| /* LibTomCrypt, modular cryptographic library -- Tom St Denis |
| * |
| * LibTomCrypt is a library that provides various cryptographic |
| * algorithms in a highly modular and flexible manner. |
| * |
| * The library is free for all purposes without any express |
| * guarantee it works. |
| * |
| * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com |
| */ |
| |
| /** |
| @file skipjack.c |
| Skipjack Implementation by Tom St Denis |
| */ |
| #include "tomcrypt.h" |
| |
| #ifdef SKIPJACK |
| |
| const struct ltc_cipher_descriptor skipjack_desc = |
| { |
| "skipjack", |
| 17, |
| 10, 10, 8, 32, |
| &skipjack_setup, |
| &skipjack_ecb_encrypt, |
| &skipjack_ecb_decrypt, |
| &skipjack_test, |
| &skipjack_done, |
| &skipjack_keysize, |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL |
| }; |
| |
| static const unsigned char sbox[256] = { |
| 0xa3,0xd7,0x09,0x83,0xf8,0x48,0xf6,0xf4,0xb3,0x21,0x15,0x78,0x99,0xb1,0xaf,0xf9, |
| 0xe7,0x2d,0x4d,0x8a,0xce,0x4c,0xca,0x2e,0x52,0x95,0xd9,0x1e,0x4e,0x38,0x44,0x28, |
| 0x0a,0xdf,0x02,0xa0,0x17,0xf1,0x60,0x68,0x12,0xb7,0x7a,0xc3,0xe9,0xfa,0x3d,0x53, |
| 0x96,0x84,0x6b,0xba,0xf2,0x63,0x9a,0x19,0x7c,0xae,0xe5,0xf5,0xf7,0x16,0x6a,0xa2, |
| 0x39,0xb6,0x7b,0x0f,0xc1,0x93,0x81,0x1b,0xee,0xb4,0x1a,0xea,0xd0,0x91,0x2f,0xb8, |
| 0x55,0xb9,0xda,0x85,0x3f,0x41,0xbf,0xe0,0x5a,0x58,0x80,0x5f,0x66,0x0b,0xd8,0x90, |
| 0x35,0xd5,0xc0,0xa7,0x33,0x06,0x65,0x69,0x45,0x00,0x94,0x56,0x6d,0x98,0x9b,0x76, |
| 0x97,0xfc,0xb2,0xc2,0xb0,0xfe,0xdb,0x20,0xe1,0xeb,0xd6,0xe4,0xdd,0x47,0x4a,0x1d, |
| 0x42,0xed,0x9e,0x6e,0x49,0x3c,0xcd,0x43,0x27,0xd2,0x07,0xd4,0xde,0xc7,0x67,0x18, |
| 0x89,0xcb,0x30,0x1f,0x8d,0xc6,0x8f,0xaa,0xc8,0x74,0xdc,0xc9,0x5d,0x5c,0x31,0xa4, |
| 0x70,0x88,0x61,0x2c,0x9f,0x0d,0x2b,0x87,0x50,0x82,0x54,0x64,0x26,0x7d,0x03,0x40, |
| 0x34,0x4b,0x1c,0x73,0xd1,0xc4,0xfd,0x3b,0xcc,0xfb,0x7f,0xab,0xe6,0x3e,0x5b,0xa5, |
| 0xad,0x04,0x23,0x9c,0x14,0x51,0x22,0xf0,0x29,0x79,0x71,0x7e,0xff,0x8c,0x0e,0xe2, |
| 0x0c,0xef,0xbc,0x72,0x75,0x6f,0x37,0xa1,0xec,0xd3,0x8e,0x62,0x8b,0x86,0x10,0xe8, |
| 0x08,0x77,0x11,0xbe,0x92,0x4f,0x24,0xc5,0x32,0x36,0x9d,0xcf,0xf3,0xa6,0xbb,0xac, |
| 0x5e,0x6c,0xa9,0x13,0x57,0x25,0xb5,0xe3,0xbd,0xa8,0x3a,0x01,0x05,0x59,0x2a,0x46 |
| }; |
| |
| /* simple x + 1 (mod 10) in one step. */ |
| static const int keystep[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 }; |
| |
| /* simple x - 1 (mod 10) in one step */ |
| static const int ikeystep[] = { 9, 0, 1, 2, 3, 4, 5, 6, 7, 8 }; |
| |
| /** |
| Initialize the Skipjack block cipher |
| @param key The symmetric key you wish to pass |
| @param keylen The key length in bytes |
| @param num_rounds The number of rounds desired (0 for default) |
| @param skey The key in as scheduled by this function. |
| @return CRYPT_OK if successful |
| */ |
| int skipjack_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) |
| { |
| int x; |
| |
| LTC_ARGCHK(key != NULL); |
| LTC_ARGCHK(skey != NULL); |
| |
| if (keylen != 10) { |
| return CRYPT_INVALID_KEYSIZE; |
| } |
| |
| if (num_rounds != 32 && num_rounds != 0) { |
| return CRYPT_INVALID_ROUNDS; |
| } |
| |
| /* make sure the key is in range for platforms where CHAR_BIT != 8 */ |
| for (x = 0; x < 10; x++) { |
| skey->skipjack.key[x] = key[x] & 255; |
| } |
| |
| return CRYPT_OK; |
| } |
| |
| #define RULE_A \ |
| tmp = g_func(w1, &kp, skey->skipjack.key); \ |
| w1 = tmp ^ w4 ^ x; \ |
| w4 = w3; w3 = w2; \ |
| w2 = tmp; |
| |
| #define RULE_B \ |
| tmp = g_func(w1, &kp, skey->skipjack.key); \ |
| tmp1 = w4; w4 = w3; \ |
| w3 = w1 ^ w2 ^ x; \ |
| w1 = tmp1; w2 = tmp; |
| |
| #define RULE_A1 \ |
| tmp = w1 ^ w2 ^ x; \ |
| w1 = ig_func(w2, &kp, skey->skipjack.key); \ |
| w2 = w3; w3 = w4; w4 = tmp; |
| |
| #define RULE_B1 \ |
| tmp = ig_func(w2, &kp, skey->skipjack.key); \ |
| w2 = tmp ^ w3 ^ x; \ |
| w3 = w4; w4 = w1; w1 = tmp; |
| |
| static unsigned g_func(unsigned w, int *kp, unsigned char *key) |
| { |
| unsigned char g1,g2; |
| |
| g1 = (w >> 8) & 255; g2 = w & 255; |
| g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp]; |
| g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp]; |
| g1 ^= sbox[g2^key[*kp]]; *kp = keystep[*kp]; |
| g2 ^= sbox[g1^key[*kp]]; *kp = keystep[*kp]; |
| return ((unsigned)g1<<8)|(unsigned)g2; |
| } |
| |
| static unsigned ig_func(unsigned w, int *kp, unsigned char *key) |
| { |
| unsigned char g1,g2; |
| |
| g1 = (w >> 8) & 255; g2 = w & 255; |
| *kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]]; |
| *kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]]; |
| *kp = ikeystep[*kp]; g2 ^= sbox[g1^key[*kp]]; |
| *kp = ikeystep[*kp]; g1 ^= sbox[g2^key[*kp]]; |
| return ((unsigned)g1<<8)|(unsigned)g2; |
| } |
| |
| /** |
| Encrypts a block of text with Skipjack |
| @param pt The input plaintext (8 bytes) |
| @param ct The output ciphertext (8 bytes) |
| @param skey The key as scheduled |
| @return CRYPT_OK if successful |
| */ |
| #ifdef LTC_CLEAN_STACK |
| static int _skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) |
| #else |
| int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) |
| #endif |
| { |
| unsigned w1,w2,w3,w4,tmp,tmp1; |
| int x, kp; |
| |
| LTC_ARGCHK(pt != NULL); |
| LTC_ARGCHK(ct != NULL); |
| LTC_ARGCHK(skey != NULL); |
| |
| /* load block */ |
| w1 = ((unsigned)pt[0]<<8)|pt[1]; |
| w2 = ((unsigned)pt[2]<<8)|pt[3]; |
| w3 = ((unsigned)pt[4]<<8)|pt[5]; |
| w4 = ((unsigned)pt[6]<<8)|pt[7]; |
| |
| /* 8 rounds of RULE A */ |
| for (x = 1, kp = 0; x < 9; x++) { |
| RULE_A; |
| } |
| |
| /* 8 rounds of RULE B */ |
| for (; x < 17; x++) { |
| RULE_B; |
| } |
| |
| /* 8 rounds of RULE A */ |
| for (; x < 25; x++) { |
| RULE_A; |
| } |
| |
| /* 8 rounds of RULE B */ |
| for (; x < 33; x++) { |
| RULE_B; |
| } |
| |
| /* store block */ |
| ct[0] = (w1>>8)&255; ct[1] = w1&255; |
| ct[2] = (w2>>8)&255; ct[3] = w2&255; |
| ct[4] = (w3>>8)&255; ct[5] = w3&255; |
| ct[6] = (w4>>8)&255; ct[7] = w4&255; |
| |
| return CRYPT_OK; |
| } |
| |
| #ifdef LTC_CLEAN_STACK |
| int skipjack_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) |
| { |
| int err = _skipjack_ecb_encrypt(pt, ct, skey); |
| burn_stack(sizeof(unsigned) * 8 + sizeof(int) * 2); |
| return err; |
| } |
| #endif |
| |
| /** |
| Decrypts a block of text with Skipjack |
| @param ct The input ciphertext (8 bytes) |
| @param pt The output plaintext (8 bytes) |
| @param skey The key as scheduled |
| @return CRYPT_OK if successful |
| */ |
| #ifdef LTC_CLEAN_STACK |
| static int _skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) |
| #else |
| int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) |
| #endif |
| { |
| unsigned w1,w2,w3,w4,tmp; |
| int x, kp; |
| |
| LTC_ARGCHK(pt != NULL); |
| LTC_ARGCHK(ct != NULL); |
| LTC_ARGCHK(skey != NULL); |
| |
| /* load block */ |
| w1 = ((unsigned)ct[0]<<8)|ct[1]; |
| w2 = ((unsigned)ct[2]<<8)|ct[3]; |
| w3 = ((unsigned)ct[4]<<8)|ct[5]; |
| w4 = ((unsigned)ct[6]<<8)|ct[7]; |
| |
| /* 8 rounds of RULE B^-1 |
| |
| Note the value "kp = 8" comes from "kp = (32 * 4) mod 10" where 32*4 is 128 which mod 10 is 8 |
| */ |
| for (x = 32, kp = 8; x > 24; x--) { |
| RULE_B1; |
| } |
| |
| /* 8 rounds of RULE A^-1 */ |
| for (; x > 16; x--) { |
| RULE_A1; |
| } |
| |
| |
| /* 8 rounds of RULE B^-1 */ |
| for (; x > 8; x--) { |
| RULE_B1; |
| } |
| |
| /* 8 rounds of RULE A^-1 */ |
| for (; x > 0; x--) { |
| RULE_A1; |
| } |
| |
| /* store block */ |
| pt[0] = (w1>>8)&255; pt[1] = w1&255; |
| pt[2] = (w2>>8)&255; pt[3] = w2&255; |
| pt[4] = (w3>>8)&255; pt[5] = w3&255; |
| pt[6] = (w4>>8)&255; pt[7] = w4&255; |
| |
| return CRYPT_OK; |
| } |
| |
| #ifdef LTC_CLEAN_STACK |
| int skipjack_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) |
| { |
| int err = _skipjack_ecb_decrypt(ct, pt, skey); |
| burn_stack(sizeof(unsigned) * 7 + sizeof(int) * 2); |
| return err; |
| } |
| #endif |
| |
| /** |
| Performs a self-test of the Skipjack block cipher |
| @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled |
| */ |
| int skipjack_test(void) |
| { |
| #ifndef LTC_TEST |
| return CRYPT_NOP; |
| #else |
| static const struct { |
| unsigned char key[10], pt[8], ct[8]; |
| } tests[] = { |
| { |
| { 0x00, 0x99, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11 }, |
| { 0x33, 0x22, 0x11, 0x00, 0xdd, 0xcc, 0xbb, 0xaa }, |
| { 0x25, 0x87, 0xca, 0xe2, 0x7a, 0x12, 0xd3, 0x00 } |
| } |
| }; |
| unsigned char buf[2][8]; |
| int x, y, err; |
| symmetric_key key; |
| |
| for (x = 0; x < (int)(sizeof(tests) / sizeof(tests[0])); x++) { |
| /* setup key */ |
| if ((err = skipjack_setup(tests[x].key, 10, 0, &key)) != CRYPT_OK) { |
| return err; |
| } |
| |
| /* encrypt and decrypt */ |
| skipjack_ecb_encrypt(tests[x].pt, buf[0], &key); |
| skipjack_ecb_decrypt(buf[0], buf[1], &key); |
| |
| /* compare */ |
| if (XMEMCMP(buf[0], tests[x].ct, 8) != 0 || XMEMCMP(buf[1], tests[x].pt, 8) != 0) { |
| return CRYPT_FAIL_TESTVECTOR; |
| } |
| |
| /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ |
| for (y = 0; y < 8; y++) buf[0][y] = 0; |
| for (y = 0; y < 1000; y++) skipjack_ecb_encrypt(buf[0], buf[0], &key); |
| for (y = 0; y < 1000; y++) skipjack_ecb_decrypt(buf[0], buf[0], &key); |
| for (y = 0; y < 8; y++) if (buf[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; |
| } |
| |
| return CRYPT_OK; |
| #endif |
| } |
| |
| /** Terminate the context |
| @param skey The scheduled key |
| */ |
| void skipjack_done(symmetric_key *skey) |
| { |
| } |
| |
| /** |
| Gets suitable key size |
| @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. |
| @return CRYPT_OK if the input key size is acceptable. |
| */ |
| int skipjack_keysize(int *keysize) |
| { |
| LTC_ARGCHK(keysize != NULL); |
| if (*keysize < 10) { |
| return CRYPT_INVALID_KEYSIZE; |
| } else if (*keysize > 10) { |
| *keysize = 10; |
| } |
| return CRYPT_OK; |
| } |
| |
| #endif |
| |
| /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/skipjack.c,v $ */ |
| /* $Revision: 1.12 $ */ |
| /* $Date: 2006/11/08 23:01:06 $ */ |