ExprEngine::processRegionChanges(ProgramStateRef state, |
| const InvalidatedSymbols *invalidated, |
| ArrayRef<const MemRegion *> Explicits, |
| ArrayRef<const MemRegion *> Regions, |
| const CallEvent *Call) { |
| return getCheckerManager().runCheckersForRegionChanges(state, invalidated, |
| Explicits, Regions, Call); |
| } |
| |
| void ExprEngine::printState(raw_ostream &Out, ProgramStateRef State, |
| const char *NL, const char *Sep) { |
| getCheckerManager().runCheckersForPrintState(Out, State, NL, Sep); |
| } |
| |
| void ExprEngine::processEndWorklist(bool hasWorkRemaining) { |
| getCheckerManager().runCheckersForEndAnalysis(G, BR, *this); |
| } |
| |
| void ExprEngine::processCFGElement(const CFGElement E, ExplodedNode *Pred, |
| unsigned StmtIdx, NodeBuilderContext *Ctx) { |
| currStmtIdx = StmtIdx; |
| currBldrCtx = Ctx; |
| |
| switch (E.getKind()) { |
| case CFGElement::Statement: |
| ProcessStmt(const_cast<Stmt*>(E.castAs<CFGStmt>().getStmt()), Pred); |
| return; |
| case CFGElement::Initializer: |
| ProcessInitializer(E.castAs<CFGInitializer>().getInitializer(), Pred); |
| return; |
| case CFGElement::AutomaticObjectDtor: |
| case CFGElement::BaseDtor: |
| case CFGElement::MemberDtor: |
| case CFGElement::TemporaryDtor: |
| ProcessImplicitDtor(E.castAs<CFGImplicitDtor>(), Pred); |
| return; |
| } |
| currBldrCtx = 0; |
| } |
| |
| static bool shouldRemoveDeadBindings(AnalysisManager &AMgr, |
| const CFGStmt S, |
| const ExplodedNode *Pred, |
| const LocationContext *LC) { |
| |
| // Are we never purging state values? |
| if (AMgr.options.AnalysisPurgeOpt == PurgeNone) |
| return false; |
| |
| // Is this the beginning of a basic block? |
| if (Pred->getLocation().getAs<BlockEntrance>()) |
| return true; |
| |
| // Is this on a non-expression? |
| if (!isa<Expr>(S.getStmt())) |
| return true; |
| |
| // Run before processing a call. |
| if (CallEvent::isCallStmt(S.getStmt())) |
| return true; |
| |
| // Is this an expression that is consumed by another expression? If so, |
| // postpone cleaning out the state. |
| ParentMap &PM = LC->getAnalysisDeclContext()->getParentMap(); |
| return !PM.isConsumedExpr(cast<Expr>(S.getStmt())); |
| } |
| |
| void ExprEngine::removeDead(ExplodedNode *Pred, ExplodedNodeSet &Out, |
| const Stmt *ReferenceStmt, |
| const LocationContext *LC, |
| const Stmt *DiagnosticStmt, |
| ProgramPoint::Kind K) { |
| assert((K == ProgramPoint::PreStmtPurgeDeadSymbolsKind || |
| ReferenceStmt == 0 || isa<ReturnStmt>(ReferenceStmt)) |
| && "PostStmt is not generally supported by the SymbolReaper yet"); |
| assert(LC && "Must pass the current (or expiring) LocationContext"); |
| |
| if (!DiagnosticStmt) { |
| DiagnosticStmt = ReferenceStmt; |
| assert(DiagnosticStmt && "Required for clearing a LocationContext"); |
| } |
| |
| NumRemoveDeadBindings++; |
| ProgramStateRef CleanedState = Pred->getState(); |
| |
| // LC is the location context being destroyed, but SymbolReaper wants a |
| // location context that is still live. (If this is the top-level stack |
| // frame, this will be null.) |
| if (!ReferenceStmt) { |
| assert(K == ProgramPoint::PostStmtPurgeDeadSymbolsKind && |
| "Use PostStmtPurgeDeadSymbolsKind for clearing a LocationContext"); |
| LC = LC->getParent(); |
| } |
| |
| const StackFrameContext *SFC = LC ? LC->getCurrentStackFrame() : 0; |
| SymbolReaper SymReaper(SFC, ReferenceStmt, SymMgr, getStoreManager()); |
| |
| getCheckerManager().runCheckersForLiveSymbols(CleanedState, SymReaper); |
| |
| // Create a state in which dead bindings are removed from the environment |
| // and the store. TODO: The function should just return new env and store, |
| // not a new state. |
| CleanedState = StateMgr.removeDeadBindings(CleanedState, SFC, SymReaper); |
| |
| // Process any special transfer function for dead symbols. |
| // A tag to track convenience transitions, which can be removed at cleanup. |
| static SimpleProgramPointTag cleanupTag("ExprEngine : Clean Node"); |
| if (!SymReaper.hasDeadSymbols()) { |
| // Generate a CleanedNode that has the environment and store cleaned |
| // up. Since no symbols are dead, we can optimize and not clean out |
| // the constraint manager. |
| StmtNodeBuilder Bldr(Pred, Out, *currBldrCtx); |
| Bldr.generateNode(DiagnosticStmt, Pred, CleanedState, &cleanupTag, K); |
| |
| } else { |
| // Call checkers with the non-cleaned state so that they could query the |
| // values of the soon to be dead symbols. |
| ExplodedNodeSet CheckedSet; |
| getCheckerManager().runCheckersForDeadSymbols(CheckedSet, Pred, SymReaper, |
| DiagnosticStmt, *this, K); |
| |
| // For each node in CheckedSet, generate CleanedNodes that have the |
| // environment, the store, and the constraints cleaned up but have the |
| // user-supplied states as the predecessors. |
| StmtNodeBuilder Bldr(CheckedSet, Out, *currBldrCtx); |
| for (ExplodedNodeSet::const_iterator |
| I = CheckedSet.begin(), E = CheckedSet.end(); I != E; ++I) { |
| ProgramStateRef CheckerState = (*I)->getState(); |
| |
| // The constraint manager has not been cleaned up yet, so clean up now. |
| CheckerState = getConstraintManager().removeDeadBindings(CheckerState, |
| SymReaper); |
| |
| assert(StateMgr.haveEqualEnvironments(CheckerState, Pred->getState()) && |
| "Checkers are not allowed to modify the Environment as a part of " |
| "checkDeadSymbols processing."); |
| assert(StateMgr.haveEqualStores(CheckerState, Pred->getState()) && |
| "Checkers are not allowed to modify the Store as a part of " |
| "checkDeadSymbols processing."); |
| |
| // Create a state based on CleanedState with CheckerState GDM and |
| // generate a transition to that state. |
| ProgramStateRef CleanedCheckerSt = |
| StateMgr.getPersistentStateWithGDM(CleanedState, CheckerState); |
| Bldr.generateNode(DiagnosticStmt, *I, CleanedCheckerSt, &cleanupTag, K); |
| } |
| } |
| } |
| |
| void ExprEngine::ProcessStmt(const CFGStmt S, |
| ExplodedNode *Pred) { |
| // Reclaim any unnecessary nodes in the ExplodedGraph. |
| G.reclaimRecentlyAllocatedNodes(); |
| |
| const Stmt *currStmt = S.getStmt(); |
| PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), |
| currStmt->getLocStart(), |
| "Error evaluating statement"); |
| |
| // Remove dead bindings and symbols. |
| ExplodedNodeSet CleanedStates; |
| if (shouldRemoveDeadBindings(AMgr, S, Pred, Pred->getLocationContext())){ |
| removeDead(Pred, CleanedStates, currStmt, Pred->getLocationContext()); |
| } else |
| CleanedStates.Add(Pred); |
| |
| // Visit the statement. |
| ExplodedNodeSet Dst; |
| for (ExplodedNodeSet::iterator I = CleanedStates.begin(), |
| E = CleanedStates.end(); I != E; ++I) { |
| ExplodedNodeSet DstI; |
| // Visit the statement. |
| Visit(currStmt, *I, DstI); |
| Dst.insert(DstI); |
| } |
| |
| // Enqueue the new nodes onto the work list. |
| Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); |
| } |
| |
| void ExprEngine::ProcessInitializer(const CFGInitializer Init, |
| ExplodedNode *Pred) { |
| const CXXCtorInitializer *BMI = Init.getInitializer(); |
| |
| PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), |
| BMI->getSourceLocation(), |
| "Error evaluating initializer"); |
| |
| // We don't clean up dead bindings here. |
| const StackFrameContext *stackFrame = |
| cast<StackFrameContext>(Pred->getLocationContext()); |
| const CXXConstructorDecl *decl = |
| cast<CXXConstructorDecl>(stackFrame->getDecl()); |
| |
| ProgramStateRef State = Pred->getState(); |
| SVal thisVal = State->getSVal(svalBuilder.getCXXThis(decl, stackFrame)); |
| |
| PostInitializer PP(BMI, stackFrame); |
| ExplodedNodeSet Tmp(Pred); |
| |
| // Evaluate the initializer, if necessary |
| if (BMI->isAnyMemberInitializer()) { |
| // Constructors build the object directly in the field, |
| // but non-objects must be copied in from the initializer. |
| const Expr *Init = BMI->getInit()->IgnoreImplicit(); |
| if (!isa<CXXConstructExpr>(Init)) { |
| SVal FieldLoc; |
| if (BMI->isIndirectMemberInitializer()) |
| FieldLoc = State->getLValue(BMI->getIndirectMember(), thisVal); |
| else |
| FieldLoc = State->getLValue(BMI->getMember(), thisVal); |
| |
| SVal InitVal = State->getSVal(BMI->getInit(), stackFrame); |
| |
| Tmp.clear(); |
| evalBind(Tmp, Init, Pred, FieldLoc, InitVal, /*isInit=*/true, &PP); |
| } |
| } else { |
| assert(BMI->isBaseInitializer() || BMI->isDelegatingInitializer()); |
| // We already did all the work when visiting the CXXConstructExpr. |
| } |
| |
| // Construct PostInitializer nodes whether the state changed or not, |
| // so that the diagnostics don't get confused. |
| ExplodedNodeSet Dst; |
| NodeBuilder Bldr(Tmp, Dst, *currBldrCtx); |
| for (ExplodedNodeSet::iterator I = Tmp.begin(), E = Tmp.end(); I != E; ++I) { |
| ExplodedNode *N = *I; |
| Bldr.generateNode(PP, N->getState(), N); |
| } |
| |
| // Enqueue the new nodes onto the work list. |
| Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); |
| } |
| |
| void ExprEngine::ProcessImplicitDtor(const CFGImplicitDtor D, |
| ExplodedNode *Pred) { |
| ExplodedNodeSet Dst; |
| switch (D.getKind()) { |
| case CFGElement::AutomaticObjectDtor: |
| ProcessAutomaticObjDtor(D.castAs<CFGAutomaticObjDtor>(), Pred, Dst); |
| break; |
| case CFGElement::BaseDtor: |
| ProcessBaseDtor(D.castAs<CFGBaseDtor>(), Pred, Dst); |
| break; |
| case CFGElement::MemberDtor: |
| ProcessMemberDtor(D.castAs<CFGMemberDtor>(), Pred, Dst); |
| break; |
| case CFGElement::TemporaryDtor: |
| ProcessTemporaryDtor(D.castAs<CFGTemporaryDtor>(), Pred, Dst); |
| break; |
| default: |
| llvm_unreachable("Unexpected dtor kind."); |
| } |
| |
| // Enqueue the new nodes onto the work list. |
| Engine.enqueue(Dst, currBldrCtx->getBlock(), currStmtIdx); |
| } |
| |
| void ExprEngine::ProcessAutomaticObjDtor(const CFGAutomaticObjDtor Dtor, |
| ExplodedNode *Pred, |
| ExplodedNodeSet &Dst) { |
| ProgramStateRef state = Pred->getState(); |
| const VarDecl *varDecl = Dtor.getVarDecl(); |
| |
| QualType varType = varDecl->getType(); |
| |
| if (const ReferenceType *refType = varType->getAs<ReferenceType>()) |
| varType = refType->getPointeeType(); |
| |
| Loc dest = state->getLValue(varDecl, Pred->getLocationContext()); |
| |
| VisitCXXDestructor(varType, dest.castAs<loc::MemRegionVal>().getRegion(), |
| Dtor.getTriggerStmt(), /*IsBase=*/ false, Pred, Dst); |
| } |
| |
| void ExprEngine::ProcessBaseDtor(const CFGBaseDtor D, |
| ExplodedNode *Pred, ExplodedNodeSet &Dst) { |
| const LocationContext *LCtx = Pred->getLocationContext(); |
| ProgramStateRef State = Pred->getState(); |
| |
| const CXXDestructorDecl *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl()); |
| Loc ThisPtr = getSValBuilder().getCXXThis(CurDtor, |
| LCtx->getCurrentStackFrame()); |
| SVal ThisVal = Pred->getState()->getSVal(ThisPtr); |
| |
| // Create the base object region. |
| const CXXBaseSpecifier *Base = D.getBaseSpecifier(); |
| QualType BaseTy = Base->getType(); |
| SVal BaseVal = getStoreManager().evalDerivedToBase(ThisVal, BaseTy, |
| Base->isVirtual()); |
| |
| VisitCXXDestructor(BaseTy, BaseVal.castAs<loc::MemRegionVal>().getRegion(), |
| CurDtor->getBody(), /*IsBase=*/ true, Pred, Dst); |
| } |
| |
| void ExprEngine::ProcessMemberDtor(const CFGMemberDtor D, |
| ExplodedNode *Pred, ExplodedNodeSet &Dst) { |
| const FieldDecl *Member = D.getFieldDecl(); |
| ProgramStateRef State = Pred->getState(); |
| const LocationContext *LCtx = Pred->getLocationContext(); |
| |
| const CXXDestructorDecl *CurDtor = cast<CXXDestructorDecl>(LCtx->getDecl()); |
| Loc ThisVal = getSValBuilder().getCXXThis(CurDtor, |
| LCtx->getCurrentStackFrame()); |
| SVal FieldVal = |
| State->getLValue(Member, State->getSVal(ThisVal).castAs<Loc>()); |
| |
| VisitCXXDestructor(Member->getType(), |
| FieldVal.castAs<loc::MemRegionVal>().getRegion(), |
| CurDtor->getBody(), /*IsBase=*/false, Pred, Dst); |
| } |
| |
| void ExprEngine::ProcessTemporaryDtor(const CFGTemporaryDtor D, |
| ExplodedNode *Pred, |
| ExplodedNodeSet &Dst) {} |
| |
| void ExprEngine::Visit(const Stmt *S, ExplodedNode *Pred, |
| ExplodedNodeSet &DstTop) { |
| PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), |
| S->getLocStart(), |
| "Error evaluating statement"); |
| ExplodedNodeSet Dst; |
| StmtNodeBuilder Bldr(Pred, DstTop, *currBldrCtx); |
| |
| assert(!isa<Expr>(S) || S == cast<Expr>(S)->IgnoreParens()); |
| |
| switch (S->getStmtClass()) { |
| // C++ and ARC stuff we don't support yet. |
| case Expr::ObjCIndirectCopyRestoreExprClass: |
| case Stmt::CXXDependentScopeMemberExprClass: |
| case Stmt::CXXPseudoDestructorExprClass: |
| case Stmt::CXXTryStmtClass: |
| case Stmt::CXXTypeidExprClass: |
| case Stmt::CXXUuidofExprClass: |
| case Stmt::CXXUnresolvedConstructExprClass: |
| case Stmt::DependentScopeDeclRefExprClass: |
| case Stmt::UnaryTypeTraitExprClass: |
| case Stmt::BinaryTypeTraitExprClass: |
| case Stmt::TypeTraitExprClass: |
| case Stmt::ArrayTypeTraitExprClass: |
| case Stmt::ExpressionTraitExprClass: |
| case Stmt::UnresolvedLookupExprClass: |
| case Stmt::UnresolvedMemberExprClass: |
| case Stmt::CXXNoexceptExprClass: |
| case Stmt::PackExpansionExprClass: |
| case Stmt::SubstNonTypeTemplateParmPackExprClass: |
| case Stmt::FunctionParmPackExprClass: |
| case Stmt::SEHTryStmtClass: |
| case Stmt::SEHExceptStmtClass: |
| case Stmt::LambdaExprClass: |
| case Stmt::SEHFinallyStmtClass: { |
| const ExplodedNode *node = Bldr.generateSink(S, Pred, Pred->getState()); |
| Engine.addAbortedBlock(node, currBldrCtx->getBlock()); |
| break; |
| } |
| |
| case Stmt::ParenExprClass: |
| llvm_unreachable("ParenExprs already handled."); |
| case Stmt::GenericSelectionExprClass: |
| llvm_unreachable("GenericSelectionExprs already handled."); |
| // Cases that should never be evaluated simply because they shouldn't |
| // appear in the CFG. |
| case Stmt::BreakStmtClass: |
| case Stmt::CaseStmtClass: |
| case Stmt::CompoundStmtClass: |
| case Stmt::ContinueStmtClass: |
| case Stmt::CXXForRangeStmtClass: |
| case Stmt::DefaultStmtClass: |
| case Stmt::DoStmtClass: |
| case Stmt::ForStmtClass: |
| case Stmt::GotoStmtClass: |
| case Stmt::IfStmtClass: |
| case Stmt::IndirectGotoStmtClass: |
| case Stmt::LabelStmtClass: |
| case Stmt::AttributedStmtClass: |
| case Stmt::NoStmtClass: |
| case Stmt::NullStmtClass: |
| case Stmt::SwitchStmtClass: |
| case Stmt::WhileStmtClass: |
| case Expr::MSDependentExistsStmtClass: |
| llvm_unreachable("Stmt should not be in analyzer evaluation loop"); |
| |
| case Stmt::ObjCSubscriptRefExprClass: |
| case Stmt::ObjCPropertyRefExprClass: |
| llvm_unreachable("These are handled by PseudoObjectExpr"); |
| |
| case Stmt::GNUNullExprClass: { |
| // GNU __null is a pointer-width integer, not an actual pointer. |
| ProgramStateRef state = Pred->getState(); |
| state = state->BindExpr(S, Pred->getLocationContext(), |
| svalBuilder.makeIntValWithPtrWidth(0, false)); |
| Bldr.generateNode(S, Pred, state); |
| break; |
| } |
| |
| case Stmt::ObjCAtSynchronizedStmtClass: |
| Bldr.takeNodes(Pred); |
| VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::ExprWithCleanupsClass: |
| // Handled due to fully linearised CFG. |
| break; |
| |
| // Cases not handled yet; but will handle some day. |
| case Stmt::DesignatedInitExprClass: |
| case Stmt::ExtVectorElementExprClass: |
| case Stmt::ImaginaryLiteralClass: |
| case Stmt::ObjCAtCatchStmtClass: |
| case Stmt::ObjCAtFinallyStmtClass: |
| case Stmt::ObjCAtTryStmtClass: |
| case Stmt::ObjCAutoreleasePoolStmtClass: |
| case Stmt::ObjCEncodeExprClass: |
| case Stmt::ObjCIsaExprClass: |
| case Stmt::ObjCProtocolExprClass: |
| case Stmt::ObjCSelectorExprClass: |
| case Stmt::ParenListExprClass: |
| case Stmt::PredefinedExprClass: |
| case Stmt::ShuffleVectorExprClass: |
| case Stmt::VAArgExprClass: |
| case Stmt::CUDAKernelCallExprClass: |
| case Stmt::OpaqueValueExprClass: |
| case Stmt::AsTypeExprClass: |
| case Stmt::AtomicExprClass: |
| // Fall through. |
| |
| // Cases we intentionally don't evaluate, since they don't need |
| // to be explicitly evaluated. |
| case Stmt::AddrLabelExprClass: |
| case Stmt::IntegerLiteralClass: |
| case Stmt::CharacterLiteralClass: |
| case Stmt::ImplicitValueInitExprClass: |
| case Stmt::CXXScalarValueInitExprClass: |
| case Stmt::CXXBoolLiteralExprClass: |
| case Stmt::ObjCBoolLiteralExprClass: |
| case Stmt::FloatingLiteralClass: |
| case Stmt::SizeOfPackExprClass: |
| case Stmt::StringLiteralClass: |
| case Stmt::ObjCStringLiteralClass: |
| case Stmt::CXXBindTemporaryExprClass: |
| case Stmt::SubstNonTypeTemplateParmExprClass: |
| case Stmt::CXXNullPtrLiteralExprClass: { |
| Bldr.takeNodes(Pred); |
| ExplodedNodeSet preVisit; |
| getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this); |
| getCheckerManager().runCheckersForPostStmt(Dst, preVisit, S, *this); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::CXXDefaultArgExprClass: { |
| Bldr.takeNodes(Pred); |
| ExplodedNodeSet PreVisit; |
| getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); |
| |
| ExplodedNodeSet Tmp; |
| StmtNodeBuilder Bldr2(PreVisit, Tmp, *currBldrCtx); |
| |
| const LocationContext *LCtx = Pred->getLocationContext(); |
| const CXXDefaultArgExpr *DefaultE = cast<CXXDefaultArgExpr>(S); |
| const Expr *ArgE = DefaultE->getExpr(); |
| |
| // Avoid creating and destroying a lot of APSInts. |
| SVal V; |
| llvm::APSInt Result; |
| |
| for (ExplodedNodeSet::iterator I = PreVisit.begin(), E = PreVisit.end(); |
| I != E; ++I) { |
| ProgramStateRef State = (*I)->getState(); |
| |
| if (ArgE->EvaluateAsInt(Result, getContext())) |
| V = svalBuilder.makeIntVal(Result); |
| else |
| V = State->getSVal(ArgE, LCtx); |
| |
| State = State->BindExpr(DefaultE, LCtx, V); |
| if (DefaultE->isGLValue()) |
| State = createTemporaryRegionIfNeeded(State, LCtx, DefaultE, |
| DefaultE); |
| Bldr2.generateNode(S, *I, State); |
| } |
| |
| getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Expr::ObjCArrayLiteralClass: |
| case Expr::ObjCDictionaryLiteralClass: |
| // FIXME: explicitly model with a region and the actual contents |
| // of the container. For now, conjure a symbol. |
| case Expr::ObjCBoxedExprClass: { |
| Bldr.takeNodes(Pred); |
| |
| ExplodedNodeSet preVisit; |
| getCheckerManager().runCheckersForPreStmt(preVisit, Pred, S, *this); |
| |
| ExplodedNodeSet Tmp; |
| StmtNodeBuilder Bldr2(preVisit, Tmp, *currBldrCtx); |
| |
| const Expr *Ex = cast<Expr>(S); |
| QualType resultType = Ex->getType(); |
| |
| for (ExplodedNodeSet::iterator it = preVisit.begin(), et = preVisit.end(); |
| it != et; ++it) { |
| ExplodedNode *N = *it; |
| const LocationContext *LCtx = N->getLocationContext(); |
| SVal result = svalBuilder.conjureSymbolVal(0, Ex, LCtx, resultType, |
| currBldrCtx->blockCount()); |
| ProgramStateRef state = N->getState()->BindExpr(Ex, LCtx, result); |
| Bldr2.generateNode(S, N, state); |
| } |
| |
| getCheckerManager().runCheckersForPostStmt(Dst, Tmp, S, *this); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::ArraySubscriptExprClass: |
| Bldr.takeNodes(Pred); |
| VisitLvalArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::GCCAsmStmtClass: |
| Bldr.takeNodes(Pred); |
| VisitGCCAsmStmt(cast<GCCAsmStmt>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::MSAsmStmtClass: |
| Bldr.takeNodes(Pred); |
| VisitMSAsmStmt(cast<MSAsmStmt>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::BlockExprClass: |
| Bldr.takeNodes(Pred); |
| VisitBlockExpr(cast<BlockExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::BinaryOperatorClass: { |
| const BinaryOperator* B = cast<BinaryOperator>(S); |
| if (B->isLogicalOp()) { |
| Bldr.takeNodes(Pred); |
| VisitLogicalExpr(B, Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| else if (B->getOpcode() == BO_Comma) { |
| ProgramStateRef state = Pred->getState(); |
| Bldr.generateNode(B, Pred, |
| state->BindExpr(B, Pred->getLocationContext(), |
| state->getSVal(B->getRHS(), |
| Pred->getLocationContext()))); |
| break; |
| } |
| |
| Bldr.takeNodes(Pred); |
| |
| if (AMgr.options.eagerlyAssumeBinOpBifurcation && |
| (B->isRelationalOp() || B->isEqualityOp())) { |
| ExplodedNodeSet Tmp; |
| VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Tmp); |
| evalEagerlyAssumeBinOpBifurcation(Dst, Tmp, cast<Expr>(S)); |
| } |
| else |
| VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); |
| |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::CXXOperatorCallExprClass: { |
| const CXXOperatorCallExpr *OCE = cast<CXXOperatorCallExpr>(S); |
| |
| // For instance method operators, make sure the 'this' argument has a |
| // valid region. |
| const Decl *Callee = OCE->getCalleeDecl(); |
| if (const CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Callee)) { |
| if (MD->isInstance()) { |
| ProgramStateRef State = Pred->getState(); |
| const LocationContext *LCtx = Pred->getLocationContext(); |
| ProgramStateRef NewState = |
| createTemporaryRegionIfNeeded(State, LCtx, OCE->getArg(0)); |
| if (NewState != State) |
| Pred = Bldr.generateNode(OCE, Pred, NewState, /*Tag=*/0, |
| ProgramPoint::PreStmtKind); |
| } |
| } |
| // FALLTHROUGH |
| } |
| case Stmt::CallExprClass: |
| case Stmt::CXXMemberCallExprClass: |
| case Stmt::UserDefinedLiteralClass: { |
| Bldr.takeNodes(Pred); |
| VisitCallExpr(cast<CallExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::CXXCatchStmtClass: { |
| Bldr.takeNodes(Pred); |
| VisitCXXCatchStmt(cast<CXXCatchStmt>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::CXXTemporaryObjectExprClass: |
| case Stmt::CXXConstructExprClass: { |
| Bldr.takeNodes(Pred); |
| VisitCXXConstructExpr(cast<CXXConstructExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::CXXNewExprClass: { |
| Bldr.takeNodes(Pred); |
| ExplodedNodeSet PostVisit; |
| VisitCXXNewExpr(cast<CXXNewExpr>(S), Pred, PostVisit); |
| getCheckerManager().runCheckersForPostStmt(Dst, PostVisit, S, *this); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::CXXDeleteExprClass: { |
| Bldr.takeNodes(Pred); |
| ExplodedNodeSet PreVisit; |
| const CXXDeleteExpr *CDE = cast<CXXDeleteExpr>(S); |
| getCheckerManager().runCheckersForPreStmt(PreVisit, Pred, S, *this); |
| |
| for (ExplodedNodeSet::iterator i = PreVisit.begin(), |
| e = PreVisit.end(); i != e ; ++i) |
| VisitCXXDeleteExpr(CDE, *i, Dst); |
| |
| Bldr.addNodes(Dst); |
| break; |
| } |
| // FIXME: ChooseExpr is really a constant. We need to fix |
| // the CFG do not model them as explicit control-flow. |
| |
| case Stmt::ChooseExprClass: { // __builtin_choose_expr |
| Bldr.takeNodes(Pred); |
| const ChooseExpr *C = cast<ChooseExpr>(S); |
| VisitGuardedExpr(C, C->getLHS(), C->getRHS(), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::CompoundAssignOperatorClass: |
| Bldr.takeNodes(Pred); |
| VisitBinaryOperator(cast<BinaryOperator>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::CompoundLiteralExprClass: |
| Bldr.takeNodes(Pred); |
| VisitCompoundLiteralExpr(cast<CompoundLiteralExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::BinaryConditionalOperatorClass: |
| case Stmt::ConditionalOperatorClass: { // '?' operator |
| Bldr.takeNodes(Pred); |
| const AbstractConditionalOperator *C |
| = cast<AbstractConditionalOperator>(S); |
| VisitGuardedExpr(C, C->getTrueExpr(), C->getFalseExpr(), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::CXXThisExprClass: |
| Bldr.takeNodes(Pred); |
| VisitCXXThisExpr(cast<CXXThisExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::DeclRefExprClass: { |
| Bldr.takeNodes(Pred); |
| const DeclRefExpr *DE = cast<DeclRefExpr>(S); |
| VisitCommonDeclRefExpr(DE, DE->getDecl(), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::DeclStmtClass: |
| Bldr.takeNodes(Pred); |
| VisitDeclStmt(cast<DeclStmt>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::ImplicitCastExprClass: |
| case Stmt::CStyleCastExprClass: |
| case Stmt::CXXStaticCastExprClass: |
| case Stmt::CXXDynamicCastExprClass: |
| case Stmt::CXXReinterpretCastExprClass: |
| case Stmt::CXXConstCastExprClass: |
| case Stmt::CXXFunctionalCastExprClass: |
| case Stmt::ObjCBridgedCastExprClass: { |
| Bldr.takeNodes(Pred); |
| const CastExpr *C = cast<CastExpr>(S); |
| // Handle the previsit checks. |
| ExplodedNodeSet dstPrevisit; |
| getCheckerManager().runCheckersForPreStmt(dstPrevisit, Pred, C, *this); |
| |
| // Handle the expression itself. |
| ExplodedNodeSet dstExpr; |
| for (ExplodedNodeSet::iterator i = dstPrevisit.begin(), |
| e = dstPrevisit.end(); i != e ; ++i) { |
| VisitCast(C, C->getSubExpr(), *i, dstExpr); |
| } |
| |
| // Handle the postvisit checks. |
| getCheckerManager().runCheckersForPostStmt(Dst, dstExpr, C, *this); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Expr::MaterializeTemporaryExprClass: { |
| Bldr.takeNodes(Pred); |
| const MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(S); |
| CreateCXXTemporaryObject(MTE, Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::InitListExprClass: |
| Bldr.takeNodes(Pred); |
| VisitInitListExpr(cast<InitListExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::MemberExprClass: |
| Bldr.takeNodes(Pred); |
| VisitMemberExpr(cast<MemberExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::ObjCIvarRefExprClass: |
| Bldr.takeNodes(Pred); |
| VisitLvalObjCIvarRefExpr(cast<ObjCIvarRefExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::ObjCForCollectionStmtClass: |
| Bldr.takeNodes(Pred); |
| VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::ObjCMessageExprClass: |
| Bldr.takeNodes(Pred); |
| VisitObjCMessage(cast<ObjCMessageExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::ObjCAtThrowStmtClass: |
| case Stmt::CXXThrowExprClass: |
| // FIXME: This is not complete. We basically treat @throw as |
| // an abort. |
| Bldr.generateSink(S, Pred, Pred->getState()); |
| break; |
| |
| case Stmt::ReturnStmtClass: |
| Bldr.takeNodes(Pred); |
| VisitReturnStmt(cast<ReturnStmt>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::OffsetOfExprClass: |
| Bldr.takeNodes(Pred); |
| VisitOffsetOfExpr(cast<OffsetOfExpr>(S), Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::UnaryExprOrTypeTraitExprClass: |
| Bldr.takeNodes(Pred); |
| VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S), |
| Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| |
| case Stmt::StmtExprClass: { |
| const StmtExpr *SE = cast<StmtExpr>(S); |
| |
| if (SE->getSubStmt()->body_empty()) { |
| // Empty statement expression. |
| assert(SE->getType() == getContext().VoidTy |
| && "Empty statement expression must have void type."); |
| break; |
| } |
| |
| if (Expr *LastExpr = dyn_cast<Expr>(*SE->getSubStmt()->body_rbegin())) { |
| ProgramStateRef state = Pred->getState(); |
| Bldr.generateNode(SE, Pred, |
| state->BindExpr(SE, Pred->getLocationContext(), |
| state->getSVal(LastExpr, |
| Pred->getLocationContext()))); |
| } |
| break; |
| } |
| |
| case Stmt::UnaryOperatorClass: { |
| Bldr.takeNodes(Pred); |
| const UnaryOperator *U = cast<UnaryOperator>(S); |
| if (AMgr.options.eagerlyAssumeBinOpBifurcation && (U->getOpcode() == UO_LNot)) { |
| ExplodedNodeSet Tmp; |
| VisitUnaryOperator(U, Pred, Tmp); |
| evalEagerlyAssumeBinOpBifurcation(Dst, Tmp, U); |
| } |
| else |
| VisitUnaryOperator(U, Pred, Dst); |
| Bldr.addNodes(Dst); |
| break; |
| } |
| |
| case Stmt::PseudoObjectExprClass: { |
| Bldr.takeNodes(Pred); |
| ProgramStateRef state = Pred->getState(); |
| const PseudoObjectExpr *PE = cast<PseudoObjectExpr>(S); |
| if (const Expr *Result = PE->getResultExpr()) { |
| SVal V = state->getSVal(Result, Pred->getLocationContext()); |
| Bldr.generateNode(S, Pred, |
| state->BindExpr(S, Pred->getLocationContext(), V)); |
| } |
| else |
| Bldr.generateNode(S, Pred, |
| state->BindExpr(S, Pred->getLocationContext(), |
| UnknownVal())); |
| |
| Bldr.addNodes(Dst); |
| break; |
| } |
| } |
| } |
| |
| bool ExprEngine::replayWithoutInlining(ExplodedNode *N, |
| const LocationContext *CalleeLC) { |
| const StackFrameContext *CalleeSF = CalleeLC->getCurrentStackFrame(); |
| const StackFrameContext *CallerSF = CalleeSF->getParent()->getCurrentStackFrame(); |
| assert(CalleeSF && CallerSF); |
| ExplodedNode *BeforeProcessingCall = 0; |
| const Stmt *CE = CalleeSF->getCallSite(); |
| |
| // Find the first node before we started processing the call expression. |
| while (N) { |
| ProgramPoint L = N->getLocation(); |
| BeforeProcessingCall = N; |
| N = N->pred_empty() ? NULL : *(N->pred_begin()); |
| |
| // Skip the nodes corresponding to the inlined code. |
| if (L.getLocationContext()->getCurrentStackFrame() != CallerSF) |
| continue; |
| // We reached the caller. Find the node right before we started |
| // processing the call. |
| if (L.isPurgeKind()) |
| continue; |
| if (L.getAs<PreImplicitCall>()) |
| continue; |
| if (L.getAs<CallEnter>()) |
| continue; |
| if (Optional<StmtPoint> SP = L.getAs<StmtPoint>()) |
| if (SP->getStmt() == CE) |
| continue; |
| break; |
| } |
| |
| if (!BeforeProcessingCall) |
| return false; |
| |
| // TODO: Clean up the unneeded nodes. |
| |
| // Build an Epsilon node from which we will restart the analyzes. |
| // Note that CE is permitted to be NULL! |
| ProgramPoint NewNodeLoc = |
| EpsilonPoint(BeforeProcessingCall->getLocationContext(), CE); |
| // Add the special flag to GDM to signal retrying with no inlining. |
| // Note, changing the state ensures that we are not going to cache out. |
| ProgramStateRef NewNodeState = BeforeProcessingCall->getState(); |
| NewNodeState = |
| NewNodeState->set<ReplayWithoutInlining>(const_cast<Stmt *>(CE)); |
| |
| // Make the new node a successor of BeforeProcessingCall. |
| bool IsNew = false; |
| ExplodedNode *NewNode = G.getNode(NewNodeLoc, NewNodeState, false, &IsNew); |
| // We cached out at this point. Caching out is common due to us backtracking |
| // from the inlined function, which might spawn several paths. |
| if (!IsNew) |
| return true; |
| |
| NewNode->addPredecessor(BeforeProcessingCall, G); |
| |
| // Add the new node to the work list. |
| Engine.enqueueStmtNode(NewNode, CalleeSF->getCallSiteBlock(), |
| CalleeSF->getIndex()); |
| NumTimesRetriedWithoutInlining++; |
| return true; |
| } |
| |
| /// Block entrance. (Update counters). |
| void ExprEngine::processCFGBlockEntrance(const BlockEdge &L, |
| NodeBuilderWithSinks &nodeBuilder, |
| ExplodedNode *Pred) { |
| |
| // FIXME: Refactor this into a checker. |
| if (nodeBuilder.getContext().blockCount() >= AMgr.options.maxBlockVisitOnPath) { |
| static SimpleProgramPointTag tag("ExprEngine : Block count exceeded"); |
| const ExplodedNode *Sink = |
| nodeBuilder.generateSink(Pred->getState(), Pred, &tag); |
| |
| // Check if we stopped at the top level function or not. |
| // Root node should have the location context of the top most function. |
| const LocationContext *CalleeLC = Pred->getLocation().getLocationContext(); |
| const LocationContext *CalleeSF = CalleeLC->getCurrentStackFrame(); |
| const LocationContext *RootLC = |
| (*G.roots_begin())->getLocation().getLocationContext(); |
| if (RootLC->getCurrentStackFrame() != CalleeSF) { |
| Engine.FunctionSummaries->markReachedMaxBlockCount(CalleeSF->getDecl()); |
| |
| // Re-run the call evaluation without inlining it, by storing the |
| // no-inlining policy in the state and enqueuing the new work item on |
| // the list. Replay should almost never fail. Use the stats to catch it |
| // if it does. |
| if ((!AMgr.options.NoRetryExhausted && |
| replayWithoutInlining(Pred, CalleeLC))) |
| return; |
| NumMaxBlockCountReachedInInlined++; |
| } else |
| NumMaxBlockCountReached++; |
| |
| // Make sink nodes as exhausted(for stats) only if retry failed. |
| Engine.blocksExhausted.push_back(std::make_pair(L, Sink)); |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Branch processing. |
| //===----------------------------------------------------------------------===// |
| |
| /// RecoverCastedSymbol - A helper function for ProcessBranch that is used |
| /// to try to recover some path-sensitivity for casts of symbolic |
| /// integers that promote their values (which are currently not tracked well). |
| /// This function returns the SVal bound to Condition->IgnoreCasts if all the |
| // cast(s) did was sign-extend the original value. |
| static SVal RecoverCastedSymbol(ProgramStateManager& StateMgr, |
| ProgramStateRef state, |
| const Stmt *Condition, |
| const LocationContext *LCtx, |
| ASTContext &Ctx) { |
| |
| const Expr *Ex = dyn_cast<Expr>(Condition); |
| if (!Ex) |
| return UnknownVal(); |
| |
| uint64_t bits = 0; |
| bool bitsInit = false; |
| |
| while (const CastExpr *CE = dyn_cast<CastExpr>(Ex)) { |
| QualType T = CE->getType(); |
| |
| if (!T->isIntegerType()) |
| return UnknownVal(); |
| |
| uint64_t newBits = Ctx.getTypeSize(T); |
| if (!bitsInit || newBits < bits) { |
| bitsInit = true; |
| bits = newBits; |
| } |
| |
| Ex = CE->getSubExpr(); |
| } |
| |
| // We reached a non-cast. Is it a symbolic value? |
| QualType T = Ex->getType(); |
| |
| if (!bitsInit || !T->isIntegerType() || Ctx.getTypeSize(T) > bits) |
| return UnknownVal(); |
| |
| return state->getSVal(Ex, LCtx); |
| } |
| |
| static const Stmt *ResolveCondition(const Stmt *Condition, |
| const CFGBlock *B) { |
| if (const Expr *Ex = dyn_cast<Expr>(Condition)) |
| Condition = Ex->IgnoreParens(); |
| |
| const BinaryOperator *BO = dyn_cast<BinaryOperator>(Condition); |
| if (!BO || !BO->isLogicalOp()) |
| return Condition; |
| |
| // For logical operations, we still have the case where some branches |
| // use the traditional "merge" approach and others sink the branch |
| // directly into the basic blocks representing the logical operation. |
| // We need to distinguish between those two cases here. |
| |
| // The invariants are still shifting, but it is possible that the |
| // last element in a CFGBlock is not a CFGStmt. Look for the last |
| // CFGStmt as the value of the condition. |
| CFGBlock::const_reverse_iterator I = B->rbegin(), E = B->rend(); |
| for (; I != E; ++I) { |
| CFGElement Elem = *I; |
| Optional<CFGStmt> CS = Elem.getAs<CFGStmt>(); |
| if (!CS) |
| continue; |
| if (CS->getStmt() != Condition) |
| break; |
| return Condition; |
| } |
| |
| assert(I != E); |
| |
| while (Condition) { |
| BO = dyn_cast<BinaryOperator>(Condition); |
| if (!BO || !BO->isLogicalOp()) |
| return Condition; |
| Condition = BO->getRHS()->IgnoreParens(); |
| } |
| llvm_unreachable("could not resolve condition"); |
| } |
| |
| void ExprEngine::processBranch(const Stmt *Condition, const Stmt *Term, |
| NodeBuilderContext& BldCtx, |
| ExplodedNode *Pred, |
| ExplodedNodeSet &Dst, |
| const CFGBlock *DstT, |
| const CFGBlock *DstF) { |
| currBldrCtx = &BldCtx; |
| |
| // Check for NULL conditions; e.g. "for(;;)" |
| if (!Condition) { |
| BranchNodeBuilder NullCondBldr(Pred, Dst, BldCtx, DstT, DstF); |
| NullCondBldr.markInfeasible(false); |
| NullCondBldr.generateNode(Pred->getState(), true, Pred); |
| return; |
| } |
| |
| |
| // Resolve the condition in the precense of nested '||' and '&&'. |
| if (const Expr *Ex = dyn_cast<Expr>(Condition)) |
| Condition = Ex->IgnoreParens(); |
| |
| Condition = ResolveCondition(Condition, BldCtx.getBlock()); |
| PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(), |
| Condition->getLocStart(), |
| "Error evaluating branch"); |
| |
| ExplodedNodeSet CheckersOutSet; |
| getCheckerManager().runCheckersForBranchCondition(Condition, CheckersOutSet, |
| Pred, *this); |
| // We generated only sinks. |
| if (CheckersOutSet.empty()) |
| return; |
| |
| BranchNodeBuilder builder(CheckersOutSet, Dst, BldCtx, DstT, DstF); |
| for (NodeBuilder::iterator I = CheckersOutSet.begin(), |
| E = CheckersOutSet.end(); E != I; ++I) { |
| ExplodedNode *PredI = *I; |
| |
| if (PredI->isSink()) |
| continue; |
| |
| ProgramStateRef PrevState = PredI->getState(); |
| SVal X = PrevState->getSVal(Condition, PredI->getLocationContext()); |
| |
| if (X.isUnknownOrUndef()) { |
| // Give it a chance to recover from unknown. |
| if (const Expr *Ex = dyn_cast<Expr>(Condition)) { |
| if (Ex->getType()->isIntegerType()) { |
| // Try to recover some path-sensitivity. Right now casts of symbolic |
| // integers that promote their values are currently not tracked well. |
| // If 'Condition' is such an expression, try and recover the |
| // underlying value and use that instead. |
| SVal recovered = RecoverCastedSymbol(getStateManager(), |
| PrevState, Condition, |
| PredI->getLocationContext(), |
| getContext()); |
| |
| if (!recovered.isUnknown()) { |
| X = recovered; |
| } |
| } |
| } |
| } |
| |
| // If the condition is still unknown, give up. |
| if (X.isUnknownOrUndef()) { |
| builder.generateNode(PrevState, true, PredI); |
| builder.generateNode(PrevState, false, PredI); |
| continue; |
| } |
| |
| DefinedSVal V = X.castAs<DefinedSVal>(); |
| |
| ProgramStateRef StTrue, StFalse; |
| tie(StTrue, StFalse) = PrevState->assume(V); |
| |
| // Process the true branch. |
| if (builder.isFeasible(true)) { |
| if (StTrue) |
| builder.generateNode(StTrue, true, PredI); |
| else |
| builder.markInfeasible(true); |
| } |
| |
| // Process the false branch. |
| if (builder.isFeasible(false)) { |
| if (StFalse) |
| builder.generateNode(StFalse, false, PredI); |
| else |
| builder.markInfeasible(false); |
| } |
| } |
| currBldrCtx = 0; |
| } |
| |
| /// processIndirectGoto - Called by CoreEngine. Used to generate successor |
| /// nodes by processing the 'effects' of a computed goto jump. |
| void ExprEngine::processIndirectGoto(IndirectGotoNodeBuilder &builder) { |
| |
| ProgramStateRef state = builder.getState(); |
| SVal V = state->getSVal(builder.getTarget(), builder.getLocationContext()); |
| |
| // Three possibilities: |
| // |
| // (1) We know the computed label. |
| // (2) The label is NULL (or some other constant), or Undefined. |
| // (3) We have no clue about the label. Dispatch to all targets. |
| // |
| |
| typedef IndirectGotoNodeBuilder::iterator iterator; |
| |
| if (Optional<loc::GotoLabel> LV = V.getAs<loc::GotoLabel>()) { |
| const LabelDecl *L = LV->getLabel(); |
| |
| for (iterator I = builder.begin(), E = builder.end(); I != E; ++I) { |
| if (I.getLabel() == L) { |
| builder.generateNode(I, state); |
| return; |
| } |
| } |
| |
| llvm_unreachable("No block with label."); |
| } |
| |
| if (V.getAs<loc::ConcreteInt>() || V.getAs<UndefinedVal>()) { |
| // Dispatch to the first target and mark it as a sink. |
| //ExplodedNode* N = builder.generateNode(builder.begin(), state, true); |
| // FIXME: add checker visit. |
| // UndefBranches.insert(N); |
| return; |
| } |
| |
| // This is really a catch-all. We don't support symbolics yet. |
| // FIXME: Implement dispatch for symbolic pointers. |
| |
| for (iterator I=builder.begin(), E=builder.end(); I != E; ++I) |
| builder.generateNode(I, state); |
| } |
| |
| /// ProcessEndPath - Called by CoreEngine. Used to generate end-of-path |
| /// nodes when the control reaches the end of a function. |
| void ExprEngine::processEndOfFunction(NodeBuilderContext& BC, |
| ExplodedNode *Pred) { |
| StateMgr.EndPath(Pred->getState()); |
| |
| ExplodedNodeSet Dst; |
| if (Pred->getLocationContext()->inTopFrame()) { |
| // Remove dead symbols. |
| ExplodedNodeSet AfterRemovedDead; |
| removeDeadOnEndOfFunction(BC, Pred, AfterRemovedDead); |
| |
| // Notify checkers. |
| for (ExplodedNodeSet::iterator I = AfterRemovedDead.begin(), |
| E = AfterRemovedDead.end(); I != E; ++I) { |
| getCheckerManager().runCheckersForEndFunction(BC, Dst, *I, *this); |
| } |
| } else { |
| getCheckerManager().runCheckersForEndFunction(BC, Dst, Pred, *this); |
| } |
| |
| Engine.enqueueEndOfFunction(Dst); |
| } |
| |
| /// ProcessSwitch - Called by CoreEngine. Used to generate successor |
| /// nodes by processing the 'effects' of a switch statement. |
| void ExprEngine::processSwitch(SwitchNodeBuilder& builder) { |
| typedef SwitchNodeBuilder::iterator iterator; |
| ProgramStateRef state = builder.getState(); |
| const Expr *CondE = builder.getCondition(); |
| SVal CondV_untested = state->getSVal(CondE, builder.getLocationContext()); |
| |
| if (CondV_untested.isUndef()) { |
| //ExplodedNode* N = builder.generateDefaultCaseNode(state, true); |
| // FIXME: add checker |
| //UndefBranches.insert(N); |
| |
| return; |
| } |
| DefinedOrUnknownSVal CondV = CondV_untested.castAs<DefinedOrUnknownSVal>(); |
| |
| ProgramStateRef DefaultSt = state; |
| |
| iterator I = builder.begin(), EI = builder.end(); |
| bool defaultIsFeasible = I == EI; |
| |
| for ( ; I != EI; ++I) { |
| // Successor may be pruned out during CFG construction. |
| if (!I.getBlock()) |
| continue; |
| |
| const CaseStmt *Case = I.getCase(); |
| |
| // Evaluate the LHS of the case value. |
| llvm::APSInt V1 = Case->getLHS()->EvaluateKnownConstInt(getContext()); |
| assert(V1.getBitWidth() == getContext().getTypeSize(CondE->getType())); |
| |
| // Get the RHS of the case, if it exists. |
| llvm::APSInt V2; |
| if (const Expr *E = Case->getRHS()) |
| V2 = E->EvaluateKnownConstInt(getContext()); |
| else |
| V2 = V1; |
| |
| // FIXME: Eventually we should replace the logic below with a range |
| // comparison, rather than concretize the values within the range. |
| // This should be easy once we have "ranges" for NonLVals. |
| |
| do { |
| nonloc::ConcreteInt CaseVal(getBasicVals().getValue(V1)); |
| DefinedOrUnknownSVal Res = svalBuilder.evalEQ(DefaultSt ? DefaultSt : state, |
| CondV, CaseVal); |
| |
| // Now "assume" that the case matches. |
| if (ProgramStateRef stateNew = state->assume(Res, true)) { |
| builder.generateCaseStmtNode(I, stateNew); |
| |
| // If CondV evaluates to a constant, then we know that this |
| // is the *only* case that we can take, so stop evaluating the |
| // others. |
| if (CondV.getAs<nonloc::ConcreteInt>()) |
| return; |
| } |
| |
| // Now "assume" that the case doesn't match. Add this state |
| // to the default state (if it is feasible). |
| if (DefaultSt) { |
| if (ProgramStateRef stateNew = DefaultSt->assume(Res, false)) { |
| defaultIsFeasible = true; |
| DefaultSt = stateNew; |
| } |
| else { |
| defaultIsFeasible = false; |
| DefaultSt = NULL; |
| } |
| } |
| |
| // Concretize the next value in the range. |
| if (V1 == V2) |
| break; |
| |
| ++V1; |
| assert (V1 <= V2); |
| |
| } while (true); |
| } |
| |
| if (!defaultIsFeasible) |
| return; |
| |
| // If we have switch(enum value), the default branch is not |
| // feasible if all of the enum constants not covered by 'case:' statements |
| // are not feasible values for the switch condition. |
| // |
| // Note that this isn't as accurate as it could be. Even if there isn't |
| // a case for a particular enum value as long as that enum value isn't |
| // feasible then it shouldn't be considered for making 'default:' reachable. |
| const SwitchStmt *SS = builder.getSwitch(); |
| const Expr *CondExpr = SS->getCond()->IgnoreParenImpCasts(); |
| if (CondExpr->getType()->getAs<EnumType>()) { |
| if (SS->isAllEnumCasesCovered()) |
| return; |
| } |
| |
| builder.generateDefaultCaseNode(DefaultSt); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Transfer functions: Loads and stores. |
| //===----------------------------------------------------------------------===// |
| |
| void ExprEngine::VisitCommonDeclRefExpr(const Expr *Ex, const NamedDecl *D, |
| ExplodedNode *Pred, |
| ExplodedNodeSet &Dst) { |
| StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); |
| |
| ProgramStateRef state = Pred->getState(); |
| const LocationContext *LCtx = Pred->getLocationContext(); |
| |
| if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
| assert(Ex->isGLValue()); |
| SVal V = state->getLValue(VD, Pred->getLocationContext()); |
| |
| // For references, the 'lvalue' is the pointer address stored in the |
| // reference region. |
| if (VD->getType()->isReferenceType()) { |
| if (const MemRegion *R = V.getAsRegion()) |
| V = state->getSVal(R); |
| else |
| V = UnknownVal(); |
| } |
| |
| Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), 0, |
| ProgramPoint::PostLValueKind); |
| return; |
| } |
| if (const EnumConstantDecl *ED = dyn_cast<EnumConstantDecl>(D)) { |
| assert(!Ex->isGLValue()); |
| SVal V = svalBuilder.makeIntVal(ED->getInitVal()); |
| Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V)); |
| return; |
| } |
| if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
| SVal V = svalBuilder.getFunctionPointer(FD); |
| Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), 0, |
| ProgramPoint::PostLValueKind); |
| return; |
| } |
| if (isa<FieldDecl>(D)) { |
| // FIXME: Compute lvalue of field pointers-to-member. |
| // Right now we just use a non-null void pointer, so that it gives proper |
| // results in boolean contexts. |
| SVal V = svalBuilder.conjureSymbolVal(Ex, LCtx, getContext().VoidPtrTy, |
| currBldrCtx->blockCount()); |
| state = state->assume(V.castAs<DefinedOrUnknownSVal>(), true); |
| Bldr.generateNode(Ex, Pred, state->BindExpr(Ex, LCtx, V), 0, |
| ProgramPoint::PostLValueKind); |
| return; |
| } |
| |
| llvm_unreachable("Support for this Decl not implemented."); |
| } |
| |
| /// VisitArraySubscriptExpr - Transfer function for array accesses |
| void ExprEngine::VisitLvalArraySubscriptExpr(const ArraySubscriptExpr *A, |
| ExplodedNode *Pred, |
| ExplodedNodeSet &Dst){ |
| |
| const Expr *Base = A->getBase()->IgnoreParens(); |
| const Expr *Idx = A->getIdx()->IgnoreParens(); |
| |
| |
| ExplodedNodeSet checkerPreStmt; |
| getCheckerManager().runCheckersForPreStmt(checkerPreStmt, Pred, A, *this); |
| |
| StmtNodeBuilder Bldr(checkerPreStmt, Dst, *currBldrCtx); |
| |
| for (ExplodedNodeSet::iterator it = checkerPreStmt.begin(), |
| ei = checkerPreStmt.end(); it != ei; ++it) { |
| const LocationContext *LCtx = (*it)->getLocationContext(); |
| ProgramStateRef state = (*it)->getState(); |
| SVal V = state->getLValue(A->getType(), |
| state->getSVal(Idx, LCtx), |
| state->getSVal(Base, LCtx)); |
| assert(A->isGLValue()); |
| Bldr.generateNode(A, *it, state->BindExpr(A, LCtx, V), 0, |
| ProgramPoint::PostLValueKind); |
| } |
| } |
| |
| /// VisitMemberExpr - Transfer function for member expressions. |
| void ExprEngine::VisitMemberExpr(const MemberExpr *M, ExplodedNode *Pred, |
| ExplodedNodeSet &TopDst) { |
| |
| StmtNodeBuilder Bldr(Pred, TopDst, *currBldrCtx); |
| ExplodedNodeSet Dst; |
| ValueDecl *Member = M->getMemberDecl(); |
| |
| // Handle static member variables and enum constants accessed via |
| // member syntax. |
| if (isa<VarDecl>(Member) || isa<EnumConstantDecl>(Member)) { |
| Bldr.takeNodes(Pred); |
| VisitCommonDeclRefExpr(M, Member, Pred, Dst); |
| Bldr.addNodes(Dst); |
| return; |
| } |
| |
| ProgramStateRef state = Pred->getState(); |
| const LocationContext *LCtx = Pred->getLocationContext(); |
| Expr *BaseExpr = M->getBase(); |
| |
| // Handle C++ method calls. |
| if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member)) { |
| if (MD->isInstance()) |
| state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr); |
| |
| SVal MDVal = svalBuilder.getFunctionPointer(MD); |
| state = state->BindExpr(M, LCtx, MDVal); |
| |
| Bldr.generateNode(M, Pred, state); |
| return; |
| } |
| |
| // Handle regular struct fields / member variables. |
| state = createTemporaryRegionIfNeeded(state, LCtx, BaseExpr); |
| SVal baseExprVal = state->getSVal(BaseExpr, LCtx); |
| |
| FieldDecl *field = cast<FieldDecl>(Member); |
| SVal L = state->getLValue(field, baseExprVal); |
| if (M->isGLValue()) { |
| if (field->getType()->isReferenceType()) { |
| if (const MemRegion *R = L.getAsRegion()) |
| L = state->getSVal(R); |
| else |
| L = UnknownVal(); |
| } |
| |
| Bldr.generateNode(M, Pred, state->BindExpr(M, LCtx, L), 0, |
| ProgramPoint::PostLValueKind); |
| } else { |
| Bldr.takeNodes(Pred); |
| evalLoad(Dst, M, M, Pred, state, L); |
| Bldr.addNodes(Dst); |
| } |
| } |
| |
| namespace { |
| class CollectReachableSymbolsCallback : public SymbolVisitor { |
| InvalidatedSymbols Symbols; |
| public: |
| CollectReachableSymbolsCallback(ProgramStateRef State) {} |
| const InvalidatedSymbols &getSymbols() const { return Symbols; } |
| |
| bool VisitSymbol(SymbolRef Sym) { |
| Symbols.insert(Sym); |
| return true; |
| } |
| }; |
| } // end anonymous namespace |
| |
| // A value escapes in three possible cases: |
| // (1) We are binding to something that is not a memory region. |
| // (2) We are binding to a MemrRegion that does not have stack storage. |
| // (3) We are binding to a MemRegion with stack storage that the store |
| // does not understand. |
| ProgramStateRef ExprEngine::processPointerEscapedOnBind(ProgramStateRef State, |
| SVal Loc, SVal Val) { |
| // Are we storing to something that causes the value to "escape"? |
| bool escapes = true; |
| |
| // TODO: Move to StoreManager. |
| if (Optional<loc::MemRegionVal> regionLoc = Loc.getAs<loc::MemRegionVal>()) { |
| escapes = !regionLoc->getRegion()->hasStackStorage(); |
| |
| if (!escapes) { |
| // To test (3), generate a new state with the binding added. If it is |
| // the same state, then it escapes (since the store cannot represent |
| // the binding). |
| // Do this only if we know that the store is not supposed to generate the |
| // same state. |
| SVal StoredVal = State->getSVal(regionLoc->getRegion()); |
| if (StoredVal != Val) |
| escapes = (State == (State->bindLoc(*regionLoc, Val))); |
| } |
| if (!escapes) { |
| // Case 4: We do not currently model what happens when a symbol is |
| // assigned to a struct field, so be conservative here and let the symbol |
| // go. TODO: This could definitely be improved upon. |
| escapes = !isa<VarRegion>(regionLoc->getRegion()); |
| } |
| } |
| |
| // If our store can represent the binding and we aren't storing to something |
| // that doesn't have local storage then just return and have the simulation |
| // state continue as is. |
| if (!escapes) |
| return State; |
| |
| // Otherwise, find all symbols referenced by 'val' that we are tracking |
| // and stop tracking them. |
| CollectReachableSymbolsCallback Scanner = |
| State->scanReachableSymbols<CollectReachableSymbolsCallback>(Val); |
| const InvalidatedSymbols &EscapedSymbols = Scanner.getSymbols(); |
| State = getCheckerManager().runCheckersForPointerEscape(State, |
| EscapedSymbols, |
| /*CallEvent*/ 0, |
| PSK_EscapeOnBind); |
| |
| return State; |
| } |
| |
| ProgramStateRef |
| ExprEngine::processPointerEscapedOnInvalidateRegions(ProgramStateRef State, |
| const InvalidatedSymbols *Invalidated, |
| ArrayRef<const MemRegion *> ExplicitRegions, |
| ArrayRef<const MemRegion *> Regions, |
| const CallEvent *Call) { |
| |
| if (!Invalidated || Invalidated->empty()) |
| return State; |
| |
| if (!Call) |
| return getCheckerManager().runCheckersForPointerEscape(State, |
| *Invalidated, |
| 0, |
| PSK_EscapeOther); |
| |
| // If the symbols were invalidated by a call, we want to find out which ones |
| // were invalidated directly due to being arguments to the call. |
| InvalidatedSymbols SymbolsDirectlyInvalidated; |
| for (ArrayRef<const MemRegion *>::iterator I = ExplicitRegions.begin(), |
| E = ExplicitRegions.end(); I != E; ++I) { |
| if (const SymbolicRegion *R = (*I)->StripCasts()->getAs<SymbolicRegion>()) |
| SymbolsDirectlyInvalidated.insert(R->getSymbol()); |
| } |
| |
| InvalidatedSymbols SymbolsIndirectlyInvalidated; |
| for (InvalidatedSymbols::const_iterator I=Invalidated->begin(), |
| E = Invalidated->end(); I!=E; ++I) { |
| SymbolRef sym = *I; |
| if (SymbolsDirectlyInvalidated.count(sym)) |
| continue; |
| SymbolsIndirectlyInvalidated.insert(sym); |
| } |
| |
| if (!SymbolsDirectlyInvalidated.empty()) |
| State = getCheckerManager().runCheckersForPointerEscape(State, |
| SymbolsDirectlyInvalidated, Call, PSK_DirectEscapeOnCall); |
| |
| // Notify about the symbols that get indirectly invalidated by the call. |
| if (!SymbolsIndirectlyInvalidated.empty()) |
| State = getCheckerManager().runCheckersForPointerEscape(State, |
| SymbolsIndirectlyInvalidated, Call, PSK_IndirectEscapeOnCall); |
| |
| return State; |
| } |
| |
| /// evalBind - Handle the semantics of binding a value to a specific location. |
| /// This method is used by evalStore and (soon) VisitDeclStmt, and others. |
| void ExprEngine::evalBind(ExplodedNodeSet &Dst, const Stmt *StoreE, |
| ExplodedNode *Pred, |
| SVal location, SVal Val, |
| bool atDeclInit, const ProgramPoint *PP) { |
| |
| const LocationContext *LC = Pred->getLocationContext(); |
| PostStmt PS(StoreE, LC); |
| if (!PP) |
| PP = &PS; |
| |
| // Do a previsit of the bind. |
| ExplodedNodeSet CheckedSet; |
| getCheckerManager().runCheckersForBind(CheckedSet, Pred, location, Val, |
| StoreE, *this, *PP); |
| |
| |
| StmtNodeBuilder Bldr(CheckedSet, Dst, *currBldrCtx); |
| |
| // If the location is not a 'Loc', it will already be handled by |
| // the checkers. There is nothing left to do. |
| if (!location.getAs<Loc>()) { |
| const ProgramPoint L = PostStore(StoreE, LC, /*Loc*/0, /*tag*/0); |
| ProgramStateRef state = Pred->getState(); |
| state = processPointerEscapedOnBind(state, location, Val); |
| Bldr.generateNode(L, state, Pred); |
| return; |
| } |
| |
| |
| for (ExplodedNodeSet::iterator I = CheckedSet.begin(), E = CheckedSet.end(); |
| I!=E; ++I) { |
| ExplodedNode *PredI = *I; |
| ProgramStateRef state = PredI->getState(); |
| |
| state = processPointerEscapedOnBind(state, location, Val); |
| |
| // When binding the value, pass on the hint that this is a initialization. |
| // For initializations, we do not need to inform clients of region |
| // changes. |
| state = state->bindLoc(location.castAs<Loc>(), |
| Val, /* notifyChanges = */ !atDeclInit); |
| |
| const MemRegion *LocReg = 0; |
| if (Optional<loc::MemRegionVal> LocRegVal = |
| location.getAs<loc::MemRegionVal>()) { |
| LocReg = LocRegVal->getRegion(); |
| } |
| |
| const ProgramPoint L = PostStore(StoreE, LC, LocReg, 0); |
| Bldr.generateNode(L, state, PredI); |
| } |
| } |
| |
| /// evalStore - Handle the semantics of a store via an assignment. |
| /// @param Dst The node set to store generated state nodes |
| /// @param AssignE The assignment expression if the store happens in an |
| /// assignment. |
| /// @param LocationE The location expression that is stored to. |
| /// @param state The current simulation state |
| /// @param location The location to store the value |
| /// @param Val The value to be stored |
| void ExprEngine::evalStore(ExplodedNodeSet &Dst, const Expr *AssignE, |
| const Expr *LocationE, |
| ExplodedNode *Pred, |
| ProgramStateRef state, SVal location, SVal Val, |
| const ProgramPointTag *tag) { |
| // Proceed with the store. We use AssignE as the anchor for the PostStore |
| // ProgramPoint if it is non-NULL, and LocationE otherwise. |
| const Expr *StoreE = AssignE ? AssignE : LocationE; |
| |
| // Evaluate the location (checks for bad dereferences). |
| ExplodedNodeSet Tmp; |
| evalLocation(Tmp, AssignE, LocationE, Pred, state, location, tag, false); |
| |
| if (Tmp.empty()) |
| return; |
| |
| if (location.isUndef()) |
| return; |
| |
| for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) |
| evalBind(Dst, StoreE, *NI, location, Val, false); |
| } |
| |
| void ExprEngine::evalLoad(ExplodedNodeSet &Dst, |
| const Expr *NodeEx, |
| const Expr *BoundEx, |
| ExplodedNode *Pred, |
| ProgramStateRef state, |
| SVal location, |
| const ProgramPointTag *tag, |
| QualType LoadTy) |
| { |
| assert(!location.getAs<NonLoc>() && "location cannot be a NonLoc."); |
| |
| // Are we loading from a region? This actually results in two loads; one |
| // to fetch the address of the referenced value and one to fetch the |
| // referenced value. |
| if (const TypedValueRegion *TR = |
| dyn_cast_or_null<TypedValueRegion>(location.getAsRegion())) { |
| |
| QualType ValTy = TR->getValueType(); |
| if (const ReferenceType *RT = ValTy->getAs<ReferenceType>()) { |
| static SimpleProgramPointTag |
| loadReferenceTag("ExprEngine : Load Reference"); |
| ExplodedNodeSet Tmp; |
| evalLoadCommon(Tmp, NodeEx, BoundEx, Pred, state, |
| location, &loadReferenceTag, |
| getContext().getPointerType(RT->getPointeeType())); |
| |
| // Perform the load from the referenced value. |
| for (ExplodedNodeSet::iterator I=Tmp.begin(), E=Tmp.end() ; I!=E; ++I) { |
| state = (*I)->getState(); |
| location = state->getSVal(BoundEx, (*I)->getLocationContext()); |
| evalLoadCommon(Dst, NodeEx, BoundEx, *I, state, location, tag, LoadTy); |
| } |
| return; |
| } |
| } |
| |
| evalLoadCommon(Dst, NodeEx, BoundEx, Pred, state, location, tag, LoadTy); |
| } |
| |
| void ExprEngine::evalLoadCommon(ExplodedNodeSet &Dst, |
| const Expr *NodeEx, |
| const Expr *BoundEx, |
| ExplodedNode *Pred, |
| ProgramStateRef state, |
| SVal location, |
| const ProgramPointTag *tag, |
| QualType LoadTy) { |
| assert(NodeEx); |
| assert(BoundEx); |
| // Evaluate the location (checks for bad dereferences). |
| ExplodedNodeSet Tmp; |
| evalLocation(Tmp, NodeEx, BoundEx, Pred, state, location, tag, true); |
| if (Tmp.empty()) |
| return; |
| |
| StmtNodeBuilder Bldr(Tmp, Dst, *currBldrCtx); |
| if (location.isUndef()) |
| return; |
| |
| // Proceed with the load. |
| for (ExplodedNodeSet::iterator NI=Tmp.begin(), NE=Tmp.end(); NI!=NE; ++NI) { |
| state = (*NI)->getState(); |
| const LocationContext *LCtx = (*NI)->getLocationContext(); |
| |
| SVal V = UnknownVal(); |
| if (location.isValid()) { |
| if (LoadTy.isNull()) |
| LoadTy = BoundEx->getType(); |
| V = state->getSVal(location.castAs<Loc>(), LoadTy); |
| } |
| |
| Bldr.generateNode(NodeEx, *NI, state->BindExpr(BoundEx, LCtx, V), tag, |
| ProgramPoint::PostLoadKind); |
| } |
| } |
| |
| void ExprEngine::evalLocation(ExplodedNodeSet &Dst, |
| const Stmt *NodeEx, |
| const Stmt *BoundEx, |
| ExplodedNode *Pred, |
| ProgramStateRef state, |
| SVal location, |
| const ProgramPointTag *tag, |
| bool isLoad) { |
| StmtNodeBuilder BldrTop(Pred, Dst, *currBldrCtx); |
| // Early checks for performance reason. |
| if (location.isUnknown()) { |
| return; |
| } |
| |
| ExplodedNodeSet Src; |
| BldrTop.takeNodes(Pred); |
| StmtNodeBuilder Bldr(Pred, Src, *currBldrCtx); |
| if (Pred->getState() != state) { |
| // Associate this new state with an ExplodedNode. |
| // FIXME: If I pass null tag, the graph is incorrect, e.g for |
| // int *p; |
| // p = 0; |
| // *p = 0xDEADBEEF; |
| // "p = 0" is not noted as "Null pointer value stored to 'p'" but |
| // instead "int *p" is noted as |
| // "Variable 'p' initialized to a null pointer value" |
| |
| static SimpleProgramPointTag tag("ExprEngine: Location"); |
| Bldr.generateNode(NodeEx, Pred, state, &tag); |
| } |
| ExplodedNodeSet Tmp; |
| getCheckerManager().runCheckersForLocation(Tmp, Src, location, isLoad, |
| NodeEx, BoundEx, *this); |
| BldrTop.addNodes(Tmp); |
| } |
| |
| std::pair<const ProgramPointTag *, const ProgramPointTag*> |
| ExprEngine::geteagerlyAssumeBinOpBifurcationTags() { |
| static SimpleProgramPointTag |
| eagerlyAssumeBinOpBifurcationTrue("ExprEngine : Eagerly Assume True"), |
| eagerlyAssumeBinOpBifurcationFalse("ExprEngine : Eagerly Assume False"); |
| return std::make_pair(&eagerlyAssumeBinOpBifurcationTrue, |
| &eagerlyAssumeBinOpBifurcationFalse); |
| } |
| |
| void ExprEngine::evalEagerlyAssumeBinOpBifurcation(ExplodedNodeSet &Dst, |
| ExplodedNodeSet &Src, |
| const Expr *Ex) { |
| StmtNodeBuilder Bldr(Src, Dst, *currBldrCtx); |
| |
| for (ExplodedNodeSet::iterator I=Src.begin(), E=Src.end(); I!=E; ++I) { |
| ExplodedNode *Pred = *I; |
| // Test if the previous node was as the same expression. This can happen |
| // when the expression fails to evaluate to anything meaningful and |
| // (as an optimization) we don't generate a node. |
| ProgramPoint P = Pred->getLocation(); |
| if (!P.getAs<PostStmt>() || P.castAs<PostStmt>().getStmt() != Ex) { |
| continue; |
| } |
| |
| ProgramStateRef state = Pred->getState(); |
| SVal V = state->getSVal(Ex, Pred->getLocationContext()); |
| Optional<nonloc::SymbolVal> SEV = V.getAs<nonloc::SymbolVal>(); |
| if (SEV && SEV->isExpression()) { |
| const std::pair<const ProgramPointTag *, const ProgramPointTag*> &tags = |
| geteagerlyAssumeBinOpBifurcationTags(); |
| |
| ProgramStateRef StateTrue, StateFalse; |
| tie(StateTrue, StateFalse) = state->assume(*SEV); |
| |
| // First assume that the condition is true. |
| if (StateTrue) { |
| SVal Val = svalBuilder.makeIntVal(1U, Ex->getType()); |
| StateTrue = StateTrue->BindExpr(Ex, Pred->getLocationContext(), Val); |
| Bldr.generateNode(Ex, Pred, StateTrue, tags.first); |
| } |
| |
| // Next, assume that the condition is false. |
| if (StateFalse) { |
| SVal Val = svalBuilder.makeIntVal(0U, Ex->getType()); |
| StateFalse = StateFalse->BindExpr(Ex, Pred->getLocationContext(), Val); |
| Bldr.generateNode(Ex, Pred, StateFalse, tags.second); |
| } |
| } |
| } |
| } |
| |
| void ExprEngine::VisitGCCAsmStmt(const GCCAsmStmt *A, ExplodedNode *Pred, |
| ExplodedNodeSet &Dst) { |
| StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); |
| // We have processed both the inputs and the outputs. All of the outputs |
| // should evaluate to Locs. Nuke all of their values. |
| |
| // FIXME: Some day in the future it would be nice to allow a "plug-in" |
| // which interprets the inline asm and stores proper results in the |
| // outputs. |
| |
| ProgramStateRef state = Pred->getState(); |
| |
| for (GCCAsmStmt::const_outputs_iterator OI = A->begin_outputs(), |
| OE = A->end_outputs(); OI != OE; ++OI) { |
| SVal X = state->getSVal(*OI, Pred->getLocationContext()); |
| assert (!X.getAs<NonLoc>()); // Should be an Lval, or unknown, undef. |
| |
| if (Optional<Loc> LV = X.getAs<Loc>()) |
| state = state->bindLoc(*LV, UnknownVal()); |
| } |
| |
| Bldr.generateNode(A, Pred, state); |
| } |
| |
| void ExprEngine::VisitMSAsmStmt(const MSAsmStmt *A, ExplodedNode *Pred, |
| ExplodedNodeSet &Dst) { |
| StmtNodeBuilder Bldr(Pred, Dst, *currBldrCtx); |
| Bldr.generateNode(A, Pred, Pred->getState()); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Visualization. |
| //===----------------------------------------------------------------------===// |
| |
| #ifndef NDEBUG |
| static ExprEngine* GraphPrintCheckerState; |
| static SourceManager* GraphPrintSourceManager; |
| |
| namespace llvm { |
| template<> |
| struct DOTGraphTraits<ExplodedNode*> : |
| public DefaultDOTGraphTraits { |
| |
| DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {} |
| |
| // FIXME: Since we do not cache error nodes in ExprEngine now, this does not |
| // work. |
| static std::string getNodeAttributes(const ExplodedNode *N, void*) { |
| |
| #if 0 |
| // FIXME: Replace with a general scheme to tell if the node is |
| // an error node. |
| if (GraphPrintCheckerState->isImplicitNullDeref(N) || |
| GraphPrintCheckerState->isExplicitNullDeref(N) || |
| GraphPrintCheckerState->isUndefDeref(N) || |
| GraphPrintCheckerState->isUndefStore(N) || |
| GraphPrintCheckerState->isUndefControlFlow(N) || |
| GraphPrintCheckerState->isUndefResult(N) || |
| GraphPrintCheckerState->isBadCall(N) || |
| GraphPrintCheckerState->isUndefArg(N)) |
| return "color=\"red\",style=\"filled\""; |
| |
| if (GraphPrintCheckerState->isNoReturnCall(N)) |
| return "color=\"blue\",style=\"filled\""; |
| #endif |
| return ""; |
| } |
| |
| static void printLocation(raw_ostream &Out, SourceLocation SLoc) { |
| if (SLoc.isFileID()) { |
| Out << "\\lline=" |
| << GraphPrintSourceManager->getExpansionLineNumber(SLoc) |
| << " col=" |
| << GraphPrintSourceManager->getExpansionColumnNumber(SLoc) |
| << "\\l"; |
| } |
| } |
| |
| static std::string getNodeLabel(const ExplodedNode *N, void*){ |
| |
| std::string sbuf; |
| llvm::raw_string_ostream Out(sbuf); |
| |
| // Program Location. |
| ProgramPoint Loc = N->getLocation(); |
| |
| switch (Loc.getKind()) { |
| case ProgramPoint::BlockEntranceKind: { |
| Out << "Block Entrance: B" |
| << Loc.castAs<BlockEntrance>().getBlock()->getBlockID(); |
| if (const NamedDecl *ND = |
| dyn_cast<NamedDecl>(Loc.getLocationContext()->getDecl())) { |
| Out << " ("; |
| ND->printName(Out); |
| Out << ")"; |
| } |
| break; |
| } |
| |
| case ProgramPoint::BlockExitKind: |
| assert (false); |
| break; |
| |
| case ProgramPoint::CallEnterKind: |
| Out << "CallEnter"; |
| break; |
| |
| case ProgramPoint::CallExitBeginKind: |
| Out << "CallExitBegin"; |
| break; |
| |
| case ProgramPoint::CallExitEndKind: |
| Out << "CallExitEnd"; |
| break; |
| |
| case ProgramPoint::PostStmtPurgeDeadSymbolsKind: |
| Out << "PostStmtPurgeDeadSymbols"; |
| break; |
| |
| case ProgramPoint::PreStmtPurgeDeadSymbolsKind: |
| Out << "PreStmtPurgeDeadSymbols"; |
| break; |
| |
| case ProgramPoint::EpsilonKind: |
| Out << "Epsilon Point"; |
| break; |
| |
| case ProgramPoint::PreImplicitCallKind: { |
| ImplicitCallPoint PC = Loc.castAs<ImplicitCallPoint>(); |
| Out << "PreCall: "; |
| |
| // FIXME: Get proper printing options. |
| PC.getDecl()->print(Out, LangOptions()); |
| printLocation(Out, PC.getLocation()); |
| break; |
| } |
| |
| case ProgramPoint::PostImplicitCallKind: { |
| ImplicitCallPoint PC = Loc.castAs<ImplicitCallPoint>(); |
| Out << "PostCall: "; |
| |
| // FIXME: Get proper printing options. |
| PC.getDecl()->print(Out, LangOptions()); |
| printLocation(Out, PC.getLocation()); |
| break; |
| } |
| |
| default: { |
| if (Optional<StmtPoint> L = Loc.getAs<StmtPoint>()) { |
| const Stmt *S = L->getStmt(); |
| |
| Out << S->getStmtClassName() << ' ' << (const void*) S << ' '; |
| LangOptions LO; // FIXME. |
| S->printPretty(Out, 0, PrintingPolicy(LO)); |
| printLocation(Out, S->getLocStart()); |
| |
| if (Loc.getAs<PreStmt>()) |
| Out << "\\lPreStmt\\l;"; |
| else if (Loc.getAs<PostLoad>()) |
| Out << "\\lPostLoad\\l;"; |
| else if (Loc.getAs<PostStore>()) |
| Out << "\\lPostStore\\l"; |
| else if (Loc.getAs<PostLValue>()) |
| Out << "\\lPostLValue\\l"; |
| |
| #if 0 |
| // FIXME: Replace with a general scheme to determine |
| // the name of the check. |
| if (GraphPrintCheckerState->isImplicitNullDeref(N)) |
| Out << "\\|Implicit-Null Dereference.\\l"; |
| else if (GraphPrintCheckerState->isExplicitNullDeref(N)) |
| Out << "\\|Explicit-Null Dereference.\\l"; |
| else if (GraphPrintCheckerState->isUndefDeref(N)) |
| Out << "\\|Dereference of undefialied value.\\l"; |
| else if (GraphPrintCheckerState->isUndefStore(N)) |
| Out << "\\|Store to Undefined Loc."; |
| else if (GraphPrintCheckerState->isUndefResult(N)) |
| Out << "\\|Result of operation is undefined."; |
| else if (GraphPrintCheckerState->isNoReturnCall(N)) |
| Out << "\\|Call to function marked \"noreturn\"."; |
| else if (GraphPrintCheckerState->isBadCall(N)) |
| Out << "\\|Call to NULL/Undefined."; |
| else if (GraphPrintCheckerState->isUndefArg(N)) |
| Out << "\\|Argument in call is undefined"; |
| #endif |
| |
| break; |
| } |
| |
| const BlockEdge &E = Loc.castAs<BlockEdge>(); |
| Out << "Edge: (B" << E.getSrc()->getBlockID() << ", B" |
| << E.getDst()->getBlockID() << ')'; |
| |
| if (const Stmt *T = E.getSrc()->getTerminator()) { |
| |
| SourceLocation SLoc = T->getLocStart(); |
| |
| Out << "\\|Terminator: "; |
| LangOptions LO; // FIXME. |
| E.getSrc()->printTerminator(Out, LO); |
| |
| if (SLoc.isFileID()) { |
| Out << "\\lline=" |
| << GraphPrintSourceManager->getExpansionLineNumber(SLoc) |
| << " col=" |
| << GraphPrintSourceManager->getExpansionColumnNumber(SLoc); |
| } |
| |
| if (isa<SwitchStmt>(T)) { |
| const Stmt *Label = E.getDst()->getLabel(); |
| |
| if (Label) { |
| if (const CaseStmt *C = dyn_cast<CaseStmt>(Label)) { |
| Out << "\\lcase "; |
| LangOptions LO; // FIXME. |
| C->getLHS()->printPretty(Out, 0, PrintingPolicy(LO)); |
| |
| if (const Stmt *RHS = C->getRHS()) { |
| Out << " .. "; |
| RHS->printPretty(Out, 0, PrintingPolicy(LO)); |
| } |
| |
| Out << ":"; |
| } |
| else { |
| assert (isa<DefaultStmt>(Label)); |
| Out << "\\ldefault:"; |
| } |
| } |
| else |
| Out << "\\l(implicit) default:"; |
| } |
| else if (isa<IndirectGotoStmt>(T)) { |
| // FIXME |
| } |
| else { |
| Out << "\\lCondition: "; |
| if (*E.getSrc()->succ_begin() == E.getDst()) |
| Out << "true"; |
| else |
| Out << "false"; |
| } |
| |
| Out << "\\l"; |
| } |
| |
| #if 0 |
| // FIXME: Replace with a general scheme to determine |
| // the name of the check. |
| if (GraphPrintCheckerState->isUndefControlFlow(N)) { |
| Out << "\\|Control-flow based on\\lUndefined value.\\l"; |
| } |
| #endif |
| } |
| } |
| |
| ProgramStateRef state = N->getState(); |
| Out << "\\|StateID: " << (const void*) state.getPtr() |
| << " NodeID: " << (const void*) N << "\\|"; |
| state->printDOT(Out); |
| |
| Out << "\\l"; |
| |
| if (const ProgramPointTag *tag = Loc.getTag()) { |
| Out << "\\|Tag: " << tag->getTagDescription(); |
| Out << "\\l"; |
| } |
| return Out.str(); |
| } |
| }; |
| } // end llvm namespace |
| #endif |
| |
| #ifndef NDEBUG |
| template <typename ITERATOR> |
| ExplodedNode *GetGraphNode(ITERATOR I) { return *I; } |
| |
| template <> ExplodedNode* |
| GetGraphNode<llvm::DenseMap<ExplodedNode*, Expr*>::iterator> |
| (llvm::DenseMap<ExplodedNode*, Expr*>::iterator I) { |
| return I->first; |
| } |
| #endif |
| |
| void ExprEngine::ViewGraph(bool trim) { |
| #ifndef NDEBUG |
| if (trim) { |
| std::vector<ExplodedNode*> Src; |
| |
| // Flush any outstanding reports to make sure we cover all the nodes. |
| // This does not cause them to get displayed. |
| for (BugReporter::iterator I=BR.begin(), E=BR.end(); I!=E; ++I) |
| const_cast<BugType*>(*I)->FlushReports(BR); |
| |
| // Iterate through the reports and get their nodes. |
| for (BugReporter::EQClasses_iterator |
| EI = BR.EQClasses_begin(), EE = BR.EQClasses_end(); EI != EE; ++EI) { |
| ExplodedNode *N = const_cast<ExplodedNode*>(EI->begin()->getErrorNode()); |
| if (N) Src.push_back(N); |
| } |
| |
| ViewGraph(&Src[0], &Src[0]+Src.size()); |
| } |
| else { |
| GraphPrintCheckerState = this; |
| GraphPrintSourceManager = &getContext().getSourceManager(); |
| |
| llvm::ViewGraph(*G.roots_begin(), "ExprEngine"); |
| |
| GraphPrintCheckerState = NULL; |
| GraphPrintSourceManager = NULL; |
| } |
| #endif |
| } |
| |
| void ExprEngine::ViewGraph(ExplodedNode** Beg, ExplodedNode** End) { |
| #ifndef NDEBUG |
| GraphPrintCheckerState = this; |
| GraphPrintSourceManager = &getContext().getSourceManager(); |
| |
| std::auto_ptr<ExplodedGraph> TrimmedG(G.Trim(Beg, End).first); |
| |
| if (!TrimmedG.get()) |
| llvm::errs() << "warning: Trimmed ExplodedGraph is empty.\n"; |
| else |
| llvm::ViewGraph(*TrimmedG->roots_begin(), "TrimmedExprEngine"); |
| |
| GraphPrintCheckerState = NULL; |
| GraphPrintSourceManager = NULL; |
| #endif |
| } |