blob: 7cfab41401fc7e062dd0735b7b4299ef70a11dbc [file] [log] [blame]
/*
* Copyright (c) 2010 The WebM project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "vpx_ports/config.h"
#include "recon.h"
#include "subpixel.h"
#include "blockd.h"
#include "reconinter.h"
#if CONFIG_RUNTIME_CPU_DETECT
#include "onyxc_int.h"
#endif
/* use this define on systems where unaligned int reads and writes are
* not allowed, i.e. ARM architectures
*/
/*#define MUST_BE_ALIGNED*/
static const int bbb[4] = {0, 2, 8, 10};
void vp8_copy_mem16x16_c(
unsigned char *src,
int src_stride,
unsigned char *dst,
int dst_stride)
{
int r;
for (r = 0; r < 16; r++)
{
#ifdef MUST_BE_ALIGNED
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
dst[8] = src[8];
dst[9] = src[9];
dst[10] = src[10];
dst[11] = src[11];
dst[12] = src[12];
dst[13] = src[13];
dst[14] = src[14];
dst[15] = src[15];
#else
((int *)dst)[0] = ((int *)src)[0] ;
((int *)dst)[1] = ((int *)src)[1] ;
((int *)dst)[2] = ((int *)src)[2] ;
((int *)dst)[3] = ((int *)src)[3] ;
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp8_copy_mem8x8_c(
unsigned char *src,
int src_stride,
unsigned char *dst,
int dst_stride)
{
int r;
for (r = 0; r < 8; r++)
{
#ifdef MUST_BE_ALIGNED
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
#else
((int *)dst)[0] = ((int *)src)[0] ;
((int *)dst)[1] = ((int *)src)[1] ;
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp8_copy_mem8x4_c(
unsigned char *src,
int src_stride,
unsigned char *dst,
int dst_stride)
{
int r;
for (r = 0; r < 4; r++)
{
#ifdef MUST_BE_ALIGNED
dst[0] = src[0];
dst[1] = src[1];
dst[2] = src[2];
dst[3] = src[3];
dst[4] = src[4];
dst[5] = src[5];
dst[6] = src[6];
dst[7] = src[7];
#else
((int *)dst)[0] = ((int *)src)[0] ;
((int *)dst)[1] = ((int *)src)[1] ;
#endif
src += src_stride;
dst += dst_stride;
}
}
void vp8_build_inter_predictors_b(BLOCKD *d, int pitch, vp8_subpix_fn_t sppf)
{
int r;
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d->predictor;
ptr_base = *(d->base_pre);
if (d->bmi.mv.as_mv.row & 7 || d->bmi.mv.as_mv.col & 7)
{
ptr = ptr_base + d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
sppf(ptr, d->pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, pred_ptr, pitch);
}
else
{
ptr_base += d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
ptr = ptr_base;
for (r = 0; r < 4; r++)
{
#ifdef MUST_BE_ALIGNED
pred_ptr[0] = ptr[0];
pred_ptr[1] = ptr[1];
pred_ptr[2] = ptr[2];
pred_ptr[3] = ptr[3];
#else
*(int *)pred_ptr = *(int *)ptr ;
#endif
pred_ptr += pitch;
ptr += d->pre_stride;
}
}
}
static void build_inter_predictors4b(MACROBLOCKD *x, BLOCKD *d, int pitch)
{
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d->predictor;
ptr_base = *(d->base_pre);
ptr = ptr_base + d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
if (d->bmi.mv.as_mv.row & 7 || d->bmi.mv.as_mv.col & 7)
{
x->subpixel_predict8x8(ptr, d->pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, pred_ptr, pitch);
}
else
{
RECON_INVOKE(&x->rtcd->recon, copy8x8)(ptr, d->pre_stride, pred_ptr, pitch);
}
}
static void build_inter_predictors2b(MACROBLOCKD *x, BLOCKD *d, int pitch)
{
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d->predictor;
ptr_base = *(d->base_pre);
ptr = ptr_base + d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
if (d->bmi.mv.as_mv.row & 7 || d->bmi.mv.as_mv.col & 7)
{
x->subpixel_predict8x4(ptr, d->pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, pred_ptr, pitch);
}
else
{
RECON_INVOKE(&x->rtcd->recon, copy8x4)(ptr, d->pre_stride, pred_ptr, pitch);
}
}
void vp8_build_inter_predictors_mbuv(MACROBLOCKD *x)
{
int i;
if (x->mode_info_context->mbmi.ref_frame != INTRA_FRAME &&
x->mode_info_context->mbmi.mode != SPLITMV)
{
unsigned char *uptr, *vptr;
unsigned char *upred_ptr = &x->predictor[256];
unsigned char *vpred_ptr = &x->predictor[320];
int mv_row = x->block[16].bmi.mv.as_mv.row;
int mv_col = x->block[16].bmi.mv.as_mv.col;
int offset;
int pre_stride = x->block[16].pre_stride;
offset = (mv_row >> 3) * pre_stride + (mv_col >> 3);
uptr = x->pre.u_buffer + offset;
vptr = x->pre.v_buffer + offset;
if ((mv_row | mv_col) & 7)
{
x->subpixel_predict8x8(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, 8);
x->subpixel_predict8x8(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, 8);
}
else
{
RECON_INVOKE(&x->rtcd->recon, copy8x8)(uptr, pre_stride, upred_ptr, 8);
RECON_INVOKE(&x->rtcd->recon, copy8x8)(vptr, pre_stride, vpred_ptr, 8);
}
}
else
{
for (i = 16; i < 24; i += 2)
{
BLOCKD *d0 = &x->block[i];
BLOCKD *d1 = &x->block[i+1];
if (d0->bmi.mv.as_int == d1->bmi.mv.as_int)
build_inter_predictors2b(x, d0, 8);
else
{
vp8_build_inter_predictors_b(d0, 8, x->subpixel_predict);
vp8_build_inter_predictors_b(d1, 8, x->subpixel_predict);
}
}
}
}
/*encoder only*/
void vp8_build_inter_predictors_mby(MACROBLOCKD *x)
{
if (x->mode_info_context->mbmi.ref_frame != INTRA_FRAME &&
x->mode_info_context->mbmi.mode != SPLITMV)
{
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = x->predictor;
int mv_row = x->mode_info_context->mbmi.mv.as_mv.row;
int mv_col = x->mode_info_context->mbmi.mv.as_mv.col;
int pre_stride = x->block[0].pre_stride;
ptr_base = x->pre.y_buffer;
ptr = ptr_base + (mv_row >> 3) * pre_stride + (mv_col >> 3);
if ((mv_row | mv_col) & 7)
{
x->subpixel_predict16x16(ptr, pre_stride, mv_col & 7, mv_row & 7, pred_ptr, 16);
}
else
{
RECON_INVOKE(&x->rtcd->recon, copy16x16)(ptr, pre_stride, pred_ptr, 16);
}
}
else
{
int i;
if (x->mode_info_context->mbmi.partitioning < 3)
{
for (i = 0; i < 4; i++)
{
BLOCKD *d = &x->block[bbb[i]];
build_inter_predictors4b(x, d, 16);
}
}
else
{
for (i = 0; i < 16; i += 2)
{
BLOCKD *d0 = &x->block[i];
BLOCKD *d1 = &x->block[i+1];
if (d0->bmi.mv.as_int == d1->bmi.mv.as_int)
build_inter_predictors2b(x, d0, 16);
else
{
vp8_build_inter_predictors_b(d0, 16, x->subpixel_predict);
vp8_build_inter_predictors_b(d1, 16, x->subpixel_predict);
}
}
}
}
}
void vp8_build_inter_predictors_mb(MACROBLOCKD *x)
{
if (x->mode_info_context->mbmi.ref_frame != INTRA_FRAME &&
x->mode_info_context->mbmi.mode != SPLITMV)
{
int offset;
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *uptr, *vptr;
unsigned char *pred_ptr = x->predictor;
unsigned char *upred_ptr = &x->predictor[256];
unsigned char *vpred_ptr = &x->predictor[320];
int mv_row = x->mode_info_context->mbmi.mv.as_mv.row;
int mv_col = x->mode_info_context->mbmi.mv.as_mv.col;
int pre_stride = x->block[0].pre_stride;
ptr_base = x->pre.y_buffer;
ptr = ptr_base + (mv_row >> 3) * pre_stride + (mv_col >> 3);
if ((mv_row | mv_col) & 7)
{
x->subpixel_predict16x16(ptr, pre_stride, mv_col & 7, mv_row & 7, pred_ptr, 16);
}
else
{
RECON_INVOKE(&x->rtcd->recon, copy16x16)(ptr, pre_stride, pred_ptr, 16);
}
mv_row = x->block[16].bmi.mv.as_mv.row;
mv_col = x->block[16].bmi.mv.as_mv.col;
pre_stride >>= 1;
offset = (mv_row >> 3) * pre_stride + (mv_col >> 3);
uptr = x->pre.u_buffer + offset;
vptr = x->pre.v_buffer + offset;
if ((mv_row | mv_col) & 7)
{
x->subpixel_predict8x8(uptr, pre_stride, mv_col & 7, mv_row & 7, upred_ptr, 8);
x->subpixel_predict8x8(vptr, pre_stride, mv_col & 7, mv_row & 7, vpred_ptr, 8);
}
else
{
RECON_INVOKE(&x->rtcd->recon, copy8x8)(uptr, pre_stride, upred_ptr, 8);
RECON_INVOKE(&x->rtcd->recon, copy8x8)(vptr, pre_stride, vpred_ptr, 8);
}
}
else
{
int i;
if (x->mode_info_context->mbmi.partitioning < 3)
{
for (i = 0; i < 4; i++)
{
BLOCKD *d = &x->block[bbb[i]];
build_inter_predictors4b(x, d, 16);
}
}
else
{
for (i = 0; i < 16; i += 2)
{
BLOCKD *d0 = &x->block[i];
BLOCKD *d1 = &x->block[i+1];
if (d0->bmi.mv.as_int == d1->bmi.mv.as_int)
build_inter_predictors2b(x, d0, 16);
else
{
vp8_build_inter_predictors_b(d0, 16, x->subpixel_predict);
vp8_build_inter_predictors_b(d1, 16, x->subpixel_predict);
}
}
}
for (i = 16; i < 24; i += 2)
{
BLOCKD *d0 = &x->block[i];
BLOCKD *d1 = &x->block[i+1];
if (d0->bmi.mv.as_int == d1->bmi.mv.as_int)
build_inter_predictors2b(x, d0, 8);
else
{
vp8_build_inter_predictors_b(d0, 8, x->subpixel_predict);
vp8_build_inter_predictors_b(d1, 8, x->subpixel_predict);
}
}
}
}
void vp8_build_uvmvs(MACROBLOCKD *x, int fullpixel)
{
int i, j;
if (x->mode_info_context->mbmi.mode == SPLITMV)
{
for (i = 0; i < 2; i++)
{
for (j = 0; j < 2; j++)
{
int yoffset = i * 8 + j * 2;
int uoffset = 16 + i * 2 + j;
int voffset = 20 + i * 2 + j;
int temp;
temp = x->block[yoffset ].bmi.mv.as_mv.row
+ x->block[yoffset+1].bmi.mv.as_mv.row
+ x->block[yoffset+4].bmi.mv.as_mv.row
+ x->block[yoffset+5].bmi.mv.as_mv.row;
if (temp < 0) temp -= 4;
else temp += 4;
x->block[uoffset].bmi.mv.as_mv.row = temp / 8;
if (fullpixel)
x->block[uoffset].bmi.mv.as_mv.row = (temp / 8) & 0xfffffff8;
temp = x->block[yoffset ].bmi.mv.as_mv.col
+ x->block[yoffset+1].bmi.mv.as_mv.col
+ x->block[yoffset+4].bmi.mv.as_mv.col
+ x->block[yoffset+5].bmi.mv.as_mv.col;
if (temp < 0) temp -= 4;
else temp += 4;
x->block[uoffset].bmi.mv.as_mv.col = temp / 8;
if (fullpixel)
x->block[uoffset].bmi.mv.as_mv.col = (temp / 8) & 0xfffffff8;
x->block[voffset].bmi.mv.as_mv.row = x->block[uoffset].bmi.mv.as_mv.row ;
x->block[voffset].bmi.mv.as_mv.col = x->block[uoffset].bmi.mv.as_mv.col ;
}
}
}
else
{
int mvrow = x->mode_info_context->mbmi.mv.as_mv.row;
int mvcol = x->mode_info_context->mbmi.mv.as_mv.col;
if (mvrow < 0)
mvrow -= 1;
else
mvrow += 1;
if (mvcol < 0)
mvcol -= 1;
else
mvcol += 1;
mvrow /= 2;
mvcol /= 2;
for (i = 0; i < 8; i++)
{
x->block[ 16 + i].bmi.mv.as_mv.row = mvrow;
x->block[ 16 + i].bmi.mv.as_mv.col = mvcol;
if (fullpixel)
{
x->block[ 16 + i].bmi.mv.as_mv.row = mvrow & 0xfffffff8;
x->block[ 16 + i].bmi.mv.as_mv.col = mvcol & 0xfffffff8;
}
}
}
}
/* The following functions are wriiten for skip_recon_mb() to call. Since there is no recon in this
* situation, we can write the result directly to dst buffer instead of writing it to predictor
* buffer and then copying it to dst buffer.
*/
static void vp8_build_inter_predictors_b_s(BLOCKD *d, unsigned char *dst_ptr, vp8_subpix_fn_t sppf)
{
int r;
unsigned char *ptr_base;
unsigned char *ptr;
/*unsigned char *pred_ptr = d->predictor;*/
int dst_stride = d->dst_stride;
int pre_stride = d->pre_stride;
ptr_base = *(d->base_pre);
if (d->bmi.mv.as_mv.row & 7 || d->bmi.mv.as_mv.col & 7)
{
ptr = ptr_base + d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
sppf(ptr, pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, dst_ptr, dst_stride);
}
else
{
ptr_base += d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
ptr = ptr_base;
for (r = 0; r < 4; r++)
{
#ifdef MUST_BE_ALIGNED
dst_ptr[0] = ptr[0];
dst_ptr[1] = ptr[1];
dst_ptr[2] = ptr[2];
dst_ptr[3] = ptr[3];
#else
*(int *)dst_ptr = *(int *)ptr ;
#endif
dst_ptr += dst_stride;
ptr += pre_stride;
}
}
}
void vp8_build_inter_predictors_mb_s(MACROBLOCKD *x)
{
/*unsigned char *pred_ptr = x->block[0].predictor;
unsigned char *dst_ptr = *(x->block[0].base_dst) + x->block[0].dst;*/
unsigned char *pred_ptr = x->predictor;
unsigned char *dst_ptr = x->dst.y_buffer;
if (x->mode_info_context->mbmi.mode != SPLITMV)
{
int offset;
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *uptr, *vptr;
/*unsigned char *pred_ptr = x->predictor;
unsigned char *upred_ptr = &x->predictor[256];
unsigned char *vpred_ptr = &x->predictor[320];*/
unsigned char *udst_ptr = x->dst.u_buffer;
unsigned char *vdst_ptr = x->dst.v_buffer;
int mv_row = x->mode_info_context->mbmi.mv.as_mv.row;
int mv_col = x->mode_info_context->mbmi.mv.as_mv.col;
int pre_stride = x->dst.y_stride; /*x->block[0].pre_stride;*/
ptr_base = x->pre.y_buffer;
ptr = ptr_base + (mv_row >> 3) * pre_stride + (mv_col >> 3);
if ((mv_row | mv_col) & 7)
{
x->subpixel_predict16x16(ptr, pre_stride, mv_col & 7, mv_row & 7, dst_ptr, x->dst.y_stride); /*x->block[0].dst_stride);*/
}
else
{
RECON_INVOKE(&x->rtcd->recon, copy16x16)(ptr, pre_stride, dst_ptr, x->dst.y_stride); /*x->block[0].dst_stride);*/
}
mv_row = x->block[16].bmi.mv.as_mv.row;
mv_col = x->block[16].bmi.mv.as_mv.col;
pre_stride >>= 1;
offset = (mv_row >> 3) * pre_stride + (mv_col >> 3);
uptr = x->pre.u_buffer + offset;
vptr = x->pre.v_buffer + offset;
if ((mv_row | mv_col) & 7)
{
x->subpixel_predict8x8(uptr, pre_stride, mv_col & 7, mv_row & 7, udst_ptr, x->dst.uv_stride);
x->subpixel_predict8x8(vptr, pre_stride, mv_col & 7, mv_row & 7, vdst_ptr, x->dst.uv_stride);
}
else
{
RECON_INVOKE(&x->rtcd->recon, copy8x8)(uptr, pre_stride, udst_ptr, x->dst.uv_stride);
RECON_INVOKE(&x->rtcd->recon, copy8x8)(vptr, pre_stride, vdst_ptr, x->dst.uv_stride);
}
}
else
{
/* note: this whole ELSE part is not executed at all. So, no way to test the correctness of my modification. Later,
* if sth is wrong, go back to what it is in build_inter_predictors_mb.
*/
int i;
if (x->mode_info_context->mbmi.partitioning < 3)
{
for (i = 0; i < 4; i++)
{
BLOCKD *d = &x->block[bbb[i]];
/*build_inter_predictors4b(x, d, 16);*/
{
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d->predictor;
ptr_base = *(d->base_pre);
ptr = ptr_base + d->pre + (d->bmi.mv.as_mv.row >> 3) * d->pre_stride + (d->bmi.mv.as_mv.col >> 3);
if (d->bmi.mv.as_mv.row & 7 || d->bmi.mv.as_mv.col & 7)
{
x->subpixel_predict8x8(ptr, d->pre_stride, d->bmi.mv.as_mv.col & 7, d->bmi.mv.as_mv.row & 7, dst_ptr, x->dst.y_stride); /*x->block[0].dst_stride);*/
}
else
{
RECON_INVOKE(&x->rtcd->recon, copy8x8)(ptr, d->pre_stride, dst_ptr, x->dst.y_stride); /*x->block[0].dst_stride);*/
}
}
}
}
else
{
for (i = 0; i < 16; i += 2)
{
BLOCKD *d0 = &x->block[i];
BLOCKD *d1 = &x->block[i+1];
if (d0->bmi.mv.as_int == d1->bmi.mv.as_int)
{
/*build_inter_predictors2b(x, d0, 16);*/
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d0->predictor;
ptr_base = *(d0->base_pre);
ptr = ptr_base + d0->pre + (d0->bmi.mv.as_mv.row >> 3) * d0->pre_stride + (d0->bmi.mv.as_mv.col >> 3);
if (d0->bmi.mv.as_mv.row & 7 || d0->bmi.mv.as_mv.col & 7)
{
x->subpixel_predict8x4(ptr, d0->pre_stride, d0->bmi.mv.as_mv.col & 7, d0->bmi.mv.as_mv.row & 7, dst_ptr, x->dst.y_stride);
}
else
{
RECON_INVOKE(&x->rtcd->recon, copy8x4)(ptr, d0->pre_stride, dst_ptr, x->dst.y_stride);
}
}
else
{
vp8_build_inter_predictors_b_s(d0, dst_ptr, x->subpixel_predict);
vp8_build_inter_predictors_b_s(d1, dst_ptr, x->subpixel_predict);
}
}
}
for (i = 16; i < 24; i += 2)
{
BLOCKD *d0 = &x->block[i];
BLOCKD *d1 = &x->block[i+1];
if (d0->bmi.mv.as_int == d1->bmi.mv.as_int)
{
/*build_inter_predictors2b(x, d0, 8);*/
unsigned char *ptr_base;
unsigned char *ptr;
unsigned char *pred_ptr = d0->predictor;
ptr_base = *(d0->base_pre);
ptr = ptr_base + d0->pre + (d0->bmi.mv.as_mv.row >> 3) * d0->pre_stride + (d0->bmi.mv.as_mv.col >> 3);
if (d0->bmi.mv.as_mv.row & 7 || d0->bmi.mv.as_mv.col & 7)
{
x->subpixel_predict8x4(ptr, d0->pre_stride,
d0->bmi.mv.as_mv.col & 7,
d0->bmi.mv.as_mv.row & 7,
dst_ptr, x->dst.uv_stride);
}
else
{
RECON_INVOKE(&x->rtcd->recon, copy8x4)(ptr,
d0->pre_stride, dst_ptr, x->dst.uv_stride);
}
}
else
{
vp8_build_inter_predictors_b_s(d0, dst_ptr, x->subpixel_predict);
vp8_build_inter_predictors_b_s(d1, dst_ptr, x->subpixel_predict);
}
}
}
}