| //===-- HexagonHardwareLoops.cpp - Identify and generate hardware loops ---===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass identifies loops where we can generate the Hexagon hardware |
| // loop instruction. The hardware loop can perform loop branches with a |
| // zero-cycle overhead. |
| // |
| // The pattern that defines the induction variable can changed depending on |
| // prior optimizations. For example, the IndVarSimplify phase run by 'opt' |
| // normalizes induction variables, and the Loop Strength Reduction pass |
| // run by 'llc' may also make changes to the induction variable. |
| // The pattern detected by this phase is due to running Strength Reduction. |
| // |
| // Criteria for hardware loops: |
| // - Countable loops (w/ ind. var for a trip count) |
| // - Assumes loops are normalized by IndVarSimplify |
| // - Try inner-most loops first |
| // - No nested hardware loops. |
| // - No function calls in loops. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "hwloops" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineFunctionPass.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/PassSupport.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "Hexagon.h" |
| #include "HexagonTargetMachine.h" |
| |
| #include <algorithm> |
| #include <vector> |
| |
| using namespace llvm; |
| |
| #ifndef NDEBUG |
| static cl::opt<int> HWLoopLimit("max-hwloop", cl::Hidden, cl::init(-1)); |
| #endif |
| |
| STATISTIC(NumHWLoops, "Number of loops converted to hardware loops"); |
| |
| namespace llvm { |
| void initializeHexagonHardwareLoopsPass(PassRegistry&); |
| } |
| |
| namespace { |
| class CountValue; |
| struct HexagonHardwareLoops : public MachineFunctionPass { |
| MachineLoopInfo *MLI; |
| MachineRegisterInfo *MRI; |
| MachineDominatorTree *MDT; |
| const HexagonTargetMachine *TM; |
| const HexagonInstrInfo *TII; |
| const HexagonRegisterInfo *TRI; |
| #ifndef NDEBUG |
| static int Counter; |
| #endif |
| |
| public: |
| static char ID; |
| |
| HexagonHardwareLoops() : MachineFunctionPass(ID) { |
| initializeHexagonHardwareLoopsPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| virtual bool runOnMachineFunction(MachineFunction &MF); |
| |
| const char *getPassName() const { return "Hexagon Hardware Loops"; } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<MachineDominatorTree>(); |
| AU.addRequired<MachineLoopInfo>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| private: |
| /// Kinds of comparisons in the compare instructions. |
| struct Comparison { |
| enum Kind { |
| EQ = 0x01, |
| NE = 0x02, |
| L = 0x04, // Less-than property. |
| G = 0x08, // Greater-than property. |
| U = 0x40, // Unsigned property. |
| LTs = L, |
| LEs = L | EQ, |
| GTs = G, |
| GEs = G | EQ, |
| LTu = L | U, |
| LEu = L | EQ | U, |
| GTu = G | U, |
| GEu = G | EQ | U |
| }; |
| |
| static Kind getSwappedComparison(Kind Cmp) { |
| assert ((!((Cmp & L) && (Cmp & G))) && "Malformed comparison operator"); |
| if ((Cmp & L) || (Cmp & G)) |
| return (Kind)(Cmp ^ (L|G)); |
| return Cmp; |
| } |
| }; |
| |
| /// \brief Find the register that contains the loop controlling |
| /// induction variable. |
| /// If successful, it will return true and set the \p Reg, \p IVBump |
| /// and \p IVOp arguments. Otherwise it will return false. |
| /// The returned induction register is the register R that follows the |
| /// following induction pattern: |
| /// loop: |
| /// R = phi ..., [ R.next, LatchBlock ] |
| /// R.next = R + #bump |
| /// if (R.next < #N) goto loop |
| /// IVBump is the immediate value added to R, and IVOp is the instruction |
| /// "R.next = R + #bump". |
| bool findInductionRegister(MachineLoop *L, unsigned &Reg, |
| int64_t &IVBump, MachineInstr *&IVOp) const; |
| |
| /// \brief Analyze the statements in a loop to determine if the loop |
| /// has a computable trip count and, if so, return a value that represents |
| /// the trip count expression. |
| CountValue *getLoopTripCount(MachineLoop *L, |
| SmallVector<MachineInstr*, 2> &OldInsts); |
| |
| /// \brief Return the expression that represents the number of times |
| /// a loop iterates. The function takes the operands that represent the |
| /// loop start value, loop end value, and induction value. Based upon |
| /// these operands, the function attempts to compute the trip count. |
| /// If the trip count is not directly available (as an immediate value, |
| /// or a register), the function will attempt to insert computation of it |
| /// to the loop's preheader. |
| CountValue *computeCount(MachineLoop *Loop, |
| const MachineOperand *Start, |
| const MachineOperand *End, |
| unsigned IVReg, |
| int64_t IVBump, |
| Comparison::Kind Cmp) const; |
| |
| /// \brief Return true if the instruction is not valid within a hardware |
| /// loop. |
| bool isInvalidLoopOperation(const MachineInstr *MI) const; |
| |
| /// \brief Return true if the loop contains an instruction that inhibits |
| /// using the hardware loop. |
| bool containsInvalidInstruction(MachineLoop *L) const; |
| |
| /// \brief Given a loop, check if we can convert it to a hardware loop. |
| /// If so, then perform the conversion and return true. |
| bool convertToHardwareLoop(MachineLoop *L); |
| |
| /// \brief Return true if the instruction is now dead. |
| bool isDead(const MachineInstr *MI, |
| SmallVector<MachineInstr*, 1> &DeadPhis) const; |
| |
| /// \brief Remove the instruction if it is now dead. |
| void removeIfDead(MachineInstr *MI); |
| |
| /// \brief Make sure that the "bump" instruction executes before the |
| /// compare. We need that for the IV fixup, so that the compare |
| /// instruction would not use a bumped value that has not yet been |
| /// defined. If the instructions are out of order, try to reorder them. |
| bool orderBumpCompare(MachineInstr *BumpI, MachineInstr *CmpI); |
| |
| /// \brief Get the instruction that loads an immediate value into \p R, |
| /// or 0 if such an instruction does not exist. |
| MachineInstr *defWithImmediate(unsigned R); |
| |
| /// \brief Get the immediate value referenced to by \p MO, either for |
| /// immediate operands, or for register operands, where the register |
| /// was defined with an immediate value. |
| int64_t getImmediate(MachineOperand &MO); |
| |
| /// \brief Reset the given machine operand to now refer to a new immediate |
| /// value. Assumes that the operand was already referencing an immediate |
| /// value, either directly, or via a register. |
| void setImmediate(MachineOperand &MO, int64_t Val); |
| |
| /// \brief Fix the data flow of the induction varible. |
| /// The desired flow is: phi ---> bump -+-> comparison-in-latch. |
| /// | |
| /// +-> back to phi |
| /// where "bump" is the increment of the induction variable: |
| /// iv = iv + #const. |
| /// Due to some prior code transformations, the actual flow may look |
| /// like this: |
| /// phi -+-> bump ---> back to phi |
| /// | |
| /// +-> comparison-in-latch (against upper_bound-bump), |
| /// i.e. the comparison that controls the loop execution may be using |
| /// the value of the induction variable from before the increment. |
| /// |
| /// Return true if the loop's flow is the desired one (i.e. it's |
| /// either been fixed, or no fixing was necessary). |
| /// Otherwise, return false. This can happen if the induction variable |
| /// couldn't be identified, or if the value in the latch's comparison |
| /// cannot be adjusted to reflect the post-bump value. |
| bool fixupInductionVariable(MachineLoop *L); |
| |
| /// \brief Given a loop, if it does not have a preheader, create one. |
| /// Return the block that is the preheader. |
| MachineBasicBlock *createPreheaderForLoop(MachineLoop *L); |
| }; |
| |
| char HexagonHardwareLoops::ID = 0; |
| #ifndef NDEBUG |
| int HexagonHardwareLoops::Counter = 0; |
| #endif |
| |
| /// \brief Abstraction for a trip count of a loop. A smaller vesrsion |
| /// of the MachineOperand class without the concerns of changing the |
| /// operand representation. |
| class CountValue { |
| public: |
| enum CountValueType { |
| CV_Register, |
| CV_Immediate |
| }; |
| private: |
| CountValueType Kind; |
| union Values { |
| struct { |
| unsigned Reg; |
| unsigned Sub; |
| } R; |
| unsigned ImmVal; |
| } Contents; |
| |
| public: |
| explicit CountValue(CountValueType t, unsigned v, unsigned u = 0) { |
| Kind = t; |
| if (Kind == CV_Register) { |
| Contents.R.Reg = v; |
| Contents.R.Sub = u; |
| } else { |
| Contents.ImmVal = v; |
| } |
| } |
| bool isReg() const { return Kind == CV_Register; } |
| bool isImm() const { return Kind == CV_Immediate; } |
| |
| unsigned getReg() const { |
| assert(isReg() && "Wrong CountValue accessor"); |
| return Contents.R.Reg; |
| } |
| unsigned getSubReg() const { |
| assert(isReg() && "Wrong CountValue accessor"); |
| return Contents.R.Sub; |
| } |
| unsigned getImm() const { |
| assert(isImm() && "Wrong CountValue accessor"); |
| return Contents.ImmVal; |
| } |
| |
| void print(raw_ostream &OS, const TargetMachine *TM = 0) const { |
| const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0; |
| if (isReg()) { OS << PrintReg(Contents.R.Reg, TRI, Contents.R.Sub); } |
| if (isImm()) { OS << Contents.ImmVal; } |
| } |
| }; |
| } // end anonymous namespace |
| |
| |
| INITIALIZE_PASS_BEGIN(HexagonHardwareLoops, "hwloops", |
| "Hexagon Hardware Loops", false, false) |
| INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) |
| INITIALIZE_PASS_END(HexagonHardwareLoops, "hwloops", |
| "Hexagon Hardware Loops", false, false) |
| |
| |
| /// \brief Returns true if the instruction is a hardware loop instruction. |
| static bool isHardwareLoop(const MachineInstr *MI) { |
| return MI->getOpcode() == Hexagon::LOOP0_r || |
| MI->getOpcode() == Hexagon::LOOP0_i; |
| } |
| |
| FunctionPass *llvm::createHexagonHardwareLoops() { |
| return new HexagonHardwareLoops(); |
| } |
| |
| |
| bool HexagonHardwareLoops::runOnMachineFunction(MachineFunction &MF) { |
| DEBUG(dbgs() << "********* Hexagon Hardware Loops *********\n"); |
| |
| bool Changed = false; |
| |
| MLI = &getAnalysis<MachineLoopInfo>(); |
| MRI = &MF.getRegInfo(); |
| MDT = &getAnalysis<MachineDominatorTree>(); |
| TM = static_cast<const HexagonTargetMachine*>(&MF.getTarget()); |
| TII = static_cast<const HexagonInstrInfo*>(TM->getInstrInfo()); |
| TRI = static_cast<const HexagonRegisterInfo*>(TM->getRegisterInfo()); |
| |
| for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end(); |
| I != E; ++I) { |
| MachineLoop *L = *I; |
| if (!L->getParentLoop()) |
| Changed |= convertToHardwareLoop(L); |
| } |
| |
| return Changed; |
| } |
| |
| |
| bool HexagonHardwareLoops::findInductionRegister(MachineLoop *L, |
| unsigned &Reg, |
| int64_t &IVBump, |
| MachineInstr *&IVOp |
| ) const { |
| MachineBasicBlock *Header = L->getHeader(); |
| MachineBasicBlock *Preheader = L->getLoopPreheader(); |
| MachineBasicBlock *Latch = L->getLoopLatch(); |
| if (!Header || !Preheader || !Latch) |
| return false; |
| |
| // This pair represents an induction register together with an immediate |
| // value that will be added to it in each loop iteration. |
| typedef std::pair<unsigned,int64_t> RegisterBump; |
| |
| // Mapping: R.next -> (R, bump), where R, R.next and bump are derived |
| // from an induction operation |
| // R.next = R + bump |
| // where bump is an immediate value. |
| typedef std::map<unsigned,RegisterBump> InductionMap; |
| |
| InductionMap IndMap; |
| |
| typedef MachineBasicBlock::instr_iterator instr_iterator; |
| for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); |
| I != E && I->isPHI(); ++I) { |
| MachineInstr *Phi = &*I; |
| |
| // Have a PHI instruction. Get the operand that corresponds to the |
| // latch block, and see if is a result of an addition of form "reg+imm", |
| // where the "reg" is defined by the PHI node we are looking at. |
| for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { |
| if (Phi->getOperand(i+1).getMBB() != Latch) |
| continue; |
| |
| unsigned PhiOpReg = Phi->getOperand(i).getReg(); |
| MachineInstr *DI = MRI->getVRegDef(PhiOpReg); |
| unsigned UpdOpc = DI->getOpcode(); |
| bool isAdd = (UpdOpc == Hexagon::ADD_ri); |
| |
| if (isAdd) { |
| // If the register operand to the add is the PHI we're |
| // looking at, this meets the induction pattern. |
| unsigned IndReg = DI->getOperand(1).getReg(); |
| if (MRI->getVRegDef(IndReg) == Phi) { |
| unsigned UpdReg = DI->getOperand(0).getReg(); |
| int64_t V = DI->getOperand(2).getImm(); |
| IndMap.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); |
| } |
| } |
| } // for (i) |
| } // for (instr) |
| |
| SmallVector<MachineOperand,2> Cond; |
| MachineBasicBlock *TB = 0, *FB = 0; |
| bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); |
| if (NotAnalyzed) |
| return false; |
| |
| unsigned CSz = Cond.size(); |
| assert (CSz == 1 || CSz == 2); |
| unsigned PredR = Cond[CSz-1].getReg(); |
| |
| MachineInstr *PredI = MRI->getVRegDef(PredR); |
| if (!PredI->isCompare()) |
| return false; |
| |
| unsigned CmpReg1 = 0, CmpReg2 = 0; |
| int CmpImm = 0, CmpMask = 0; |
| bool CmpAnalyzed = TII->analyzeCompare(PredI, CmpReg1, CmpReg2, |
| CmpMask, CmpImm); |
| // Fail if the compare was not analyzed, or it's not comparing a register |
| // with an immediate value. Not checking the mask here, since we handle |
| // the individual compare opcodes (including CMPb) later on. |
| if (!CmpAnalyzed) |
| return false; |
| |
| // Exactly one of the input registers to the comparison should be among |
| // the induction registers. |
| InductionMap::iterator IndMapEnd = IndMap.end(); |
| InductionMap::iterator F = IndMapEnd; |
| if (CmpReg1 != 0) { |
| InductionMap::iterator F1 = IndMap.find(CmpReg1); |
| if (F1 != IndMapEnd) |
| F = F1; |
| } |
| if (CmpReg2 != 0) { |
| InductionMap::iterator F2 = IndMap.find(CmpReg2); |
| if (F2 != IndMapEnd) { |
| if (F != IndMapEnd) |
| return false; |
| F = F2; |
| } |
| } |
| if (F == IndMapEnd) |
| return false; |
| |
| Reg = F->second.first; |
| IVBump = F->second.second; |
| IVOp = MRI->getVRegDef(F->first); |
| return true; |
| } |
| |
| |
| /// \brief Analyze the statements in a loop to determine if the loop has |
| /// a computable trip count and, if so, return a value that represents |
| /// the trip count expression. |
| /// |
| /// This function iterates over the phi nodes in the loop to check for |
| /// induction variable patterns that are used in the calculation for |
| /// the number of time the loop is executed. |
| CountValue *HexagonHardwareLoops::getLoopTripCount(MachineLoop *L, |
| SmallVector<MachineInstr*, 2> &OldInsts) { |
| MachineBasicBlock *TopMBB = L->getTopBlock(); |
| MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(); |
| assert(PI != TopMBB->pred_end() && |
| "Loop must have more than one incoming edge!"); |
| MachineBasicBlock *Backedge = *PI++; |
| if (PI == TopMBB->pred_end()) // dead loop? |
| return 0; |
| MachineBasicBlock *Incoming = *PI++; |
| if (PI != TopMBB->pred_end()) // multiple backedges? |
| return 0; |
| |
| // Make sure there is one incoming and one backedge and determine which |
| // is which. |
| if (L->contains(Incoming)) { |
| if (L->contains(Backedge)) |
| return 0; |
| std::swap(Incoming, Backedge); |
| } else if (!L->contains(Backedge)) |
| return 0; |
| |
| // Look for the cmp instruction to determine if we can get a useful trip |
| // count. The trip count can be either a register or an immediate. The |
| // location of the value depends upon the type (reg or imm). |
| MachineBasicBlock *Latch = L->getLoopLatch(); |
| if (!Latch) |
| return 0; |
| |
| unsigned IVReg = 0; |
| int64_t IVBump = 0; |
| MachineInstr *IVOp; |
| bool FoundIV = findInductionRegister(L, IVReg, IVBump, IVOp); |
| if (!FoundIV) |
| return 0; |
| |
| MachineBasicBlock *Preheader = L->getLoopPreheader(); |
| |
| MachineOperand *InitialValue = 0; |
| MachineInstr *IV_Phi = MRI->getVRegDef(IVReg); |
| for (unsigned i = 1, n = IV_Phi->getNumOperands(); i < n; i += 2) { |
| MachineBasicBlock *MBB = IV_Phi->getOperand(i+1).getMBB(); |
| if (MBB == Preheader) |
| InitialValue = &IV_Phi->getOperand(i); |
| else if (MBB == Latch) |
| IVReg = IV_Phi->getOperand(i).getReg(); // Want IV reg after bump. |
| } |
| if (!InitialValue) |
| return 0; |
| |
| SmallVector<MachineOperand,2> Cond; |
| MachineBasicBlock *TB = 0, *FB = 0; |
| bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); |
| if (NotAnalyzed) |
| return 0; |
| |
| MachineBasicBlock *Header = L->getHeader(); |
| // TB must be non-null. If FB is also non-null, one of them must be |
| // the header. Otherwise, branch to TB could be exiting the loop, and |
| // the fall through can go to the header. |
| assert (TB && "Latch block without a branch?"); |
| assert ((!FB || TB == Header || FB == Header) && "Branches not to header?"); |
| if (!TB || (FB && TB != Header && FB != Header)) |
| return 0; |
| |
| // Branches of form "if (!P) ..." cause HexagonInstrInfo::AnalyzeBranch |
| // to put imm(0), followed by P in the vector Cond. |
| // If TB is not the header, it means that the "not-taken" path must lead |
| // to the header. |
| bool Negated = (Cond.size() > 1) ^ (TB != Header); |
| unsigned PredReg = Cond[Cond.size()-1].getReg(); |
| MachineInstr *CondI = MRI->getVRegDef(PredReg); |
| unsigned CondOpc = CondI->getOpcode(); |
| |
| unsigned CmpReg1 = 0, CmpReg2 = 0; |
| int Mask = 0, ImmValue = 0; |
| bool AnalyzedCmp = TII->analyzeCompare(CondI, CmpReg1, CmpReg2, |
| Mask, ImmValue); |
| if (!AnalyzedCmp) |
| return 0; |
| |
| // The comparison operator type determines how we compute the loop |
| // trip count. |
| OldInsts.push_back(CondI); |
| OldInsts.push_back(IVOp); |
| |
| // Sadly, the following code gets information based on the position |
| // of the operands in the compare instruction. This has to be done |
| // this way, because the comparisons check for a specific relationship |
| // between the operands (e.g. is-less-than), rather than to find out |
| // what relationship the operands are in (as on PPC). |
| Comparison::Kind Cmp; |
| bool isSwapped = false; |
| const MachineOperand &Op1 = CondI->getOperand(1); |
| const MachineOperand &Op2 = CondI->getOperand(2); |
| const MachineOperand *EndValue = 0; |
| |
| if (Op1.isReg()) { |
| if (Op2.isImm() || Op1.getReg() == IVReg) |
| EndValue = &Op2; |
| else { |
| EndValue = &Op1; |
| isSwapped = true; |
| } |
| } |
| |
| if (!EndValue) |
| return 0; |
| |
| switch (CondOpc) { |
| case Hexagon::CMPEQri: |
| case Hexagon::CMPEQrr: |
| Cmp = !Negated ? Comparison::EQ : Comparison::NE; |
| break; |
| case Hexagon::CMPLTrr: |
| Cmp = !Negated ? Comparison::LTs : Comparison::GEs; |
| break; |
| case Hexagon::CMPLTUrr: |
| Cmp = !Negated ? Comparison::LTu : Comparison::GEu; |
| break; |
| case Hexagon::CMPGTUri: |
| case Hexagon::CMPGTUrr: |
| Cmp = !Negated ? Comparison::GTu : Comparison::LEu; |
| break; |
| case Hexagon::CMPGTri: |
| case Hexagon::CMPGTrr: |
| Cmp = !Negated ? Comparison::GTs : Comparison::LEs; |
| break; |
| // Very limited support for byte/halfword compares. |
| case Hexagon::CMPbEQri_V4: |
| case Hexagon::CMPhEQri_V4: { |
| if (IVBump != 1) |
| return 0; |
| |
| int64_t InitV, EndV; |
| // Since the comparisons are "ri", the EndValue should be an |
| // immediate. Check it just in case. |
| assert(EndValue->isImm() && "Unrecognized latch comparison"); |
| EndV = EndValue->getImm(); |
| // Allow InitialValue to be a register defined with an immediate. |
| if (InitialValue->isReg()) { |
| if (!defWithImmediate(InitialValue->getReg())) |
| return 0; |
| InitV = getImmediate(*InitialValue); |
| } else { |
| assert(InitialValue->isImm()); |
| InitV = InitialValue->getImm(); |
| } |
| if (InitV >= EndV) |
| return 0; |
| if (CondOpc == Hexagon::CMPbEQri_V4) { |
| if (!isInt<8>(InitV) || !isInt<8>(EndV)) |
| return 0; |
| } else { // Hexagon::CMPhEQri_V4 |
| if (!isInt<16>(InitV) || !isInt<16>(EndV)) |
| return 0; |
| } |
| Cmp = !Negated ? Comparison::EQ : Comparison::NE; |
| break; |
| } |
| default: |
| return 0; |
| } |
| |
| if (isSwapped) |
| Cmp = Comparison::getSwappedComparison(Cmp); |
| |
| if (InitialValue->isReg()) { |
| unsigned R = InitialValue->getReg(); |
| MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); |
| if (!MDT->properlyDominates(DefBB, Header)) |
| return 0; |
| OldInsts.push_back(MRI->getVRegDef(R)); |
| } |
| if (EndValue->isReg()) { |
| unsigned R = EndValue->getReg(); |
| MachineBasicBlock *DefBB = MRI->getVRegDef(R)->getParent(); |
| if (!MDT->properlyDominates(DefBB, Header)) |
| return 0; |
| } |
| |
| return computeCount(L, InitialValue, EndValue, IVReg, IVBump, Cmp); |
| } |
| |
| /// \brief Helper function that returns the expression that represents the |
| /// number of times a loop iterates. The function takes the operands that |
| /// represent the loop start value, loop end value, and induction value. |
| /// Based upon these operands, the function attempts to compute the trip count. |
| CountValue *HexagonHardwareLoops::computeCount(MachineLoop *Loop, |
| const MachineOperand *Start, |
| const MachineOperand *End, |
| unsigned IVReg, |
| int64_t IVBump, |
| Comparison::Kind Cmp) const { |
| // Cannot handle comparison EQ, i.e. while (A == B). |
| if (Cmp == Comparison::EQ) |
| return 0; |
| |
| // Check if either the start or end values are an assignment of an immediate. |
| // If so, use the immediate value rather than the register. |
| if (Start->isReg()) { |
| const MachineInstr *StartValInstr = MRI->getVRegDef(Start->getReg()); |
| if (StartValInstr && StartValInstr->getOpcode() == Hexagon::TFRI) |
| Start = &StartValInstr->getOperand(1); |
| } |
| if (End->isReg()) { |
| const MachineInstr *EndValInstr = MRI->getVRegDef(End->getReg()); |
| if (EndValInstr && EndValInstr->getOpcode() == Hexagon::TFRI) |
| End = &EndValInstr->getOperand(1); |
| } |
| |
| assert (Start->isReg() || Start->isImm()); |
| assert (End->isReg() || End->isImm()); |
| |
| bool CmpLess = Cmp & Comparison::L; |
| bool CmpGreater = Cmp & Comparison::G; |
| bool CmpHasEqual = Cmp & Comparison::EQ; |
| |
| // Avoid certain wrap-arounds. This doesn't detect all wrap-arounds. |
| // If loop executes while iv is "less" with the iv value going down, then |
| // the iv must wrap. |
| if (CmpLess && IVBump < 0) |
| return 0; |
| // If loop executes while iv is "greater" with the iv value going up, then |
| // the iv must wrap. |
| if (CmpGreater && IVBump > 0) |
| return 0; |
| |
| if (Start->isImm() && End->isImm()) { |
| // Both, start and end are immediates. |
| int64_t StartV = Start->getImm(); |
| int64_t EndV = End->getImm(); |
| int64_t Dist = EndV - StartV; |
| if (Dist == 0) |
| return 0; |
| |
| bool Exact = (Dist % IVBump) == 0; |
| |
| if (Cmp == Comparison::NE) { |
| if (!Exact) |
| return 0; |
| if ((Dist < 0) ^ (IVBump < 0)) |
| return 0; |
| } |
| |
| // For comparisons that include the final value (i.e. include equality |
| // with the final value), we need to increase the distance by 1. |
| if (CmpHasEqual) |
| Dist = Dist > 0 ? Dist+1 : Dist-1; |
| |
| // assert (CmpLess => Dist > 0); |
| assert ((!CmpLess || Dist > 0) && "Loop should never iterate!"); |
| // assert (CmpGreater => Dist < 0); |
| assert ((!CmpGreater || Dist < 0) && "Loop should never iterate!"); |
| |
| // "Normalized" distance, i.e. with the bump set to +-1. |
| int64_t Dist1 = (IVBump > 0) ? (Dist + (IVBump-1)) / IVBump |
| : (-Dist + (-IVBump-1)) / (-IVBump); |
| assert (Dist1 > 0 && "Fishy thing. Both operands have the same sign."); |
| |
| uint64_t Count = Dist1; |
| |
| if (Count > 0xFFFFFFFFULL) |
| return 0; |
| |
| return new CountValue(CountValue::CV_Immediate, Count); |
| } |
| |
| // A general case: Start and End are some values, but the actual |
| // iteration count may not be available. If it is not, insert |
| // a computation of it into the preheader. |
| |
| // If the induction variable bump is not a power of 2, quit. |
| // Othwerise we'd need a general integer division. |
| if (!isPowerOf2_64(abs(IVBump))) |
| return 0; |
| |
| MachineBasicBlock *PH = Loop->getLoopPreheader(); |
| assert (PH && "Should have a preheader by now"); |
| MachineBasicBlock::iterator InsertPos = PH->getFirstTerminator(); |
| DebugLoc DL = (InsertPos != PH->end()) ? InsertPos->getDebugLoc() |
| : DebugLoc(); |
| |
| // If Start is an immediate and End is a register, the trip count |
| // will be "reg - imm". Hexagon's "subtract immediate" instruction |
| // is actually "reg + -imm". |
| |
| // If the loop IV is going downwards, i.e. if the bump is negative, |
| // then the iteration count (computed as End-Start) will need to be |
| // negated. To avoid the negation, just swap Start and End. |
| if (IVBump < 0) { |
| std::swap(Start, End); |
| IVBump = -IVBump; |
| } |
| // Cmp may now have a wrong direction, e.g. LEs may now be GEs. |
| // Signedness, and "including equality" are preserved. |
| |
| bool RegToImm = Start->isReg() && End->isImm(); // for (reg..imm) |
| bool RegToReg = Start->isReg() && End->isReg(); // for (reg..reg) |
| |
| int64_t StartV = 0, EndV = 0; |
| if (Start->isImm()) |
| StartV = Start->getImm(); |
| if (End->isImm()) |
| EndV = End->getImm(); |
| |
| int64_t AdjV = 0; |
| // To compute the iteration count, we would need this computation: |
| // Count = (End - Start + (IVBump-1)) / IVBump |
| // or, when CmpHasEqual: |
| // Count = (End - Start + (IVBump-1)+1) / IVBump |
| // The "IVBump-1" part is the adjustment (AdjV). We can avoid |
| // generating an instruction specifically to add it if we can adjust |
| // the immediate values for Start or End. |
| |
| if (CmpHasEqual) { |
| // Need to add 1 to the total iteration count. |
| if (Start->isImm()) |
| StartV--; |
| else if (End->isImm()) |
| EndV++; |
| else |
| AdjV += 1; |
| } |
| |
| if (Cmp != Comparison::NE) { |
| if (Start->isImm()) |
| StartV -= (IVBump-1); |
| else if (End->isImm()) |
| EndV += (IVBump-1); |
| else |
| AdjV += (IVBump-1); |
| } |
| |
| unsigned R = 0, SR = 0; |
| if (Start->isReg()) { |
| R = Start->getReg(); |
| SR = Start->getSubReg(); |
| } else { |
| R = End->getReg(); |
| SR = End->getSubReg(); |
| } |
| const TargetRegisterClass *RC = MRI->getRegClass(R); |
| // Hardware loops cannot handle 64-bit registers. If it's a double |
| // register, it has to have a subregister. |
| if (!SR && RC == &Hexagon::DoubleRegsRegClass) |
| return 0; |
| const TargetRegisterClass *IntRC = &Hexagon::IntRegsRegClass; |
| |
| // Compute DistR (register with the distance between Start and End). |
| unsigned DistR, DistSR; |
| |
| // Avoid special case, where the start value is an imm(0). |
| if (Start->isImm() && StartV == 0) { |
| DistR = End->getReg(); |
| DistSR = End->getSubReg(); |
| } else { |
| const MCInstrDesc &SubD = RegToReg ? TII->get(Hexagon::SUB_rr) : |
| (RegToImm ? TII->get(Hexagon::SUB_ri) : |
| TII->get(Hexagon::ADD_ri)); |
| unsigned SubR = MRI->createVirtualRegister(IntRC); |
| MachineInstrBuilder SubIB = |
| BuildMI(*PH, InsertPos, DL, SubD, SubR); |
| |
| if (RegToReg) { |
| SubIB.addReg(End->getReg(), 0, End->getSubReg()) |
| .addReg(Start->getReg(), 0, Start->getSubReg()); |
| } else if (RegToImm) { |
| SubIB.addImm(EndV) |
| .addReg(Start->getReg(), 0, Start->getSubReg()); |
| } else { // ImmToReg |
| SubIB.addReg(End->getReg(), 0, End->getSubReg()) |
| .addImm(-StartV); |
| } |
| DistR = SubR; |
| DistSR = 0; |
| } |
| |
| // From DistR, compute AdjR (register with the adjusted distance). |
| unsigned AdjR, AdjSR; |
| |
| if (AdjV == 0) { |
| AdjR = DistR; |
| AdjSR = DistSR; |
| } else { |
| // Generate CountR = ADD DistR, AdjVal |
| unsigned AddR = MRI->createVirtualRegister(IntRC); |
| const MCInstrDesc &AddD = TII->get(Hexagon::ADD_ri); |
| BuildMI(*PH, InsertPos, DL, AddD, AddR) |
| .addReg(DistR, 0, DistSR) |
| .addImm(AdjV); |
| |
| AdjR = AddR; |
| AdjSR = 0; |
| } |
| |
| // From AdjR, compute CountR (register with the final count). |
| unsigned CountR, CountSR; |
| |
| if (IVBump == 1) { |
| CountR = AdjR; |
| CountSR = AdjSR; |
| } else { |
| // The IV bump is a power of two. Log_2(IV bump) is the shift amount. |
| unsigned Shift = Log2_32(IVBump); |
| |
| // Generate NormR = LSR DistR, Shift. |
| unsigned LsrR = MRI->createVirtualRegister(IntRC); |
| const MCInstrDesc &LsrD = TII->get(Hexagon::LSR_ri); |
| BuildMI(*PH, InsertPos, DL, LsrD, LsrR) |
| .addReg(AdjR, 0, AdjSR) |
| .addImm(Shift); |
| |
| CountR = LsrR; |
| CountSR = 0; |
| } |
| |
| return new CountValue(CountValue::CV_Register, CountR, CountSR); |
| } |
| |
| |
| /// \brief Return true if the operation is invalid within hardware loop. |
| bool HexagonHardwareLoops::isInvalidLoopOperation( |
| const MachineInstr *MI) const { |
| |
| // call is not allowed because the callee may use a hardware loop |
| if (MI->getDesc().isCall()) |
| return true; |
| |
| // do not allow nested hardware loops |
| if (isHardwareLoop(MI)) |
| return true; |
| |
| // check if the instruction defines a hardware loop register |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| unsigned R = MO.getReg(); |
| if (R == Hexagon::LC0 || R == Hexagon::LC1 || |
| R == Hexagon::SA0 || R == Hexagon::SA1) |
| return true; |
| } |
| return false; |
| } |
| |
| |
| /// \brief - Return true if the loop contains an instruction that inhibits |
| /// the use of the hardware loop function. |
| bool HexagonHardwareLoops::containsInvalidInstruction(MachineLoop *L) const { |
| const std::vector<MachineBasicBlock*> Blocks = L->getBlocks(); |
| for (unsigned i = 0, e = Blocks.size(); i != e; ++i) { |
| MachineBasicBlock *MBB = Blocks[i]; |
| for (MachineBasicBlock::iterator |
| MII = MBB->begin(), E = MBB->end(); MII != E; ++MII) { |
| const MachineInstr *MI = &*MII; |
| if (isInvalidLoopOperation(MI)) |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| /// \brief Returns true if the instruction is dead. This was essentially |
| /// copied from DeadMachineInstructionElim::isDead, but with special cases |
| /// for inline asm, physical registers and instructions with side effects |
| /// removed. |
| bool HexagonHardwareLoops::isDead(const MachineInstr *MI, |
| SmallVector<MachineInstr*, 1> &DeadPhis) const { |
| // Examine each operand. |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| |
| unsigned Reg = MO.getReg(); |
| if (MRI->use_nodbg_empty(Reg)) |
| continue; |
| |
| typedef MachineRegisterInfo::use_nodbg_iterator use_nodbg_iterator; |
| |
| // This instruction has users, but if the only user is the phi node for the |
| // parent block, and the only use of that phi node is this instruction, then |
| // this instruction is dead: both it (and the phi node) can be removed. |
| use_nodbg_iterator I = MRI->use_nodbg_begin(Reg); |
| use_nodbg_iterator End = MRI->use_nodbg_end(); |
| if (llvm::next(I) != End || !I.getOperand().getParent()->isPHI()) |
| return false; |
| |
| MachineInstr *OnePhi = I.getOperand().getParent(); |
| for (unsigned j = 0, f = OnePhi->getNumOperands(); j != f; ++j) { |
| const MachineOperand &OPO = OnePhi->getOperand(j); |
| if (!OPO.isReg() || !OPO.isDef()) |
| continue; |
| |
| unsigned OPReg = OPO.getReg(); |
| use_nodbg_iterator nextJ; |
| for (use_nodbg_iterator J = MRI->use_nodbg_begin(OPReg); |
| J != End; J = nextJ) { |
| nextJ = llvm::next(J); |
| MachineOperand &Use = J.getOperand(); |
| MachineInstr *UseMI = Use.getParent(); |
| |
| // If the phi node has a user that is not MI, bail... |
| if (MI != UseMI) |
| return false; |
| } |
| } |
| DeadPhis.push_back(OnePhi); |
| } |
| |
| // If there are no defs with uses, the instruction is dead. |
| return true; |
| } |
| |
| void HexagonHardwareLoops::removeIfDead(MachineInstr *MI) { |
| // This procedure was essentially copied from DeadMachineInstructionElim. |
| |
| SmallVector<MachineInstr*, 1> DeadPhis; |
| if (isDead(MI, DeadPhis)) { |
| DEBUG(dbgs() << "HW looping will remove: " << *MI); |
| |
| // It is possible that some DBG_VALUE instructions refer to this |
| // instruction. Examine each def operand for such references; |
| // if found, mark the DBG_VALUE as undef (but don't delete it). |
| for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { |
| const MachineOperand &MO = MI->getOperand(i); |
| if (!MO.isReg() || !MO.isDef()) |
| continue; |
| unsigned Reg = MO.getReg(); |
| MachineRegisterInfo::use_iterator nextI; |
| for (MachineRegisterInfo::use_iterator I = MRI->use_begin(Reg), |
| E = MRI->use_end(); I != E; I = nextI) { |
| nextI = llvm::next(I); // I is invalidated by the setReg |
| MachineOperand &Use = I.getOperand(); |
| MachineInstr *UseMI = Use.getParent(); |
| if (UseMI == MI) |
| continue; |
| if (Use.isDebug()) |
| UseMI->getOperand(0).setReg(0U); |
| // This may also be a "instr -> phi -> instr" case which can |
| // be removed too. |
| } |
| } |
| |
| MI->eraseFromParent(); |
| for (unsigned i = 0; i < DeadPhis.size(); ++i) |
| DeadPhis[i]->eraseFromParent(); |
| } |
| } |
| |
| /// \brief Check if the loop is a candidate for converting to a hardware |
| /// loop. If so, then perform the transformation. |
| /// |
| /// This function works on innermost loops first. A loop can be converted |
| /// if it is a counting loop; either a register value or an immediate. |
| /// |
| /// The code makes several assumptions about the representation of the loop |
| /// in llvm. |
| bool HexagonHardwareLoops::convertToHardwareLoop(MachineLoop *L) { |
| // This is just for sanity. |
| assert(L->getHeader() && "Loop without a header?"); |
| |
| bool Changed = false; |
| // Process nested loops first. |
| for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I) |
| Changed |= convertToHardwareLoop(*I); |
| |
| // If a nested loop has been converted, then we can't convert this loop. |
| if (Changed) |
| return Changed; |
| |
| #ifndef NDEBUG |
| // Stop trying after reaching the limit (if any). |
| int Limit = HWLoopLimit; |
| if (Limit >= 0) { |
| if (Counter >= HWLoopLimit) |
| return false; |
| Counter++; |
| } |
| #endif |
| |
| // Does the loop contain any invalid instructions? |
| if (containsInvalidInstruction(L)) |
| return false; |
| |
| // Is the induction variable bump feeding the latch condition? |
| if (!fixupInductionVariable(L)) |
| return false; |
| |
| MachineBasicBlock *LastMBB = L->getExitingBlock(); |
| // Don't generate hw loop if the loop has more than one exit. |
| if (LastMBB == 0) |
| return false; |
| |
| MachineBasicBlock::iterator LastI = LastMBB->getFirstTerminator(); |
| if (LastI == LastMBB->end()) |
| return false; |
| |
| // Ensure the loop has a preheader: the loop instruction will be |
| // placed there. |
| bool NewPreheader = false; |
| MachineBasicBlock *Preheader = L->getLoopPreheader(); |
| if (!Preheader) { |
| Preheader = createPreheaderForLoop(L); |
| if (!Preheader) |
| return false; |
| NewPreheader = true; |
| } |
| MachineBasicBlock::iterator InsertPos = Preheader->getFirstTerminator(); |
| |
| SmallVector<MachineInstr*, 2> OldInsts; |
| // Are we able to determine the trip count for the loop? |
| CountValue *TripCount = getLoopTripCount(L, OldInsts); |
| if (TripCount == 0) |
| return false; |
| |
| // Is the trip count available in the preheader? |
| if (TripCount->isReg()) { |
| // There will be a use of the register inserted into the preheader, |
| // so make sure that the register is actually defined at that point. |
| MachineInstr *TCDef = MRI->getVRegDef(TripCount->getReg()); |
| MachineBasicBlock *BBDef = TCDef->getParent(); |
| if (!NewPreheader) { |
| if (!MDT->dominates(BBDef, Preheader)) |
| return false; |
| } else { |
| // If we have just created a preheader, the dominator tree won't be |
| // aware of it. Check if the definition of the register dominates |
| // the header, but is not the header itself. |
| if (!MDT->properlyDominates(BBDef, L->getHeader())) |
| return false; |
| } |
| } |
| |
| // Determine the loop start. |
| MachineBasicBlock *LoopStart = L->getTopBlock(); |
| if (L->getLoopLatch() != LastMBB) { |
| // When the exit and latch are not the same, use the latch block as the |
| // start. |
| // The loop start address is used only after the 1st iteration, and the |
| // loop latch may contains instrs. that need to be executed after the |
| // first iteration. |
| LoopStart = L->getLoopLatch(); |
| // Make sure the latch is a successor of the exit, otherwise it won't work. |
| if (!LastMBB->isSuccessor(LoopStart)) |
| return false; |
| } |
| |
| // Convert the loop to a hardware loop. |
| DEBUG(dbgs() << "Change to hardware loop at "; L->dump()); |
| DebugLoc DL; |
| if (InsertPos != Preheader->end()) |
| DL = InsertPos->getDebugLoc(); |
| |
| if (TripCount->isReg()) { |
| // Create a copy of the loop count register. |
| unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); |
| BuildMI(*Preheader, InsertPos, DL, TII->get(TargetOpcode::COPY), CountReg) |
| .addReg(TripCount->getReg(), 0, TripCount->getSubReg()); |
| // Add the Loop instruction to the beginning of the loop. |
| BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r)) |
| .addMBB(LoopStart) |
| .addReg(CountReg); |
| } else { |
| assert(TripCount->isImm() && "Expecting immediate value for trip count"); |
| // Add the Loop immediate instruction to the beginning of the loop, |
| // if the immediate fits in the instructions. Otherwise, we need to |
| // create a new virtual register. |
| int64_t CountImm = TripCount->getImm(); |
| if (!TII->isValidOffset(Hexagon::LOOP0_i, CountImm)) { |
| unsigned CountReg = MRI->createVirtualRegister(&Hexagon::IntRegsRegClass); |
| BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::TFRI), CountReg) |
| .addImm(CountImm); |
| BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_r)) |
| .addMBB(LoopStart).addReg(CountReg); |
| } else |
| BuildMI(*Preheader, InsertPos, DL, TII->get(Hexagon::LOOP0_i)) |
| .addMBB(LoopStart).addImm(CountImm); |
| } |
| |
| // Make sure the loop start always has a reference in the CFG. We need |
| // to create a BlockAddress operand to get this mechanism to work both the |
| // MachineBasicBlock and BasicBlock objects need the flag set. |
| LoopStart->setHasAddressTaken(); |
| // This line is needed to set the hasAddressTaken flag on the BasicBlock |
| // object. |
| BlockAddress::get(const_cast<BasicBlock *>(LoopStart->getBasicBlock())); |
| |
| // Replace the loop branch with an endloop instruction. |
| DebugLoc LastIDL = LastI->getDebugLoc(); |
| BuildMI(*LastMBB, LastI, LastIDL, |
| TII->get(Hexagon::ENDLOOP0)).addMBB(LoopStart); |
| |
| // The loop ends with either: |
| // - a conditional branch followed by an unconditional branch, or |
| // - a conditional branch to the loop start. |
| if (LastI->getOpcode() == Hexagon::JMP_c || |
| LastI->getOpcode() == Hexagon::JMP_cNot) { |
| // Delete one and change/add an uncond. branch to out of the loop. |
| MachineBasicBlock *BranchTarget = LastI->getOperand(1).getMBB(); |
| LastI = LastMBB->erase(LastI); |
| if (!L->contains(BranchTarget)) { |
| if (LastI != LastMBB->end()) |
| LastI = LastMBB->erase(LastI); |
| SmallVector<MachineOperand, 0> Cond; |
| TII->InsertBranch(*LastMBB, BranchTarget, 0, Cond, LastIDL); |
| } |
| } else { |
| // Conditional branch to loop start; just delete it. |
| LastMBB->erase(LastI); |
| } |
| delete TripCount; |
| |
| // The induction operation and the comparison may now be |
| // unneeded. If these are unneeded, then remove them. |
| for (unsigned i = 0; i < OldInsts.size(); ++i) |
| removeIfDead(OldInsts[i]); |
| |
| ++NumHWLoops; |
| return true; |
| } |
| |
| |
| bool HexagonHardwareLoops::orderBumpCompare(MachineInstr *BumpI, |
| MachineInstr *CmpI) { |
| assert (BumpI != CmpI && "Bump and compare in the same instruction?"); |
| |
| MachineBasicBlock *BB = BumpI->getParent(); |
| if (CmpI->getParent() != BB) |
| return false; |
| |
| typedef MachineBasicBlock::instr_iterator instr_iterator; |
| // Check if things are in order to begin with. |
| for (instr_iterator I = BumpI, E = BB->instr_end(); I != E; ++I) |
| if (&*I == CmpI) |
| return true; |
| |
| // Out of order. |
| unsigned PredR = CmpI->getOperand(0).getReg(); |
| bool FoundBump = false; |
| instr_iterator CmpIt = CmpI, NextIt = llvm::next(CmpIt); |
| for (instr_iterator I = NextIt, E = BB->instr_end(); I != E; ++I) { |
| MachineInstr *In = &*I; |
| for (unsigned i = 0, n = In->getNumOperands(); i < n; ++i) { |
| MachineOperand &MO = In->getOperand(i); |
| if (MO.isReg() && MO.isUse()) { |
| if (MO.getReg() == PredR) // Found an intervening use of PredR. |
| return false; |
| } |
| } |
| |
| if (In == BumpI) { |
| instr_iterator After = BumpI; |
| instr_iterator From = CmpI; |
| BB->splice(llvm::next(After), BB, From); |
| FoundBump = true; |
| break; |
| } |
| } |
| assert (FoundBump && "Cannot determine instruction order"); |
| return FoundBump; |
| } |
| |
| |
| MachineInstr *HexagonHardwareLoops::defWithImmediate(unsigned R) { |
| MachineInstr *DI = MRI->getVRegDef(R); |
| unsigned DOpc = DI->getOpcode(); |
| switch (DOpc) { |
| case Hexagon::TFRI: |
| case Hexagon::TFRI64: |
| case Hexagon::CONST32_Int_Real: |
| case Hexagon::CONST64_Int_Real: |
| return DI; |
| } |
| return 0; |
| } |
| |
| |
| int64_t HexagonHardwareLoops::getImmediate(MachineOperand &MO) { |
| if (MO.isImm()) |
| return MO.getImm(); |
| assert(MO.isReg()); |
| unsigned R = MO.getReg(); |
| MachineInstr *DI = defWithImmediate(R); |
| assert(DI && "Need an immediate operand"); |
| // All currently supported "define-with-immediate" instructions have the |
| // actual immediate value in the operand(1). |
| int64_t v = DI->getOperand(1).getImm(); |
| return v; |
| } |
| |
| |
| void HexagonHardwareLoops::setImmediate(MachineOperand &MO, int64_t Val) { |
| if (MO.isImm()) { |
| MO.setImm(Val); |
| return; |
| } |
| |
| assert(MO.isReg()); |
| unsigned R = MO.getReg(); |
| MachineInstr *DI = defWithImmediate(R); |
| if (MRI->hasOneNonDBGUse(R)) { |
| // If R has only one use, then just change its defining instruction to |
| // the new immediate value. |
| DI->getOperand(1).setImm(Val); |
| return; |
| } |
| |
| const TargetRegisterClass *RC = MRI->getRegClass(R); |
| unsigned NewR = MRI->createVirtualRegister(RC); |
| MachineBasicBlock &B = *DI->getParent(); |
| DebugLoc DL = DI->getDebugLoc(); |
| BuildMI(B, DI, DL, TII->get(DI->getOpcode()), NewR) |
| .addImm(Val); |
| MO.setReg(NewR); |
| } |
| |
| |
| bool HexagonHardwareLoops::fixupInductionVariable(MachineLoop *L) { |
| MachineBasicBlock *Header = L->getHeader(); |
| MachineBasicBlock *Preheader = L->getLoopPreheader(); |
| MachineBasicBlock *Latch = L->getLoopLatch(); |
| |
| if (!Header || !Preheader || !Latch) |
| return false; |
| |
| // These data structures follow the same concept as the corresponding |
| // ones in findInductionRegister (where some comments are). |
| typedef std::pair<unsigned,int64_t> RegisterBump; |
| typedef std::pair<unsigned,RegisterBump> RegisterInduction; |
| typedef std::set<RegisterInduction> RegisterInductionSet; |
| |
| // Register candidates for induction variables, with their associated bumps. |
| RegisterInductionSet IndRegs; |
| |
| // Look for induction patterns: |
| // vreg1 = PHI ..., [ latch, vreg2 ] |
| // vreg2 = ADD vreg1, imm |
| typedef MachineBasicBlock::instr_iterator instr_iterator; |
| for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); |
| I != E && I->isPHI(); ++I) { |
| MachineInstr *Phi = &*I; |
| |
| // Have a PHI instruction. |
| for (unsigned i = 1, n = Phi->getNumOperands(); i < n; i += 2) { |
| if (Phi->getOperand(i+1).getMBB() != Latch) |
| continue; |
| |
| unsigned PhiReg = Phi->getOperand(i).getReg(); |
| MachineInstr *DI = MRI->getVRegDef(PhiReg); |
| unsigned UpdOpc = DI->getOpcode(); |
| bool isAdd = (UpdOpc == Hexagon::ADD_ri); |
| |
| if (isAdd) { |
| // If the register operand to the add/sub is the PHI we are looking |
| // at, this meets the induction pattern. |
| unsigned IndReg = DI->getOperand(1).getReg(); |
| if (MRI->getVRegDef(IndReg) == Phi) { |
| unsigned UpdReg = DI->getOperand(0).getReg(); |
| int64_t V = DI->getOperand(2).getImm(); |
| IndRegs.insert(std::make_pair(UpdReg, std::make_pair(IndReg, V))); |
| } |
| } |
| } // for (i) |
| } // for (instr) |
| |
| if (IndRegs.empty()) |
| return false; |
| |
| MachineBasicBlock *TB = 0, *FB = 0; |
| SmallVector<MachineOperand,2> Cond; |
| // AnalyzeBranch returns true if it fails to analyze branch. |
| bool NotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Cond, false); |
| if (NotAnalyzed) |
| return false; |
| |
| // Check if the latch branch is unconditional. |
| if (Cond.empty()) |
| return false; |
| |
| if (TB != Header && FB != Header) |
| // The latch does not go back to the header. Not a latch we know and love. |
| return false; |
| |
| // Expecting a predicate register as a condition. It won't be a hardware |
| // predicate register at this point yet, just a vreg. |
| // HexagonInstrInfo::AnalyzeBranch for negated branches inserts imm(0) |
| // into Cond, followed by the predicate register. For non-negated branches |
| // it's just the register. |
| unsigned CSz = Cond.size(); |
| if (CSz != 1 && CSz != 2) |
| return false; |
| |
| unsigned P = Cond[CSz-1].getReg(); |
| MachineInstr *PredDef = MRI->getVRegDef(P); |
| |
| if (!PredDef->isCompare()) |
| return false; |
| |
| SmallSet<unsigned,2> CmpRegs; |
| MachineOperand *CmpImmOp = 0; |
| |
| // Go over all operands to the compare and look for immediate and register |
| // operands. Assume that if the compare has a single register use and a |
| // single immediate operand, then the register is being compared with the |
| // immediate value. |
| for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { |
| MachineOperand &MO = PredDef->getOperand(i); |
| if (MO.isReg()) { |
| // Skip all implicit references. In one case there was: |
| // %vreg140<def> = FCMPUGT32_rr %vreg138, %vreg139, %USR<imp-use> |
| if (MO.isImplicit()) |
| continue; |
| if (MO.isUse()) { |
| unsigned R = MO.getReg(); |
| if (!defWithImmediate(R)) { |
| CmpRegs.insert(MO.getReg()); |
| continue; |
| } |
| // Consider the register to be the "immediate" operand. |
| if (CmpImmOp) |
| return false; |
| CmpImmOp = &MO; |
| } |
| } else if (MO.isImm()) { |
| if (CmpImmOp) // A second immediate argument? Confusing. Bail out. |
| return false; |
| CmpImmOp = &MO; |
| } |
| } |
| |
| if (CmpRegs.empty()) |
| return false; |
| |
| // Check if the compared register follows the order we want. Fix if needed. |
| for (RegisterInductionSet::iterator I = IndRegs.begin(), E = IndRegs.end(); |
| I != E; ++I) { |
| // This is a success. If the register used in the comparison is one that |
| // we have identified as a bumped (updated) induction register, there is |
| // nothing to do. |
| if (CmpRegs.count(I->first)) |
| return true; |
| |
| // Otherwise, if the register being compared comes out of a PHI node, |
| // and has been recognized as following the induction pattern, and is |
| // compared against an immediate, we can fix it. |
| const RegisterBump &RB = I->second; |
| if (CmpRegs.count(RB.first)) { |
| if (!CmpImmOp) |
| return false; |
| |
| int64_t CmpImm = getImmediate(*CmpImmOp); |
| int64_t V = RB.second; |
| if (V > 0 && CmpImm+V < CmpImm) // Overflow (64-bit). |
| return false; |
| if (V < 0 && CmpImm+V > CmpImm) // Overflow (64-bit). |
| return false; |
| CmpImm += V; |
| // Some forms of cmp-immediate allow u9 and s10. Assume the worst case |
| // scenario, i.e. an 8-bit value. |
| if (CmpImmOp->isImm() && !isInt<8>(CmpImm)) |
| return false; |
| |
| // Make sure that the compare happens after the bump. Otherwise, |
| // after the fixup, the compare would use a yet-undefined register. |
| MachineInstr *BumpI = MRI->getVRegDef(I->first); |
| bool Order = orderBumpCompare(BumpI, PredDef); |
| if (!Order) |
| return false; |
| |
| // Finally, fix the compare instruction. |
| setImmediate(*CmpImmOp, CmpImm); |
| for (unsigned i = 0, n = PredDef->getNumOperands(); i < n; ++i) { |
| MachineOperand &MO = PredDef->getOperand(i); |
| if (MO.isReg() && MO.getReg() == RB.first) { |
| MO.setReg(I->first); |
| return true; |
| } |
| } |
| } |
| } |
| |
| return false; |
| } |
| |
| |
| /// \brief Create a preheader for a given loop. |
| MachineBasicBlock *HexagonHardwareLoops::createPreheaderForLoop( |
| MachineLoop *L) { |
| if (MachineBasicBlock *TmpPH = L->getLoopPreheader()) |
| return TmpPH; |
| |
| MachineBasicBlock *Header = L->getHeader(); |
| MachineBasicBlock *Latch = L->getLoopLatch(); |
| MachineFunction *MF = Header->getParent(); |
| DebugLoc DL; |
| |
| if (!Latch || Header->hasAddressTaken()) |
| return 0; |
| |
| typedef MachineBasicBlock::instr_iterator instr_iterator; |
| typedef MachineBasicBlock::pred_iterator pred_iterator; |
| |
| // Verify that all existing predecessors have analyzable branches |
| // (or no branches at all). |
| typedef std::vector<MachineBasicBlock*> MBBVector; |
| MBBVector Preds(Header->pred_begin(), Header->pred_end()); |
| SmallVector<MachineOperand,2> Tmp1; |
| MachineBasicBlock *TB = 0, *FB = 0; |
| |
| if (TII->AnalyzeBranch(*Latch, TB, FB, Tmp1, false)) |
| return 0; |
| |
| for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { |
| MachineBasicBlock *PB = *I; |
| if (PB != Latch) { |
| bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp1, false); |
| if (NotAnalyzed) |
| return 0; |
| } |
| } |
| |
| MachineBasicBlock *NewPH = MF->CreateMachineBasicBlock(); |
| MF->insert(Header, NewPH); |
| |
| if (Header->pred_size() > 2) { |
| // Ensure that the header has only two predecessors: the preheader and |
| // the loop latch. Any additional predecessors of the header should |
| // join at the newly created preheader. Inspect all PHI nodes from the |
| // header and create appropriate corresponding PHI nodes in the preheader. |
| |
| for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); |
| I != E && I->isPHI(); ++I) { |
| MachineInstr *PN = &*I; |
| |
| const MCInstrDesc &PD = TII->get(TargetOpcode::PHI); |
| MachineInstr *NewPN = MF->CreateMachineInstr(PD, DL); |
| NewPH->insert(NewPH->end(), NewPN); |
| |
| unsigned PR = PN->getOperand(0).getReg(); |
| const TargetRegisterClass *RC = MRI->getRegClass(PR); |
| unsigned NewPR = MRI->createVirtualRegister(RC); |
| NewPN->addOperand(MachineOperand::CreateReg(NewPR, true)); |
| |
| // Copy all non-latch operands of a header's PHI node to the newly |
| // created PHI node in the preheader. |
| for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { |
| unsigned PredR = PN->getOperand(i).getReg(); |
| MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); |
| if (PredB == Latch) |
| continue; |
| |
| NewPN->addOperand(MachineOperand::CreateReg(PredR, false)); |
| NewPN->addOperand(MachineOperand::CreateMBB(PredB)); |
| } |
| |
| // Remove copied operands from the old PHI node and add the value |
| // coming from the preheader's PHI. |
| for (int i = PN->getNumOperands()-2; i > 0; i -= 2) { |
| MachineBasicBlock *PredB = PN->getOperand(i+1).getMBB(); |
| if (PredB != Latch) { |
| PN->RemoveOperand(i+1); |
| PN->RemoveOperand(i); |
| } |
| } |
| PN->addOperand(MachineOperand::CreateReg(NewPR, false)); |
| PN->addOperand(MachineOperand::CreateMBB(NewPH)); |
| } |
| |
| } else { |
| assert(Header->pred_size() == 2); |
| |
| // The header has only two predecessors, but the non-latch predecessor |
| // is not a preheader (e.g. it has other successors, etc.) |
| // In such a case we don't need any extra PHI nodes in the new preheader, |
| // all we need is to adjust existing PHIs in the header to now refer to |
| // the new preheader. |
| for (instr_iterator I = Header->instr_begin(), E = Header->instr_end(); |
| I != E && I->isPHI(); ++I) { |
| MachineInstr *PN = &*I; |
| for (unsigned i = 1, n = PN->getNumOperands(); i < n; i += 2) { |
| MachineOperand &MO = PN->getOperand(i+1); |
| if (MO.getMBB() != Latch) |
| MO.setMBB(NewPH); |
| } |
| } |
| } |
| |
| // "Reroute" the CFG edges to link in the new preheader. |
| // If any of the predecessors falls through to the header, insert a branch |
| // to the new preheader in that place. |
| SmallVector<MachineOperand,1> Tmp2; |
| SmallVector<MachineOperand,1> EmptyCond; |
| |
| TB = FB = 0; |
| |
| for (MBBVector::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { |
| MachineBasicBlock *PB = *I; |
| if (PB != Latch) { |
| Tmp2.clear(); |
| bool NotAnalyzed = TII->AnalyzeBranch(*PB, TB, FB, Tmp2, false); |
| (void)NotAnalyzed; // supress compiler warning |
| assert (!NotAnalyzed && "Should be analyzable!"); |
| if (TB != Header && (Tmp2.empty() || FB != Header)) |
| TII->InsertBranch(*PB, NewPH, 0, EmptyCond, DL); |
| PB->ReplaceUsesOfBlockWith(Header, NewPH); |
| } |
| } |
| |
| // It can happen that the latch block will fall through into the header. |
| // Insert an unconditional branch to the header. |
| TB = FB = 0; |
| bool LatchNotAnalyzed = TII->AnalyzeBranch(*Latch, TB, FB, Tmp2, false); |
| (void)LatchNotAnalyzed; // supress compiler warning |
| assert (!LatchNotAnalyzed && "Should be analyzable!"); |
| if (!TB && !FB) |
| TII->InsertBranch(*Latch, Header, 0, EmptyCond, DL); |
| |
| // Finally, the branch from the preheader to the header. |
| TII->InsertBranch(*NewPH, Header, 0, EmptyCond, DL); |
| NewPH->addSuccessor(Header); |
| |
| return NewPH; |
| } |