| /* LibTomCrypt, modular cryptographic library -- Tom St Denis |
| * |
| * LibTomCrypt is a library that provides various cryptographic |
| * algorithms in a highly modular and flexible manner. |
| * |
| * The library is free for all purposes without any express |
| * guarantee it works. |
| * |
| * Tom St Denis, tomstdenis@gmail.com, http://libtomcrypt.com |
| */ |
| |
| /** |
| @file twofish.c |
| Implementation of Twofish by Tom St Denis |
| */ |
| #include "tomcrypt.h" |
| |
| #ifdef TWOFISH |
| |
| /* first TWOFISH_ALL_TABLES must ensure TWOFISH_TABLES is defined */ |
| #ifdef TWOFISH_ALL_TABLES |
| #ifndef TWOFISH_TABLES |
| #define TWOFISH_TABLES |
| #endif |
| #endif |
| |
| const struct ltc_cipher_descriptor twofish_desc = |
| { |
| "twofish", |
| 7, |
| 16, 32, 16, 16, |
| &twofish_setup, |
| &twofish_ecb_encrypt, |
| &twofish_ecb_decrypt, |
| &twofish_test, |
| &twofish_done, |
| &twofish_keysize, |
| NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL |
| }; |
| |
| /* the two polynomials */ |
| #define MDS_POLY 0x169 |
| #define RS_POLY 0x14D |
| |
| /* The 4x4 MDS Linear Transform */ |
| #if 0 |
| static const unsigned char MDS[4][4] = { |
| { 0x01, 0xEF, 0x5B, 0x5B }, |
| { 0x5B, 0xEF, 0xEF, 0x01 }, |
| { 0xEF, 0x5B, 0x01, 0xEF }, |
| { 0xEF, 0x01, 0xEF, 0x5B } |
| }; |
| #endif |
| |
| /* The 4x8 RS Linear Transform */ |
| static const unsigned char RS[4][8] = { |
| { 0x01, 0xA4, 0x55, 0x87, 0x5A, 0x58, 0xDB, 0x9E }, |
| { 0xA4, 0x56, 0x82, 0xF3, 0X1E, 0XC6, 0X68, 0XE5 }, |
| { 0X02, 0XA1, 0XFC, 0XC1, 0X47, 0XAE, 0X3D, 0X19 }, |
| { 0XA4, 0X55, 0X87, 0X5A, 0X58, 0XDB, 0X9E, 0X03 } |
| }; |
| |
| /* sbox usage orderings */ |
| static const unsigned char qord[4][5] = { |
| { 1, 1, 0, 0, 1 }, |
| { 0, 1, 1, 0, 0 }, |
| { 0, 0, 0, 1, 1 }, |
| { 1, 0, 1, 1, 0 } |
| }; |
| |
| #ifdef TWOFISH_TABLES |
| |
| #include "twofish_tab.c" |
| |
| #define sbox(i, x) ((ulong32)SBOX[i][(x)&255]) |
| |
| #else |
| |
| /* The Q-box tables */ |
| static const unsigned char qbox[2][4][16] = { |
| { |
| { 0x8, 0x1, 0x7, 0xD, 0x6, 0xF, 0x3, 0x2, 0x0, 0xB, 0x5, 0x9, 0xE, 0xC, 0xA, 0x4 }, |
| { 0xE, 0XC, 0XB, 0X8, 0X1, 0X2, 0X3, 0X5, 0XF, 0X4, 0XA, 0X6, 0X7, 0X0, 0X9, 0XD }, |
| { 0XB, 0XA, 0X5, 0XE, 0X6, 0XD, 0X9, 0X0, 0XC, 0X8, 0XF, 0X3, 0X2, 0X4, 0X7, 0X1 }, |
| { 0XD, 0X7, 0XF, 0X4, 0X1, 0X2, 0X6, 0XE, 0X9, 0XB, 0X3, 0X0, 0X8, 0X5, 0XC, 0XA } |
| }, |
| { |
| { 0X2, 0X8, 0XB, 0XD, 0XF, 0X7, 0X6, 0XE, 0X3, 0X1, 0X9, 0X4, 0X0, 0XA, 0XC, 0X5 }, |
| { 0X1, 0XE, 0X2, 0XB, 0X4, 0XC, 0X3, 0X7, 0X6, 0XD, 0XA, 0X5, 0XF, 0X9, 0X0, 0X8 }, |
| { 0X4, 0XC, 0X7, 0X5, 0X1, 0X6, 0X9, 0XA, 0X0, 0XE, 0XD, 0X8, 0X2, 0XB, 0X3, 0XF }, |
| { 0xB, 0X9, 0X5, 0X1, 0XC, 0X3, 0XD, 0XE, 0X6, 0X4, 0X7, 0XF, 0X2, 0X0, 0X8, 0XA } |
| } |
| }; |
| |
| /* computes S_i[x] */ |
| #ifdef LTC_CLEAN_STACK |
| static ulong32 _sbox(int i, ulong32 x) |
| #else |
| static ulong32 sbox(int i, ulong32 x) |
| #endif |
| { |
| unsigned char a0,b0,a1,b1,a2,b2,a3,b3,a4,b4,y; |
| |
| /* a0,b0 = [x/16], x mod 16 */ |
| a0 = (unsigned char)((x>>4)&15); |
| b0 = (unsigned char)((x)&15); |
| |
| /* a1 = a0 ^ b0 */ |
| a1 = a0 ^ b0; |
| |
| /* b1 = a0 ^ ROR(b0, 1) ^ 8a0 */ |
| b1 = (a0 ^ ((b0<<3)|(b0>>1)) ^ (a0<<3)) & 15; |
| |
| /* a2,b2 = t0[a1], t1[b1] */ |
| a2 = qbox[i][0][(int)a1]; |
| b2 = qbox[i][1][(int)b1]; |
| |
| /* a3 = a2 ^ b2 */ |
| a3 = a2 ^ b2; |
| |
| /* b3 = a2 ^ ROR(b2, 1) ^ 8a2 */ |
| b3 = (a2 ^ ((b2<<3)|(b2>>1)) ^ (a2<<3)) & 15; |
| |
| /* a4,b4 = t2[a3], t3[b3] */ |
| a4 = qbox[i][2][(int)a3]; |
| b4 = qbox[i][3][(int)b3]; |
| |
| /* y = 16b4 + a4 */ |
| y = (b4 << 4) + a4; |
| |
| /* return result */ |
| return (ulong32)y; |
| } |
| |
| #ifdef LTC_CLEAN_STACK |
| static ulong32 sbox(int i, ulong32 x) |
| { |
| ulong32 y; |
| y = _sbox(i, x); |
| burn_stack(sizeof(unsigned char) * 11); |
| return y; |
| } |
| #endif /* LTC_CLEAN_STACK */ |
| |
| #endif /* TWOFISH_TABLES */ |
| |
| /* computes ab mod p */ |
| static ulong32 gf_mult(ulong32 a, ulong32 b, ulong32 p) |
| { |
| ulong32 result, B[2], P[2]; |
| |
| P[1] = p; |
| B[1] = b; |
| result = P[0] = B[0] = 0; |
| |
| /* unrolled branchless GF multiplier */ |
| result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); |
| result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); |
| result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); |
| result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); |
| result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); |
| result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); |
| result ^= B[a&1]; a >>= 1; B[1] = P[B[1]>>7] ^ (B[1] << 1); |
| result ^= B[a&1]; |
| |
| return result; |
| } |
| |
| /* computes [y0 y1 y2 y3] = MDS . [x0] */ |
| #ifndef TWOFISH_TABLES |
| static ulong32 mds_column_mult(unsigned char in, int col) |
| { |
| ulong32 x01, x5B, xEF; |
| |
| x01 = in; |
| x5B = gf_mult(in, 0x5B, MDS_POLY); |
| xEF = gf_mult(in, 0xEF, MDS_POLY); |
| |
| switch (col) { |
| case 0: |
| return (x01 << 0 ) | |
| (x5B << 8 ) | |
| (xEF << 16) | |
| (xEF << 24); |
| case 1: |
| return (xEF << 0 ) | |
| (xEF << 8 ) | |
| (x5B << 16) | |
| (x01 << 24); |
| case 2: |
| return (x5B << 0 ) | |
| (xEF << 8 ) | |
| (x01 << 16) | |
| (xEF << 24); |
| case 3: |
| return (x5B << 0 ) | |
| (x01 << 8 ) | |
| (xEF << 16) | |
| (x5B << 24); |
| } |
| /* avoid warnings, we'd never get here normally but just to calm compiler warnings... */ |
| return 0; |
| } |
| |
| #else /* !TWOFISH_TABLES */ |
| |
| #define mds_column_mult(x, i) mds_tab[i][x] |
| |
| #endif /* TWOFISH_TABLES */ |
| |
| /* Computes [y0 y1 y2 y3] = MDS . [x0 x1 x2 x3] */ |
| static void mds_mult(const unsigned char *in, unsigned char *out) |
| { |
| int x; |
| ulong32 tmp; |
| for (tmp = x = 0; x < 4; x++) { |
| tmp ^= mds_column_mult(in[x], x); |
| } |
| STORE32L(tmp, out); |
| } |
| |
| #ifdef TWOFISH_ALL_TABLES |
| /* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */ |
| static void rs_mult(const unsigned char *in, unsigned char *out) |
| { |
| ulong32 tmp; |
| tmp = rs_tab0[in[0]] ^ rs_tab1[in[1]] ^ rs_tab2[in[2]] ^ rs_tab3[in[3]] ^ |
| rs_tab4[in[4]] ^ rs_tab5[in[5]] ^ rs_tab6[in[6]] ^ rs_tab7[in[7]]; |
| STORE32L(tmp, out); |
| } |
| |
| #else /* !TWOFISH_ALL_TABLES */ |
| |
| /* computes [y0 y1 y2 y3] = RS . [x0 x1 x2 x3 x4 x5 x6 x7] */ |
| static void rs_mult(const unsigned char *in, unsigned char *out) |
| { |
| int x, y; |
| for (x = 0; x < 4; x++) { |
| out[x] = 0; |
| for (y = 0; y < 8; y++) { |
| out[x] ^= gf_mult(in[y], RS[x][y], RS_POLY); |
| } |
| } |
| } |
| |
| #endif |
| |
| /* computes h(x) */ |
| static void h_func(const unsigned char *in, unsigned char *out, unsigned char *M, int k, int offset) |
| { |
| int x; |
| unsigned char y[4]; |
| for (x = 0; x < 4; x++) { |
| y[x] = in[x]; |
| } |
| switch (k) { |
| case 4: |
| y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (6 + offset) + 0]); |
| y[1] = (unsigned char)(sbox(0, (ulong32)y[1]) ^ M[4 * (6 + offset) + 1]); |
| y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (6 + offset) + 2]); |
| y[3] = (unsigned char)(sbox(1, (ulong32)y[3]) ^ M[4 * (6 + offset) + 3]); |
| case 3: |
| y[0] = (unsigned char)(sbox(1, (ulong32)y[0]) ^ M[4 * (4 + offset) + 0]); |
| y[1] = (unsigned char)(sbox(1, (ulong32)y[1]) ^ M[4 * (4 + offset) + 1]); |
| y[2] = (unsigned char)(sbox(0, (ulong32)y[2]) ^ M[4 * (4 + offset) + 2]); |
| y[3] = (unsigned char)(sbox(0, (ulong32)y[3]) ^ M[4 * (4 + offset) + 3]); |
| case 2: |
| y[0] = (unsigned char)(sbox(1, sbox(0, sbox(0, (ulong32)y[0]) ^ M[4 * (2 + offset) + 0]) ^ M[4 * (0 + offset) + 0])); |
| y[1] = (unsigned char)(sbox(0, sbox(0, sbox(1, (ulong32)y[1]) ^ M[4 * (2 + offset) + 1]) ^ M[4 * (0 + offset) + 1])); |
| y[2] = (unsigned char)(sbox(1, sbox(1, sbox(0, (ulong32)y[2]) ^ M[4 * (2 + offset) + 2]) ^ M[4 * (0 + offset) + 2])); |
| y[3] = (unsigned char)(sbox(0, sbox(1, sbox(1, (ulong32)y[3]) ^ M[4 * (2 + offset) + 3]) ^ M[4 * (0 + offset) + 3])); |
| } |
| mds_mult(y, out); |
| } |
| |
| #ifndef TWOFISH_SMALL |
| |
| /* for GCC we don't use pointer aliases */ |
| #if defined(__GNUC__) |
| #define S1 skey->twofish.S[0] |
| #define S2 skey->twofish.S[1] |
| #define S3 skey->twofish.S[2] |
| #define S4 skey->twofish.S[3] |
| #endif |
| |
| /* the G function */ |
| #define g_func(x, dum) (S1[byte(x,0)] ^ S2[byte(x,1)] ^ S3[byte(x,2)] ^ S4[byte(x,3)]) |
| #define g1_func(x, dum) (S2[byte(x,0)] ^ S3[byte(x,1)] ^ S4[byte(x,2)] ^ S1[byte(x,3)]) |
| |
| #else |
| |
| #ifdef LTC_CLEAN_STACK |
| static ulong32 _g_func(ulong32 x, symmetric_key *key) |
| #else |
| static ulong32 g_func(ulong32 x, symmetric_key *key) |
| #endif |
| { |
| unsigned char g, i, y, z; |
| ulong32 res; |
| |
| res = 0; |
| for (y = 0; y < 4; y++) { |
| z = key->twofish.start; |
| |
| /* do unkeyed substitution */ |
| g = sbox(qord[y][z++], (x >> (8*y)) & 255); |
| |
| /* first subkey */ |
| i = 0; |
| |
| /* do key mixing+sbox until z==5 */ |
| while (z != 5) { |
| g = g ^ key->twofish.S[4*i++ + y]; |
| g = sbox(qord[y][z++], g); |
| } |
| |
| /* multiply g by a column of the MDS */ |
| res ^= mds_column_mult(g, y); |
| } |
| return res; |
| } |
| |
| #define g1_func(x, key) g_func(ROLc(x, 8), key) |
| |
| #ifdef LTC_CLEAN_STACK |
| static ulong32 g_func(ulong32 x, symmetric_key *key) |
| { |
| ulong32 y; |
| y = _g_func(x, key); |
| burn_stack(sizeof(unsigned char) * 4 + sizeof(ulong32)); |
| return y; |
| } |
| #endif /* LTC_CLEAN_STACK */ |
| |
| #endif /* TWOFISH_SMALL */ |
| |
| /** |
| Initialize the Twofish block cipher |
| @param key The symmetric key you wish to pass |
| @param keylen The key length in bytes |
| @param num_rounds The number of rounds desired (0 for default) |
| @param skey The key in as scheduled by this function. |
| @return CRYPT_OK if successful |
| */ |
| #ifdef LTC_CLEAN_STACK |
| static int _twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) |
| #else |
| int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) |
| #endif |
| { |
| #ifndef TWOFISH_SMALL |
| unsigned char S[4*4], tmpx0, tmpx1; |
| #endif |
| int k, x, y; |
| unsigned char tmp[4], tmp2[4], M[8*4]; |
| ulong32 A, B; |
| |
| LTC_ARGCHK(key != NULL); |
| LTC_ARGCHK(skey != NULL); |
| |
| /* invalid arguments? */ |
| if (num_rounds != 16 && num_rounds != 0) { |
| return CRYPT_INVALID_ROUNDS; |
| } |
| |
| if (keylen != 16 && keylen != 24 && keylen != 32) { |
| return CRYPT_INVALID_KEYSIZE; |
| } |
| |
| /* k = keysize/64 [but since our keysize is in bytes...] */ |
| k = keylen / 8; |
| |
| /* copy the key into M */ |
| for (x = 0; x < keylen; x++) { |
| M[x] = key[x] & 255; |
| } |
| |
| /* create the S[..] words */ |
| #ifndef TWOFISH_SMALL |
| for (x = 0; x < k; x++) { |
| rs_mult(M+(x*8), S+(x*4)); |
| } |
| #else |
| for (x = 0; x < k; x++) { |
| rs_mult(M+(x*8), skey->twofish.S+(x*4)); |
| } |
| #endif |
| |
| /* make subkeys */ |
| for (x = 0; x < 20; x++) { |
| /* A = h(p * 2x, Me) */ |
| for (y = 0; y < 4; y++) { |
| tmp[y] = x+x; |
| } |
| h_func(tmp, tmp2, M, k, 0); |
| LOAD32L(A, tmp2); |
| |
| /* B = ROL(h(p * (2x + 1), Mo), 8) */ |
| for (y = 0; y < 4; y++) { |
| tmp[y] = (unsigned char)(x+x+1); |
| } |
| h_func(tmp, tmp2, M, k, 1); |
| LOAD32L(B, tmp2); |
| B = ROLc(B, 8); |
| |
| /* K[2i] = A + B */ |
| skey->twofish.K[x+x] = (A + B) & 0xFFFFFFFFUL; |
| |
| /* K[2i+1] = (A + 2B) <<< 9 */ |
| skey->twofish.K[x+x+1] = ROLc(B + B + A, 9); |
| } |
| |
| #ifndef TWOFISH_SMALL |
| /* make the sboxes (large ram variant) */ |
| if (k == 2) { |
| for (x = 0; x < 256; x++) { |
| tmpx0 = (unsigned char)sbox(0, x); |
| tmpx1 = (unsigned char)sbox(1, x); |
| skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, tmpx0 ^ S[0]) ^ S[4])),0); |
| skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, tmpx1 ^ S[1]) ^ S[5])),1); |
| skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, tmpx0 ^ S[2]) ^ S[6])),2); |
| skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, tmpx1 ^ S[3]) ^ S[7])),3); |
| } |
| } else if (k == 3) { |
| for (x = 0; x < 256; x++) { |
| tmpx0 = (unsigned char)sbox(0, x); |
| tmpx1 = (unsigned char)sbox(1, x); |
| skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, tmpx1 ^ S[0]) ^ S[4]) ^ S[8])),0); |
| skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, tmpx1 ^ S[1]) ^ S[5]) ^ S[9])),1); |
| skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10])),2); |
| skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, tmpx0 ^ S[3]) ^ S[7]) ^ S[11])),3); |
| } |
| } else { |
| for (x = 0; x < 256; x++) { |
| tmpx0 = (unsigned char)sbox(0, x); |
| tmpx1 = (unsigned char)sbox(1, x); |
| skey->twofish.S[0][x] = mds_column_mult(sbox(1, (sbox(0, sbox(0, sbox(1, tmpx1 ^ S[0]) ^ S[4]) ^ S[8]) ^ S[12])),0); |
| skey->twofish.S[1][x] = mds_column_mult(sbox(0, (sbox(0, sbox(1, sbox(1, tmpx0 ^ S[1]) ^ S[5]) ^ S[9]) ^ S[13])),1); |
| skey->twofish.S[2][x] = mds_column_mult(sbox(1, (sbox(1, sbox(0, sbox(0, tmpx0 ^ S[2]) ^ S[6]) ^ S[10]) ^ S[14])),2); |
| skey->twofish.S[3][x] = mds_column_mult(sbox(0, (sbox(1, sbox(1, sbox(0, tmpx1 ^ S[3]) ^ S[7]) ^ S[11]) ^ S[15])),3); |
| } |
| } |
| #else |
| /* where to start in the sbox layers */ |
| /* small ram variant */ |
| switch (k) { |
| case 4 : skey->twofish.start = 0; break; |
| case 3 : skey->twofish.start = 1; break; |
| default: skey->twofish.start = 2; break; |
| } |
| #endif |
| return CRYPT_OK; |
| } |
| |
| #ifdef LTC_CLEAN_STACK |
| int twofish_setup(const unsigned char *key, int keylen, int num_rounds, symmetric_key *skey) |
| { |
| int x; |
| x = _twofish_setup(key, keylen, num_rounds, skey); |
| burn_stack(sizeof(int) * 7 + sizeof(unsigned char) * 56 + sizeof(ulong32) * 2); |
| return x; |
| } |
| #endif |
| |
| /** |
| Encrypts a block of text with Twofish |
| @param pt The input plaintext (16 bytes) |
| @param ct The output ciphertext (16 bytes) |
| @param skey The key as scheduled |
| @return CRYPT_OK if successful |
| */ |
| #ifdef LTC_CLEAN_STACK |
| static int _twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) |
| #else |
| int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) |
| #endif |
| { |
| ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k; |
| int r; |
| #if !defined(TWOFISH_SMALL) && !defined(__GNUC__) |
| ulong32 *S1, *S2, *S3, *S4; |
| #endif |
| |
| LTC_ARGCHK(pt != NULL); |
| LTC_ARGCHK(ct != NULL); |
| LTC_ARGCHK(skey != NULL); |
| |
| #if !defined(TWOFISH_SMALL) && !defined(__GNUC__) |
| S1 = skey->twofish.S[0]; |
| S2 = skey->twofish.S[1]; |
| S3 = skey->twofish.S[2]; |
| S4 = skey->twofish.S[3]; |
| #endif |
| |
| LOAD32L(a,&pt[0]); LOAD32L(b,&pt[4]); |
| LOAD32L(c,&pt[8]); LOAD32L(d,&pt[12]); |
| a ^= skey->twofish.K[0]; |
| b ^= skey->twofish.K[1]; |
| c ^= skey->twofish.K[2]; |
| d ^= skey->twofish.K[3]; |
| |
| k = skey->twofish.K + 8; |
| for (r = 8; r != 0; --r) { |
| t2 = g1_func(b, skey); |
| t1 = g_func(a, skey) + t2; |
| c = RORc(c ^ (t1 + k[0]), 1); |
| d = ROLc(d, 1) ^ (t2 + t1 + k[1]); |
| |
| t2 = g1_func(d, skey); |
| t1 = g_func(c, skey) + t2; |
| a = RORc(a ^ (t1 + k[2]), 1); |
| b = ROLc(b, 1) ^ (t2 + t1 + k[3]); |
| k += 4; |
| } |
| |
| /* output with "undo last swap" */ |
| ta = c ^ skey->twofish.K[4]; |
| tb = d ^ skey->twofish.K[5]; |
| tc = a ^ skey->twofish.K[6]; |
| td = b ^ skey->twofish.K[7]; |
| |
| /* store output */ |
| STORE32L(ta,&ct[0]); STORE32L(tb,&ct[4]); |
| STORE32L(tc,&ct[8]); STORE32L(td,&ct[12]); |
| |
| return CRYPT_OK; |
| } |
| |
| #ifdef LTC_CLEAN_STACK |
| int twofish_ecb_encrypt(const unsigned char *pt, unsigned char *ct, symmetric_key *skey) |
| { |
| int err = _twofish_ecb_encrypt(pt, ct, skey); |
| burn_stack(sizeof(ulong32) * 10 + sizeof(int)); |
| return err; |
| } |
| #endif |
| |
| /** |
| Decrypts a block of text with Twofish |
| @param ct The input ciphertext (16 bytes) |
| @param pt The output plaintext (16 bytes) |
| @param skey The key as scheduled |
| @return CRYPT_OK if successful |
| */ |
| #ifdef LTC_CLEAN_STACK |
| static int _twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) |
| #else |
| int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) |
| #endif |
| { |
| ulong32 a,b,c,d,ta,tb,tc,td,t1,t2, *k; |
| int r; |
| #if !defined(TWOFISH_SMALL) && !defined(__GNUC__) |
| ulong32 *S1, *S2, *S3, *S4; |
| #endif |
| |
| LTC_ARGCHK(pt != NULL); |
| LTC_ARGCHK(ct != NULL); |
| LTC_ARGCHK(skey != NULL); |
| |
| #if !defined(TWOFISH_SMALL) && !defined(__GNUC__) |
| S1 = skey->twofish.S[0]; |
| S2 = skey->twofish.S[1]; |
| S3 = skey->twofish.S[2]; |
| S4 = skey->twofish.S[3]; |
| #endif |
| |
| /* load input */ |
| LOAD32L(ta,&ct[0]); LOAD32L(tb,&ct[4]); |
| LOAD32L(tc,&ct[8]); LOAD32L(td,&ct[12]); |
| |
| /* undo undo final swap */ |
| a = tc ^ skey->twofish.K[6]; |
| b = td ^ skey->twofish.K[7]; |
| c = ta ^ skey->twofish.K[4]; |
| d = tb ^ skey->twofish.K[5]; |
| |
| k = skey->twofish.K + 36; |
| for (r = 8; r != 0; --r) { |
| t2 = g1_func(d, skey); |
| t1 = g_func(c, skey) + t2; |
| a = ROLc(a, 1) ^ (t1 + k[2]); |
| b = RORc(b ^ (t2 + t1 + k[3]), 1); |
| |
| t2 = g1_func(b, skey); |
| t1 = g_func(a, skey) + t2; |
| c = ROLc(c, 1) ^ (t1 + k[0]); |
| d = RORc(d ^ (t2 + t1 + k[1]), 1); |
| k -= 4; |
| } |
| |
| /* pre-white */ |
| a ^= skey->twofish.K[0]; |
| b ^= skey->twofish.K[1]; |
| c ^= skey->twofish.K[2]; |
| d ^= skey->twofish.K[3]; |
| |
| /* store */ |
| STORE32L(a, &pt[0]); STORE32L(b, &pt[4]); |
| STORE32L(c, &pt[8]); STORE32L(d, &pt[12]); |
| return CRYPT_OK; |
| } |
| |
| #ifdef LTC_CLEAN_STACK |
| int twofish_ecb_decrypt(const unsigned char *ct, unsigned char *pt, symmetric_key *skey) |
| { |
| int err =_twofish_ecb_decrypt(ct, pt, skey); |
| burn_stack(sizeof(ulong32) * 10 + sizeof(int)); |
| return err; |
| } |
| #endif |
| |
| /** |
| Performs a self-test of the Twofish block cipher |
| @return CRYPT_OK if functional, CRYPT_NOP if self-test has been disabled |
| */ |
| int twofish_test(void) |
| { |
| #ifndef LTC_TEST |
| return CRYPT_NOP; |
| #else |
| static const struct { |
| int keylen; |
| unsigned char key[32], pt[16], ct[16]; |
| } tests[] = { |
| { 16, |
| { 0x9F, 0x58, 0x9F, 0x5C, 0xF6, 0x12, 0x2C, 0x32, |
| 0xB6, 0xBF, 0xEC, 0x2F, 0x2A, 0xE8, 0xC3, 0x5A }, |
| { 0xD4, 0x91, 0xDB, 0x16, 0xE7, 0xB1, 0xC3, 0x9E, |
| 0x86, 0xCB, 0x08, 0x6B, 0x78, 0x9F, 0x54, 0x19 }, |
| { 0x01, 0x9F, 0x98, 0x09, 0xDE, 0x17, 0x11, 0x85, |
| 0x8F, 0xAA, 0xC3, 0xA3, 0xBA, 0x20, 0xFB, 0xC3 } |
| }, { |
| 24, |
| { 0x88, 0xB2, 0xB2, 0x70, 0x6B, 0x10, 0x5E, 0x36, |
| 0xB4, 0x46, 0xBB, 0x6D, 0x73, 0x1A, 0x1E, 0x88, |
| 0xEF, 0xA7, 0x1F, 0x78, 0x89, 0x65, 0xBD, 0x44 }, |
| { 0x39, 0xDA, 0x69, 0xD6, 0xBA, 0x49, 0x97, 0xD5, |
| 0x85, 0xB6, 0xDC, 0x07, 0x3C, 0xA3, 0x41, 0xB2 }, |
| { 0x18, 0x2B, 0x02, 0xD8, 0x14, 0x97, 0xEA, 0x45, |
| 0xF9, 0xDA, 0xAC, 0xDC, 0x29, 0x19, 0x3A, 0x65 } |
| }, { |
| 32, |
| { 0xD4, 0x3B, 0xB7, 0x55, 0x6E, 0xA3, 0x2E, 0x46, |
| 0xF2, 0xA2, 0x82, 0xB7, 0xD4, 0x5B, 0x4E, 0x0D, |
| 0x57, 0xFF, 0x73, 0x9D, 0x4D, 0xC9, 0x2C, 0x1B, |
| 0xD7, 0xFC, 0x01, 0x70, 0x0C, 0xC8, 0x21, 0x6F }, |
| { 0x90, 0xAF, 0xE9, 0x1B, 0xB2, 0x88, 0x54, 0x4F, |
| 0x2C, 0x32, 0xDC, 0x23, 0x9B, 0x26, 0x35, 0xE6 }, |
| { 0x6C, 0xB4, 0x56, 0x1C, 0x40, 0xBF, 0x0A, 0x97, |
| 0x05, 0x93, 0x1C, 0xB6, 0xD4, 0x08, 0xE7, 0xFA } |
| } |
| }; |
| |
| |
| symmetric_key key; |
| unsigned char tmp[2][16]; |
| int err, i, y; |
| |
| for (i = 0; i < (int)(sizeof(tests)/sizeof(tests[0])); i++) { |
| if ((err = twofish_setup(tests[i].key, tests[i].keylen, 0, &key)) != CRYPT_OK) { |
| return err; |
| } |
| twofish_ecb_encrypt(tests[i].pt, tmp[0], &key); |
| twofish_ecb_decrypt(tmp[0], tmp[1], &key); |
| if (XMEMCMP(tmp[0], tests[i].ct, 16) != 0 || XMEMCMP(tmp[1], tests[i].pt, 16) != 0) { |
| #if 0 |
| printf("Twofish failed test %d, %d, %d\n", i, XMEMCMP(tmp[0], tests[i].ct, 16), XMEMCMP(tmp[1], tests[i].pt, 16)); |
| #endif |
| return CRYPT_FAIL_TESTVECTOR; |
| } |
| /* now see if we can encrypt all zero bytes 1000 times, decrypt and come back where we started */ |
| for (y = 0; y < 16; y++) tmp[0][y] = 0; |
| for (y = 0; y < 1000; y++) twofish_ecb_encrypt(tmp[0], tmp[0], &key); |
| for (y = 0; y < 1000; y++) twofish_ecb_decrypt(tmp[0], tmp[0], &key); |
| for (y = 0; y < 16; y++) if (tmp[0][y] != 0) return CRYPT_FAIL_TESTVECTOR; |
| } |
| return CRYPT_OK; |
| #endif |
| } |
| |
| /** Terminate the context |
| @param skey The scheduled key |
| */ |
| void twofish_done(symmetric_key *skey) |
| { |
| } |
| |
| /** |
| Gets suitable key size |
| @param keysize [in/out] The length of the recommended key (in bytes). This function will store the suitable size back in this variable. |
| @return CRYPT_OK if the input key size is acceptable. |
| */ |
| int twofish_keysize(int *keysize) |
| { |
| LTC_ARGCHK(keysize); |
| if (*keysize < 16) |
| return CRYPT_INVALID_KEYSIZE; |
| if (*keysize < 24) { |
| *keysize = 16; |
| return CRYPT_OK; |
| } else if (*keysize < 32) { |
| *keysize = 24; |
| return CRYPT_OK; |
| } else { |
| *keysize = 32; |
| return CRYPT_OK; |
| } |
| } |
| |
| #endif |
| |
| |
| |
| |
| /* $Source: /cvs/libtom/libtomcrypt/src/ciphers/twofish/twofish.c,v $ */ |
| /* $Revision: 1.14 $ */ |
| /* $Date: 2006/12/04 21:34:03 $ */ |