| //===-- AddressSanitizer.cpp - memory error detector ------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file is a part of AddressSanitizer, an address sanity checker. |
| // Details of the algorithm: |
| // http://code.google.com/p/address-sanitizer/wiki/AddressSanitizerAlgorithm |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "asan" |
| |
| #include "llvm/Transforms/Instrumentation.h" |
| #include "llvm/ADT/ArrayRef.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/OwningPtr.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SmallString.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/ADT/Triple.h" |
| #include "llvm/DIBuilder.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Function.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/InlineAsm.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/InstVisitor.h" |
| #include "llvm/Support/CallSite.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/DataTypes.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include "llvm/Support/system_error.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/BlackList.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/ModuleUtils.h" |
| #include <algorithm> |
| #include <string> |
| |
| using namespace llvm; |
| |
| static const uint64_t kDefaultShadowScale = 3; |
| static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; |
| static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; |
| static const uint64_t kDefaultShort64bitShadowOffset = 0x7FFF8000; // < 2G. |
| static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 41; |
| |
| static const size_t kMaxStackMallocSize = 1 << 16; // 64K |
| static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; |
| static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; |
| |
| static const char *kAsanModuleCtorName = "asan.module_ctor"; |
| static const char *kAsanModuleDtorName = "asan.module_dtor"; |
| static const int kAsanCtorAndCtorPriority = 1; |
| static const char *kAsanReportErrorTemplate = "__asan_report_"; |
| static const char *kAsanReportLoadN = "__asan_report_load_n"; |
| static const char *kAsanReportStoreN = "__asan_report_store_n"; |
| static const char *kAsanRegisterGlobalsName = "__asan_register_globals"; |
| static const char *kAsanUnregisterGlobalsName = "__asan_unregister_globals"; |
| static const char *kAsanPoisonGlobalsName = "__asan_before_dynamic_init"; |
| static const char *kAsanUnpoisonGlobalsName = "__asan_after_dynamic_init"; |
| static const char *kAsanInitName = "__asan_init_v1"; |
| static const char *kAsanHandleNoReturnName = "__asan_handle_no_return"; |
| static const char *kAsanMappingOffsetName = "__asan_mapping_offset"; |
| static const char *kAsanMappingScaleName = "__asan_mapping_scale"; |
| static const char *kAsanStackMallocName = "__asan_stack_malloc"; |
| static const char *kAsanStackFreeName = "__asan_stack_free"; |
| static const char *kAsanGenPrefix = "__asan_gen_"; |
| static const char *kAsanPoisonStackMemoryName = "__asan_poison_stack_memory"; |
| static const char *kAsanUnpoisonStackMemoryName = |
| "__asan_unpoison_stack_memory"; |
| |
| static const int kAsanStackLeftRedzoneMagic = 0xf1; |
| static const int kAsanStackMidRedzoneMagic = 0xf2; |
| static const int kAsanStackRightRedzoneMagic = 0xf3; |
| static const int kAsanStackPartialRedzoneMagic = 0xf4; |
| |
| // Accesses sizes are powers of two: 1, 2, 4, 8, 16. |
| static const size_t kNumberOfAccessSizes = 5; |
| |
| // Command-line flags. |
| |
| // This flag may need to be replaced with -f[no-]asan-reads. |
| static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", |
| cl::desc("instrument read instructions"), cl::Hidden, cl::init(true)); |
| static cl::opt<bool> ClInstrumentWrites("asan-instrument-writes", |
| cl::desc("instrument write instructions"), cl::Hidden, cl::init(true)); |
| static cl::opt<bool> ClInstrumentAtomics("asan-instrument-atomics", |
| cl::desc("instrument atomic instructions (rmw, cmpxchg)"), |
| cl::Hidden, cl::init(true)); |
| static cl::opt<bool> ClAlwaysSlowPath("asan-always-slow-path", |
| cl::desc("use instrumentation with slow path for all accesses"), |
| cl::Hidden, cl::init(false)); |
| // This flag limits the number of instructions to be instrumented |
| // in any given BB. Normally, this should be set to unlimited (INT_MAX), |
| // but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary |
| // set it to 10000. |
| static cl::opt<int> ClMaxInsnsToInstrumentPerBB("asan-max-ins-per-bb", |
| cl::init(10000), |
| cl::desc("maximal number of instructions to instrument in any given BB"), |
| cl::Hidden); |
| // This flag may need to be replaced with -f[no]asan-stack. |
| static cl::opt<bool> ClStack("asan-stack", |
| cl::desc("Handle stack memory"), cl::Hidden, cl::init(true)); |
| // This flag may need to be replaced with -f[no]asan-use-after-return. |
| static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", |
| cl::desc("Check return-after-free"), cl::Hidden, cl::init(false)); |
| // This flag may need to be replaced with -f[no]asan-globals. |
| static cl::opt<bool> ClGlobals("asan-globals", |
| cl::desc("Handle global objects"), cl::Hidden, cl::init(true)); |
| static cl::opt<bool> ClInitializers("asan-initialization-order", |
| cl::desc("Handle C++ initializer order"), cl::Hidden, cl::init(false)); |
| static cl::opt<bool> ClMemIntrin("asan-memintrin", |
| cl::desc("Handle memset/memcpy/memmove"), cl::Hidden, cl::init(true)); |
| static cl::opt<bool> ClRealignStack("asan-realign-stack", |
| cl::desc("Realign stack to 32"), cl::Hidden, cl::init(true)); |
| static cl::opt<std::string> ClBlacklistFile("asan-blacklist", |
| cl::desc("File containing the list of objects to ignore " |
| "during instrumentation"), cl::Hidden); |
| |
| // These flags allow to change the shadow mapping. |
| // The shadow mapping looks like |
| // Shadow = (Mem >> scale) + (1 << offset_log) |
| static cl::opt<int> ClMappingScale("asan-mapping-scale", |
| cl::desc("scale of asan shadow mapping"), cl::Hidden, cl::init(0)); |
| static cl::opt<int> ClMappingOffsetLog("asan-mapping-offset-log", |
| cl::desc("offset of asan shadow mapping"), cl::Hidden, cl::init(-1)); |
| static cl::opt<bool> ClShort64BitOffset("asan-short-64bit-mapping-offset", |
| cl::desc("Use short immediate constant as the mapping offset for 64bit"), |
| cl::Hidden, cl::init(true)); |
| |
| // Optimization flags. Not user visible, used mostly for testing |
| // and benchmarking the tool. |
| static cl::opt<bool> ClOpt("asan-opt", |
| cl::desc("Optimize instrumentation"), cl::Hidden, cl::init(true)); |
| static cl::opt<bool> ClOptSameTemp("asan-opt-same-temp", |
| cl::desc("Instrument the same temp just once"), cl::Hidden, |
| cl::init(true)); |
| static cl::opt<bool> ClOptGlobals("asan-opt-globals", |
| cl::desc("Don't instrument scalar globals"), cl::Hidden, cl::init(true)); |
| |
| static cl::opt<bool> ClCheckLifetime("asan-check-lifetime", |
| cl::desc("Use llvm.lifetime intrinsics to insert extra checks"), |
| cl::Hidden, cl::init(false)); |
| |
| // Debug flags. |
| static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, |
| cl::init(0)); |
| static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), |
| cl::Hidden, cl::init(0)); |
| static cl::opt<std::string> ClDebugFunc("asan-debug-func", |
| cl::Hidden, cl::desc("Debug func")); |
| static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), |
| cl::Hidden, cl::init(-1)); |
| static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug man inst"), |
| cl::Hidden, cl::init(-1)); |
| |
| namespace { |
| /// A set of dynamically initialized globals extracted from metadata. |
| class SetOfDynamicallyInitializedGlobals { |
| public: |
| void Init(Module& M) { |
| // Clang generates metadata identifying all dynamically initialized globals. |
| NamedMDNode *DynamicGlobals = |
| M.getNamedMetadata("llvm.asan.dynamically_initialized_globals"); |
| if (!DynamicGlobals) |
| return; |
| for (int i = 0, n = DynamicGlobals->getNumOperands(); i < n; ++i) { |
| MDNode *MDN = DynamicGlobals->getOperand(i); |
| assert(MDN->getNumOperands() == 1); |
| Value *VG = MDN->getOperand(0); |
| // The optimizer may optimize away a global entirely, in which case we |
| // cannot instrument access to it. |
| if (!VG) |
| continue; |
| DynInitGlobals.insert(cast<GlobalVariable>(VG)); |
| } |
| } |
| bool Contains(GlobalVariable *G) { return DynInitGlobals.count(G) != 0; } |
| private: |
| SmallSet<GlobalValue*, 32> DynInitGlobals; |
| }; |
| |
| /// This struct defines the shadow mapping using the rule: |
| /// shadow = (mem >> Scale) ADD-or-OR Offset. |
| struct ShadowMapping { |
| int Scale; |
| uint64_t Offset; |
| bool OrShadowOffset; |
| }; |
| |
| static ShadowMapping getShadowMapping(const Module &M, int LongSize, |
| bool ZeroBaseShadow) { |
| llvm::Triple TargetTriple(M.getTargetTriple()); |
| bool IsAndroid = TargetTriple.getEnvironment() == llvm::Triple::Android; |
| bool IsMacOSX = TargetTriple.getOS() == llvm::Triple::MacOSX; |
| bool IsPPC64 = TargetTriple.getArch() == llvm::Triple::ppc64; |
| bool IsX86_64 = TargetTriple.getArch() == llvm::Triple::x86_64; |
| |
| ShadowMapping Mapping; |
| |
| // OR-ing shadow offset if more efficient (at least on x86), |
| // but on ppc64 we have to use add since the shadow offset is not neccesary |
| // 1/8-th of the address space. |
| Mapping.OrShadowOffset = !IsPPC64 && !ClShort64BitOffset; |
| |
| Mapping.Offset = (IsAndroid || ZeroBaseShadow) ? 0 : |
| (LongSize == 32 ? kDefaultShadowOffset32 : |
| IsPPC64 ? kPPC64_ShadowOffset64 : kDefaultShadowOffset64); |
| if (!ZeroBaseShadow && ClShort64BitOffset && IsX86_64 && !IsMacOSX) { |
| assert(LongSize == 64); |
| Mapping.Offset = kDefaultShort64bitShadowOffset; |
| } |
| if (!ZeroBaseShadow && ClMappingOffsetLog >= 0) { |
| // Zero offset log is the special case. |
| Mapping.Offset = (ClMappingOffsetLog == 0) ? 0 : 1ULL << ClMappingOffsetLog; |
| } |
| |
| Mapping.Scale = kDefaultShadowScale; |
| if (ClMappingScale) { |
| Mapping.Scale = ClMappingScale; |
| } |
| |
| return Mapping; |
| } |
| |
| static size_t RedzoneSizeForScale(int MappingScale) { |
| // Redzone used for stack and globals is at least 32 bytes. |
| // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. |
| return std::max(32U, 1U << MappingScale); |
| } |
| |
| /// AddressSanitizer: instrument the code in module to find memory bugs. |
| struct AddressSanitizer : public FunctionPass { |
| AddressSanitizer(bool CheckInitOrder = false, |
| bool CheckUseAfterReturn = false, |
| bool CheckLifetime = false, |
| StringRef BlacklistFile = StringRef(), |
| bool ZeroBaseShadow = false) |
| : FunctionPass(ID), |
| CheckInitOrder(CheckInitOrder || ClInitializers), |
| CheckUseAfterReturn(CheckUseAfterReturn || ClUseAfterReturn), |
| CheckLifetime(CheckLifetime || ClCheckLifetime), |
| BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile |
| : BlacklistFile), |
| ZeroBaseShadow(ZeroBaseShadow) {} |
| virtual const char *getPassName() const { |
| return "AddressSanitizerFunctionPass"; |
| } |
| void instrumentMop(Instruction *I); |
| void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, |
| Value *Addr, uint32_t TypeSize, bool IsWrite, |
| Value *SizeArgument); |
| Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, |
| Value *ShadowValue, uint32_t TypeSize); |
| Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, |
| bool IsWrite, size_t AccessSizeIndex, |
| Value *SizeArgument); |
| bool instrumentMemIntrinsic(MemIntrinsic *MI); |
| void instrumentMemIntrinsicParam(Instruction *OrigIns, Value *Addr, |
| Value *Size, |
| Instruction *InsertBefore, bool IsWrite); |
| Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); |
| bool runOnFunction(Function &F); |
| void createInitializerPoisonCalls(Module &M, |
| Value *FirstAddr, Value *LastAddr); |
| bool maybeInsertAsanInitAtFunctionEntry(Function &F); |
| void emitShadowMapping(Module &M, IRBuilder<> &IRB) const; |
| virtual bool doInitialization(Module &M); |
| static char ID; // Pass identification, replacement for typeid |
| |
| private: |
| void initializeCallbacks(Module &M); |
| |
| bool ShouldInstrumentGlobal(GlobalVariable *G); |
| bool LooksLikeCodeInBug11395(Instruction *I); |
| void FindDynamicInitializers(Module &M); |
| |
| bool CheckInitOrder; |
| bool CheckUseAfterReturn; |
| bool CheckLifetime; |
| SmallString<64> BlacklistFile; |
| bool ZeroBaseShadow; |
| |
| LLVMContext *C; |
| DataLayout *TD; |
| int LongSize; |
| Type *IntptrTy; |
| ShadowMapping Mapping; |
| Function *AsanCtorFunction; |
| Function *AsanInitFunction; |
| Function *AsanHandleNoReturnFunc; |
| OwningPtr<BlackList> BL; |
| // This array is indexed by AccessIsWrite and log2(AccessSize). |
| Function *AsanErrorCallback[2][kNumberOfAccessSizes]; |
| // This array is indexed by AccessIsWrite. |
| Function *AsanErrorCallbackSized[2]; |
| InlineAsm *EmptyAsm; |
| SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals; |
| |
| friend struct FunctionStackPoisoner; |
| }; |
| |
| class AddressSanitizerModule : public ModulePass { |
| public: |
| AddressSanitizerModule(bool CheckInitOrder = false, |
| StringRef BlacklistFile = StringRef(), |
| bool ZeroBaseShadow = false) |
| : ModulePass(ID), |
| CheckInitOrder(CheckInitOrder || ClInitializers), |
| BlacklistFile(BlacklistFile.empty() ? ClBlacklistFile |
| : BlacklistFile), |
| ZeroBaseShadow(ZeroBaseShadow) {} |
| bool runOnModule(Module &M); |
| static char ID; // Pass identification, replacement for typeid |
| virtual const char *getPassName() const { |
| return "AddressSanitizerModule"; |
| } |
| |
| private: |
| void initializeCallbacks(Module &M); |
| |
| bool ShouldInstrumentGlobal(GlobalVariable *G); |
| void createInitializerPoisonCalls(Module &M, Value *FirstAddr, |
| Value *LastAddr); |
| size_t RedzoneSize() const { |
| return RedzoneSizeForScale(Mapping.Scale); |
| } |
| |
| bool CheckInitOrder; |
| SmallString<64> BlacklistFile; |
| bool ZeroBaseShadow; |
| |
| OwningPtr<BlackList> BL; |
| SetOfDynamicallyInitializedGlobals DynamicallyInitializedGlobals; |
| Type *IntptrTy; |
| LLVMContext *C; |
| DataLayout *TD; |
| ShadowMapping Mapping; |
| Function *AsanPoisonGlobals; |
| Function *AsanUnpoisonGlobals; |
| Function *AsanRegisterGlobals; |
| Function *AsanUnregisterGlobals; |
| }; |
| |
| // Stack poisoning does not play well with exception handling. |
| // When an exception is thrown, we essentially bypass the code |
| // that unpoisones the stack. This is why the run-time library has |
| // to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire |
| // stack in the interceptor. This however does not work inside the |
| // actual function which catches the exception. Most likely because the |
| // compiler hoists the load of the shadow value somewhere too high. |
| // This causes asan to report a non-existing bug on 453.povray. |
| // It sounds like an LLVM bug. |
| struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { |
| Function &F; |
| AddressSanitizer &ASan; |
| DIBuilder DIB; |
| LLVMContext *C; |
| Type *IntptrTy; |
| Type *IntptrPtrTy; |
| ShadowMapping Mapping; |
| |
| SmallVector<AllocaInst*, 16> AllocaVec; |
| SmallVector<Instruction*, 8> RetVec; |
| uint64_t TotalStackSize; |
| unsigned StackAlignment; |
| |
| Function *AsanStackMallocFunc, *AsanStackFreeFunc; |
| Function *AsanPoisonStackMemoryFunc, *AsanUnpoisonStackMemoryFunc; |
| |
| // Stores a place and arguments of poisoning/unpoisoning call for alloca. |
| struct AllocaPoisonCall { |
| IntrinsicInst *InsBefore; |
| uint64_t Size; |
| bool DoPoison; |
| }; |
| SmallVector<AllocaPoisonCall, 8> AllocaPoisonCallVec; |
| |
| // Maps Value to an AllocaInst from which the Value is originated. |
| typedef DenseMap<Value*, AllocaInst*> AllocaForValueMapTy; |
| AllocaForValueMapTy AllocaForValue; |
| |
| FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) |
| : F(F), ASan(ASan), DIB(*F.getParent()), C(ASan.C), |
| IntptrTy(ASan.IntptrTy), IntptrPtrTy(PointerType::get(IntptrTy, 0)), |
| Mapping(ASan.Mapping), |
| TotalStackSize(0), StackAlignment(1 << Mapping.Scale) {} |
| |
| bool runOnFunction() { |
| if (!ClStack) return false; |
| // Collect alloca, ret, lifetime instructions etc. |
| for (df_iterator<BasicBlock*> DI = df_begin(&F.getEntryBlock()), |
| DE = df_end(&F.getEntryBlock()); DI != DE; ++DI) { |
| BasicBlock *BB = *DI; |
| visit(*BB); |
| } |
| if (AllocaVec.empty()) return false; |
| |
| initializeCallbacks(*F.getParent()); |
| |
| poisonStack(); |
| |
| if (ClDebugStack) { |
| DEBUG(dbgs() << F); |
| } |
| return true; |
| } |
| |
| // Finds all static Alloca instructions and puts |
| // poisoned red zones around all of them. |
| // Then unpoison everything back before the function returns. |
| void poisonStack(); |
| |
| // ----------------------- Visitors. |
| /// \brief Collect all Ret instructions. |
| void visitReturnInst(ReturnInst &RI) { |
| RetVec.push_back(&RI); |
| } |
| |
| /// \brief Collect Alloca instructions we want (and can) handle. |
| void visitAllocaInst(AllocaInst &AI) { |
| if (!isInterestingAlloca(AI)) return; |
| |
| StackAlignment = std::max(StackAlignment, AI.getAlignment()); |
| AllocaVec.push_back(&AI); |
| uint64_t AlignedSize = getAlignedAllocaSize(&AI); |
| TotalStackSize += AlignedSize; |
| } |
| |
| /// \brief Collect lifetime intrinsic calls to check for use-after-scope |
| /// errors. |
| void visitIntrinsicInst(IntrinsicInst &II) { |
| if (!ASan.CheckLifetime) return; |
| Intrinsic::ID ID = II.getIntrinsicID(); |
| if (ID != Intrinsic::lifetime_start && |
| ID != Intrinsic::lifetime_end) |
| return; |
| // Found lifetime intrinsic, add ASan instrumentation if necessary. |
| ConstantInt *Size = dyn_cast<ConstantInt>(II.getArgOperand(0)); |
| // If size argument is undefined, don't do anything. |
| if (Size->isMinusOne()) return; |
| // Check that size doesn't saturate uint64_t and can |
| // be stored in IntptrTy. |
| const uint64_t SizeValue = Size->getValue().getLimitedValue(); |
| if (SizeValue == ~0ULL || |
| !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) |
| return; |
| // Find alloca instruction that corresponds to llvm.lifetime argument. |
| AllocaInst *AI = findAllocaForValue(II.getArgOperand(1)); |
| if (!AI) return; |
| bool DoPoison = (ID == Intrinsic::lifetime_end); |
| AllocaPoisonCall APC = {&II, SizeValue, DoPoison}; |
| AllocaPoisonCallVec.push_back(APC); |
| } |
| |
| // ---------------------- Helpers. |
| void initializeCallbacks(Module &M); |
| |
| // Check if we want (and can) handle this alloca. |
| bool isInterestingAlloca(AllocaInst &AI) { |
| return (!AI.isArrayAllocation() && |
| AI.isStaticAlloca() && |
| AI.getAllocatedType()->isSized()); |
| } |
| |
| size_t RedzoneSize() const { |
| return RedzoneSizeForScale(Mapping.Scale); |
| } |
| uint64_t getAllocaSizeInBytes(AllocaInst *AI) { |
| Type *Ty = AI->getAllocatedType(); |
| uint64_t SizeInBytes = ASan.TD->getTypeAllocSize(Ty); |
| return SizeInBytes; |
| } |
| uint64_t getAlignedSize(uint64_t SizeInBytes) { |
| size_t RZ = RedzoneSize(); |
| return ((SizeInBytes + RZ - 1) / RZ) * RZ; |
| } |
| uint64_t getAlignedAllocaSize(AllocaInst *AI) { |
| uint64_t SizeInBytes = getAllocaSizeInBytes(AI); |
| return getAlignedSize(SizeInBytes); |
| } |
| /// Finds alloca where the value comes from. |
| AllocaInst *findAllocaForValue(Value *V); |
| void poisonRedZones(const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB, |
| Value *ShadowBase, bool DoPoison); |
| void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> IRB, bool DoPoison); |
| }; |
| |
| } // namespace |
| |
| char AddressSanitizer::ID = 0; |
| INITIALIZE_PASS(AddressSanitizer, "asan", |
| "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", |
| false, false) |
| FunctionPass *llvm::createAddressSanitizerFunctionPass( |
| bool CheckInitOrder, bool CheckUseAfterReturn, bool CheckLifetime, |
| StringRef BlacklistFile, bool ZeroBaseShadow) { |
| return new AddressSanitizer(CheckInitOrder, CheckUseAfterReturn, |
| CheckLifetime, BlacklistFile, ZeroBaseShadow); |
| } |
| |
| char AddressSanitizerModule::ID = 0; |
| INITIALIZE_PASS(AddressSanitizerModule, "asan-module", |
| "AddressSanitizer: detects use-after-free and out-of-bounds bugs." |
| "ModulePass", false, false) |
| ModulePass *llvm::createAddressSanitizerModulePass( |
| bool CheckInitOrder, StringRef BlacklistFile, bool ZeroBaseShadow) { |
| return new AddressSanitizerModule(CheckInitOrder, BlacklistFile, |
| ZeroBaseShadow); |
| } |
| |
| static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { |
| size_t Res = CountTrailingZeros_32(TypeSize / 8); |
| assert(Res < kNumberOfAccessSizes); |
| return Res; |
| } |
| |
| // Create a constant for Str so that we can pass it to the run-time lib. |
| static GlobalVariable *createPrivateGlobalForString(Module &M, StringRef Str) { |
| Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); |
| return new GlobalVariable(M, StrConst->getType(), true, |
| GlobalValue::PrivateLinkage, StrConst, |
| kAsanGenPrefix); |
| } |
| |
| static bool GlobalWasGeneratedByAsan(GlobalVariable *G) { |
| return G->getName().find(kAsanGenPrefix) == 0; |
| } |
| |
| Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { |
| // Shadow >> scale |
| Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); |
| if (Mapping.Offset == 0) |
| return Shadow; |
| // (Shadow >> scale) | offset |
| if (Mapping.OrShadowOffset) |
| return IRB.CreateOr(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); |
| else |
| return IRB.CreateAdd(Shadow, ConstantInt::get(IntptrTy, Mapping.Offset)); |
| } |
| |
| void AddressSanitizer::instrumentMemIntrinsicParam( |
| Instruction *OrigIns, |
| Value *Addr, Value *Size, Instruction *InsertBefore, bool IsWrite) { |
| IRBuilder<> IRB(InsertBefore); |
| if (Size->getType() != IntptrTy) |
| Size = IRB.CreateIntCast(Size, IntptrTy, false); |
| // Check the first byte. |
| instrumentAddress(OrigIns, InsertBefore, Addr, 8, IsWrite, Size); |
| // Check the last byte. |
| IRB.SetInsertPoint(InsertBefore); |
| Value *SizeMinusOne = IRB.CreateSub(Size, ConstantInt::get(IntptrTy, 1)); |
| Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); |
| Value *AddrLast = IRB.CreateAdd(AddrLong, SizeMinusOne); |
| instrumentAddress(OrigIns, InsertBefore, AddrLast, 8, IsWrite, Size); |
| } |
| |
| // Instrument memset/memmove/memcpy |
| bool AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { |
| Value *Dst = MI->getDest(); |
| MemTransferInst *MemTran = dyn_cast<MemTransferInst>(MI); |
| Value *Src = MemTran ? MemTran->getSource() : 0; |
| Value *Length = MI->getLength(); |
| |
| Constant *ConstLength = dyn_cast<Constant>(Length); |
| Instruction *InsertBefore = MI; |
| if (ConstLength) { |
| if (ConstLength->isNullValue()) return false; |
| } else { |
| // The size is not a constant so it could be zero -- check at run-time. |
| IRBuilder<> IRB(InsertBefore); |
| |
| Value *Cmp = IRB.CreateICmpNE(Length, |
| Constant::getNullValue(Length->getType())); |
| InsertBefore = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false); |
| } |
| |
| instrumentMemIntrinsicParam(MI, Dst, Length, InsertBefore, true); |
| if (Src) |
| instrumentMemIntrinsicParam(MI, Src, Length, InsertBefore, false); |
| return true; |
| } |
| |
| // If I is an interesting memory access, return the PointerOperand |
| // and set IsWrite. Otherwise return NULL. |
| static Value *isInterestingMemoryAccess(Instruction *I, bool *IsWrite) { |
| if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| if (!ClInstrumentReads) return NULL; |
| *IsWrite = false; |
| return LI->getPointerOperand(); |
| } |
| if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| if (!ClInstrumentWrites) return NULL; |
| *IsWrite = true; |
| return SI->getPointerOperand(); |
| } |
| if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { |
| if (!ClInstrumentAtomics) return NULL; |
| *IsWrite = true; |
| return RMW->getPointerOperand(); |
| } |
| if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { |
| if (!ClInstrumentAtomics) return NULL; |
| *IsWrite = true; |
| return XCHG->getPointerOperand(); |
| } |
| return NULL; |
| } |
| |
| void AddressSanitizer::instrumentMop(Instruction *I) { |
| bool IsWrite = false; |
| Value *Addr = isInterestingMemoryAccess(I, &IsWrite); |
| assert(Addr); |
| if (ClOpt && ClOptGlobals) { |
| if (GlobalVariable *G = dyn_cast<GlobalVariable>(Addr)) { |
| // If initialization order checking is disabled, a simple access to a |
| // dynamically initialized global is always valid. |
| if (!CheckInitOrder) |
| return; |
| // If a global variable does not have dynamic initialization we don't |
| // have to instrument it. However, if a global does not have initailizer |
| // at all, we assume it has dynamic initializer (in other TU). |
| if (G->hasInitializer() && !DynamicallyInitializedGlobals.Contains(G)) |
| return; |
| } |
| } |
| |
| Type *OrigPtrTy = Addr->getType(); |
| Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); |
| |
| assert(OrigTy->isSized()); |
| uint32_t TypeSize = TD->getTypeStoreSizeInBits(OrigTy); |
| |
| assert((TypeSize % 8) == 0); |
| |
| // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check. |
| if (TypeSize == 8 || TypeSize == 16 || |
| TypeSize == 32 || TypeSize == 64 || TypeSize == 128) |
| return instrumentAddress(I, I, Addr, TypeSize, IsWrite, 0); |
| // Instrument unusual size (but still multiple of 8). |
| // We can not do it with a single check, so we do 1-byte check for the first |
| // and the last bytes. We call __asan_report_*_n(addr, real_size) to be able |
| // to report the actual access size. |
| IRBuilder<> IRB(I); |
| Value *LastByte = IRB.CreateIntToPtr( |
| IRB.CreateAdd(IRB.CreatePointerCast(Addr, IntptrTy), |
| ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), |
| OrigPtrTy); |
| Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); |
| instrumentAddress(I, I, Addr, 8, IsWrite, Size); |
| instrumentAddress(I, I, LastByte, 8, IsWrite, Size); |
| } |
| |
| // Validate the result of Module::getOrInsertFunction called for an interface |
| // function of AddressSanitizer. If the instrumented module defines a function |
| // with the same name, their prototypes must match, otherwise |
| // getOrInsertFunction returns a bitcast. |
| static Function *checkInterfaceFunction(Constant *FuncOrBitcast) { |
| if (isa<Function>(FuncOrBitcast)) return cast<Function>(FuncOrBitcast); |
| FuncOrBitcast->dump(); |
| report_fatal_error("trying to redefine an AddressSanitizer " |
| "interface function"); |
| } |
| |
| Instruction *AddressSanitizer::generateCrashCode( |
| Instruction *InsertBefore, Value *Addr, |
| bool IsWrite, size_t AccessSizeIndex, Value *SizeArgument) { |
| IRBuilder<> IRB(InsertBefore); |
| CallInst *Call = SizeArgument |
| ? IRB.CreateCall2(AsanErrorCallbackSized[IsWrite], Addr, SizeArgument) |
| : IRB.CreateCall(AsanErrorCallback[IsWrite][AccessSizeIndex], Addr); |
| |
| // We don't do Call->setDoesNotReturn() because the BB already has |
| // UnreachableInst at the end. |
| // This EmptyAsm is required to avoid callback merge. |
| IRB.CreateCall(EmptyAsm); |
| return Call; |
| } |
| |
| Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, |
| Value *ShadowValue, |
| uint32_t TypeSize) { |
| size_t Granularity = 1 << Mapping.Scale; |
| // Addr & (Granularity - 1) |
| Value *LastAccessedByte = IRB.CreateAnd( |
| AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); |
| // (Addr & (Granularity - 1)) + size - 1 |
| if (TypeSize / 8 > 1) |
| LastAccessedByte = IRB.CreateAdd( |
| LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); |
| // (uint8_t) ((Addr & (Granularity-1)) + size - 1) |
| LastAccessedByte = IRB.CreateIntCast( |
| LastAccessedByte, ShadowValue->getType(), false); |
| // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue |
| return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); |
| } |
| |
| void AddressSanitizer::instrumentAddress(Instruction *OrigIns, |
| Instruction *InsertBefore, |
| Value *Addr, uint32_t TypeSize, |
| bool IsWrite, Value *SizeArgument) { |
| IRBuilder<> IRB(InsertBefore); |
| Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); |
| |
| Type *ShadowTy = IntegerType::get( |
| *C, std::max(8U, TypeSize >> Mapping.Scale)); |
| Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); |
| Value *ShadowPtr = memToShadow(AddrLong, IRB); |
| Value *CmpVal = Constant::getNullValue(ShadowTy); |
| Value *ShadowValue = IRB.CreateLoad( |
| IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); |
| |
| Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); |
| size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); |
| size_t Granularity = 1 << Mapping.Scale; |
| TerminatorInst *CrashTerm = 0; |
| |
| if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { |
| TerminatorInst *CheckTerm = |
| SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), false); |
| assert(dyn_cast<BranchInst>(CheckTerm)->isUnconditional()); |
| BasicBlock *NextBB = CheckTerm->getSuccessor(0); |
| IRB.SetInsertPoint(CheckTerm); |
| Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); |
| BasicBlock *CrashBlock = |
| BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); |
| CrashTerm = new UnreachableInst(*C, CrashBlock); |
| BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); |
| ReplaceInstWithInst(CheckTerm, NewTerm); |
| } else { |
| CrashTerm = SplitBlockAndInsertIfThen(cast<Instruction>(Cmp), true); |
| } |
| |
| Instruction *Crash = generateCrashCode( |
| CrashTerm, AddrLong, IsWrite, AccessSizeIndex, SizeArgument); |
| Crash->setDebugLoc(OrigIns->getDebugLoc()); |
| } |
| |
| void AddressSanitizerModule::createInitializerPoisonCalls( |
| Module &M, Value *FirstAddr, Value *LastAddr) { |
| // We do all of our poisoning and unpoisoning within _GLOBAL__I_a. |
| Function *GlobalInit = M.getFunction("_GLOBAL__I_a"); |
| // If that function is not present, this TU contains no globals, or they have |
| // all been optimized away |
| if (!GlobalInit) |
| return; |
| |
| // Set up the arguments to our poison/unpoison functions. |
| IRBuilder<> IRB(GlobalInit->begin()->getFirstInsertionPt()); |
| |
| // Add a call to poison all external globals before the given function starts. |
| IRB.CreateCall2(AsanPoisonGlobals, FirstAddr, LastAddr); |
| |
| // Add calls to unpoison all globals before each return instruction. |
| for (Function::iterator I = GlobalInit->begin(), E = GlobalInit->end(); |
| I != E; ++I) { |
| if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) { |
| CallInst::Create(AsanUnpoisonGlobals, "", RI); |
| } |
| } |
| } |
| |
| bool AddressSanitizerModule::ShouldInstrumentGlobal(GlobalVariable *G) { |
| Type *Ty = cast<PointerType>(G->getType())->getElementType(); |
| DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); |
| |
| if (BL->isIn(*G)) return false; |
| if (!Ty->isSized()) return false; |
| if (!G->hasInitializer()) return false; |
| if (GlobalWasGeneratedByAsan(G)) return false; // Our own global. |
| // Touch only those globals that will not be defined in other modules. |
| // Don't handle ODR type linkages since other modules may be built w/o asan. |
| if (G->getLinkage() != GlobalVariable::ExternalLinkage && |
| G->getLinkage() != GlobalVariable::PrivateLinkage && |
| G->getLinkage() != GlobalVariable::InternalLinkage) |
| return false; |
| // Two problems with thread-locals: |
| // - The address of the main thread's copy can't be computed at link-time. |
| // - Need to poison all copies, not just the main thread's one. |
| if (G->isThreadLocal()) |
| return false; |
| // For now, just ignore this Alloca if the alignment is large. |
| if (G->getAlignment() > RedzoneSize()) return false; |
| |
| // Ignore all the globals with the names starting with "\01L_OBJC_". |
| // Many of those are put into the .cstring section. The linker compresses |
| // that section by removing the spare \0s after the string terminator, so |
| // our redzones get broken. |
| if ((G->getName().find("\01L_OBJC_") == 0) || |
| (G->getName().find("\01l_OBJC_") == 0)) { |
| DEBUG(dbgs() << "Ignoring \\01L_OBJC_* global: " << *G); |
| return false; |
| } |
| |
| if (G->hasSection()) { |
| StringRef Section(G->getSection()); |
| // Ignore the globals from the __OBJC section. The ObjC runtime assumes |
| // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to |
| // them. |
| if ((Section.find("__OBJC,") == 0) || |
| (Section.find("__DATA, __objc_") == 0)) { |
| DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G); |
| return false; |
| } |
| // See http://code.google.com/p/address-sanitizer/issues/detail?id=32 |
| // Constant CFString instances are compiled in the following way: |
| // -- the string buffer is emitted into |
| // __TEXT,__cstring,cstring_literals |
| // -- the constant NSConstantString structure referencing that buffer |
| // is placed into __DATA,__cfstring |
| // Therefore there's no point in placing redzones into __DATA,__cfstring. |
| // Moreover, it causes the linker to crash on OS X 10.7 |
| if (Section.find("__DATA,__cfstring") == 0) { |
| DEBUG(dbgs() << "Ignoring CFString: " << *G); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| void AddressSanitizerModule::initializeCallbacks(Module &M) { |
| IRBuilder<> IRB(*C); |
| // Declare our poisoning and unpoisoning functions. |
| AsanPoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction( |
| kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); |
| AsanPoisonGlobals->setLinkage(Function::ExternalLinkage); |
| AsanUnpoisonGlobals = checkInterfaceFunction(M.getOrInsertFunction( |
| kAsanUnpoisonGlobalsName, IRB.getVoidTy(), NULL)); |
| AsanUnpoisonGlobals->setLinkage(Function::ExternalLinkage); |
| // Declare functions that register/unregister globals. |
| AsanRegisterGlobals = checkInterfaceFunction(M.getOrInsertFunction( |
| kAsanRegisterGlobalsName, IRB.getVoidTy(), |
| IntptrTy, IntptrTy, NULL)); |
| AsanRegisterGlobals->setLinkage(Function::ExternalLinkage); |
| AsanUnregisterGlobals = checkInterfaceFunction(M.getOrInsertFunction( |
| kAsanUnregisterGlobalsName, |
| IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); |
| AsanUnregisterGlobals->setLinkage(Function::ExternalLinkage); |
| } |
| |
| // This function replaces all global variables with new variables that have |
| // trailing redzones. It also creates a function that poisons |
| // redzones and inserts this function into llvm.global_ctors. |
| bool AddressSanitizerModule::runOnModule(Module &M) { |
| if (!ClGlobals) return false; |
| TD = getAnalysisIfAvailable<DataLayout>(); |
| if (!TD) |
| return false; |
| BL.reset(new BlackList(BlacklistFile)); |
| if (BL->isIn(M)) return false; |
| C = &(M.getContext()); |
| int LongSize = TD->getPointerSizeInBits(); |
| IntptrTy = Type::getIntNTy(*C, LongSize); |
| Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow); |
| initializeCallbacks(M); |
| DynamicallyInitializedGlobals.Init(M); |
| |
| SmallVector<GlobalVariable *, 16> GlobalsToChange; |
| |
| for (Module::GlobalListType::iterator G = M.global_begin(), |
| E = M.global_end(); G != E; ++G) { |
| if (ShouldInstrumentGlobal(G)) |
| GlobalsToChange.push_back(G); |
| } |
| |
| size_t n = GlobalsToChange.size(); |
| if (n == 0) return false; |
| |
| // A global is described by a structure |
| // size_t beg; |
| // size_t size; |
| // size_t size_with_redzone; |
| // const char *name; |
| // size_t has_dynamic_init; |
| // We initialize an array of such structures and pass it to a run-time call. |
| StructType *GlobalStructTy = StructType::get(IntptrTy, IntptrTy, |
| IntptrTy, IntptrTy, |
| IntptrTy, NULL); |
| SmallVector<Constant *, 16> Initializers(n), DynamicInit; |
| |
| |
| Function *CtorFunc = M.getFunction(kAsanModuleCtorName); |
| assert(CtorFunc); |
| IRBuilder<> IRB(CtorFunc->getEntryBlock().getTerminator()); |
| |
| // The addresses of the first and last dynamically initialized globals in |
| // this TU. Used in initialization order checking. |
| Value *FirstDynamic = 0, *LastDynamic = 0; |
| |
| for (size_t i = 0; i < n; i++) { |
| static const uint64_t kMaxGlobalRedzone = 1 << 18; |
| GlobalVariable *G = GlobalsToChange[i]; |
| PointerType *PtrTy = cast<PointerType>(G->getType()); |
| Type *Ty = PtrTy->getElementType(); |
| uint64_t SizeInBytes = TD->getTypeAllocSize(Ty); |
| uint64_t MinRZ = RedzoneSize(); |
| // MinRZ <= RZ <= kMaxGlobalRedzone |
| // and trying to make RZ to be ~ 1/4 of SizeInBytes. |
| uint64_t RZ = std::max(MinRZ, |
| std::min(kMaxGlobalRedzone, |
| (SizeInBytes / MinRZ / 4) * MinRZ)); |
| uint64_t RightRedzoneSize = RZ; |
| // Round up to MinRZ |
| if (SizeInBytes % MinRZ) |
| RightRedzoneSize += MinRZ - (SizeInBytes % MinRZ); |
| assert(((RightRedzoneSize + SizeInBytes) % MinRZ) == 0); |
| Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); |
| // Determine whether this global should be poisoned in initialization. |
| bool GlobalHasDynamicInitializer = |
| DynamicallyInitializedGlobals.Contains(G); |
| // Don't check initialization order if this global is blacklisted. |
| GlobalHasDynamicInitializer &= !BL->isInInit(*G); |
| |
| StructType *NewTy = StructType::get(Ty, RightRedZoneTy, NULL); |
| Constant *NewInitializer = ConstantStruct::get( |
| NewTy, G->getInitializer(), |
| Constant::getNullValue(RightRedZoneTy), NULL); |
| |
| SmallString<2048> DescriptionOfGlobal = G->getName(); |
| DescriptionOfGlobal += " ("; |
| DescriptionOfGlobal += M.getModuleIdentifier(); |
| DescriptionOfGlobal += ")"; |
| GlobalVariable *Name = createPrivateGlobalForString(M, DescriptionOfGlobal); |
| |
| // Create a new global variable with enough space for a redzone. |
| GlobalVariable *NewGlobal = new GlobalVariable( |
| M, NewTy, G->isConstant(), G->getLinkage(), |
| NewInitializer, "", G, G->getThreadLocalMode()); |
| NewGlobal->copyAttributesFrom(G); |
| NewGlobal->setAlignment(MinRZ); |
| |
| Value *Indices2[2]; |
| Indices2[0] = IRB.getInt32(0); |
| Indices2[1] = IRB.getInt32(0); |
| |
| G->replaceAllUsesWith( |
| ConstantExpr::getGetElementPtr(NewGlobal, Indices2, true)); |
| NewGlobal->takeName(G); |
| G->eraseFromParent(); |
| |
| Initializers[i] = ConstantStruct::get( |
| GlobalStructTy, |
| ConstantExpr::getPointerCast(NewGlobal, IntptrTy), |
| ConstantInt::get(IntptrTy, SizeInBytes), |
| ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), |
| ConstantExpr::getPointerCast(Name, IntptrTy), |
| ConstantInt::get(IntptrTy, GlobalHasDynamicInitializer), |
| NULL); |
| |
| // Populate the first and last globals declared in this TU. |
| if (CheckInitOrder && GlobalHasDynamicInitializer) { |
| LastDynamic = ConstantExpr::getPointerCast(NewGlobal, IntptrTy); |
| if (FirstDynamic == 0) |
| FirstDynamic = LastDynamic; |
| } |
| |
| DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); |
| } |
| |
| ArrayType *ArrayOfGlobalStructTy = ArrayType::get(GlobalStructTy, n); |
| GlobalVariable *AllGlobals = new GlobalVariable( |
| M, ArrayOfGlobalStructTy, false, GlobalVariable::PrivateLinkage, |
| ConstantArray::get(ArrayOfGlobalStructTy, Initializers), ""); |
| |
| // Create calls for poisoning before initializers run and unpoisoning after. |
| if (CheckInitOrder && FirstDynamic && LastDynamic) |
| createInitializerPoisonCalls(M, FirstDynamic, LastDynamic); |
| IRB.CreateCall2(AsanRegisterGlobals, |
| IRB.CreatePointerCast(AllGlobals, IntptrTy), |
| ConstantInt::get(IntptrTy, n)); |
| |
| // We also need to unregister globals at the end, e.g. when a shared library |
| // gets closed. |
| Function *AsanDtorFunction = Function::Create( |
| FunctionType::get(Type::getVoidTy(*C), false), |
| GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); |
| BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); |
| IRBuilder<> IRB_Dtor(ReturnInst::Create(*C, AsanDtorBB)); |
| IRB_Dtor.CreateCall2(AsanUnregisterGlobals, |
| IRB.CreatePointerCast(AllGlobals, IntptrTy), |
| ConstantInt::get(IntptrTy, n)); |
| appendToGlobalDtors(M, AsanDtorFunction, kAsanCtorAndCtorPriority); |
| |
| DEBUG(dbgs() << M); |
| return true; |
| } |
| |
| void AddressSanitizer::initializeCallbacks(Module &M) { |
| IRBuilder<> IRB(*C); |
| // Create __asan_report* callbacks. |
| for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { |
| for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; |
| AccessSizeIndex++) { |
| // IsWrite and TypeSize are encoded in the function name. |
| std::string FunctionName = std::string(kAsanReportErrorTemplate) + |
| (AccessIsWrite ? "store" : "load") + itostr(1 << AccessSizeIndex); |
| // If we are merging crash callbacks, they have two parameters. |
| AsanErrorCallback[AccessIsWrite][AccessSizeIndex] = |
| checkInterfaceFunction(M.getOrInsertFunction( |
| FunctionName, IRB.getVoidTy(), IntptrTy, NULL)); |
| } |
| } |
| AsanErrorCallbackSized[0] = checkInterfaceFunction(M.getOrInsertFunction( |
| kAsanReportLoadN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); |
| AsanErrorCallbackSized[1] = checkInterfaceFunction(M.getOrInsertFunction( |
| kAsanReportStoreN, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); |
| |
| AsanHandleNoReturnFunc = checkInterfaceFunction(M.getOrInsertFunction( |
| kAsanHandleNoReturnName, IRB.getVoidTy(), NULL)); |
| // We insert an empty inline asm after __asan_report* to avoid callback merge. |
| EmptyAsm = InlineAsm::get(FunctionType::get(IRB.getVoidTy(), false), |
| StringRef(""), StringRef(""), |
| /*hasSideEffects=*/true); |
| } |
| |
| void AddressSanitizer::emitShadowMapping(Module &M, IRBuilder<> &IRB) const { |
| // Tell the values of mapping offset and scale to the run-time. |
| GlobalValue *asan_mapping_offset = |
| new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage, |
| ConstantInt::get(IntptrTy, Mapping.Offset), |
| kAsanMappingOffsetName); |
| // Read the global, otherwise it may be optimized away. |
| IRB.CreateLoad(asan_mapping_offset, true); |
| |
| GlobalValue *asan_mapping_scale = |
| new GlobalVariable(M, IntptrTy, true, GlobalValue::LinkOnceODRLinkage, |
| ConstantInt::get(IntptrTy, Mapping.Scale), |
| kAsanMappingScaleName); |
| // Read the global, otherwise it may be optimized away. |
| IRB.CreateLoad(asan_mapping_scale, true); |
| } |
| |
| // virtual |
| bool AddressSanitizer::doInitialization(Module &M) { |
| // Initialize the private fields. No one has accessed them before. |
| TD = getAnalysisIfAvailable<DataLayout>(); |
| |
| if (!TD) |
| return false; |
| BL.reset(new BlackList(BlacklistFile)); |
| DynamicallyInitializedGlobals.Init(M); |
| |
| C = &(M.getContext()); |
| LongSize = TD->getPointerSizeInBits(); |
| IntptrTy = Type::getIntNTy(*C, LongSize); |
| |
| AsanCtorFunction = Function::Create( |
| FunctionType::get(Type::getVoidTy(*C), false), |
| GlobalValue::InternalLinkage, kAsanModuleCtorName, &M); |
| BasicBlock *AsanCtorBB = BasicBlock::Create(*C, "", AsanCtorFunction); |
| // call __asan_init in the module ctor. |
| IRBuilder<> IRB(ReturnInst::Create(*C, AsanCtorBB)); |
| AsanInitFunction = checkInterfaceFunction( |
| M.getOrInsertFunction(kAsanInitName, IRB.getVoidTy(), NULL)); |
| AsanInitFunction->setLinkage(Function::ExternalLinkage); |
| IRB.CreateCall(AsanInitFunction); |
| |
| Mapping = getShadowMapping(M, LongSize, ZeroBaseShadow); |
| emitShadowMapping(M, IRB); |
| |
| appendToGlobalCtors(M, AsanCtorFunction, kAsanCtorAndCtorPriority); |
| return true; |
| } |
| |
| bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { |
| // For each NSObject descendant having a +load method, this method is invoked |
| // by the ObjC runtime before any of the static constructors is called. |
| // Therefore we need to instrument such methods with a call to __asan_init |
| // at the beginning in order to initialize our runtime before any access to |
| // the shadow memory. |
| // We cannot just ignore these methods, because they may call other |
| // instrumented functions. |
| if (F.getName().find(" load]") != std::string::npos) { |
| IRBuilder<> IRB(F.begin()->begin()); |
| IRB.CreateCall(AsanInitFunction); |
| return true; |
| } |
| return false; |
| } |
| |
| bool AddressSanitizer::runOnFunction(Function &F) { |
| if (BL->isIn(F)) return false; |
| if (&F == AsanCtorFunction) return false; |
| DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); |
| initializeCallbacks(*F.getParent()); |
| |
| // If needed, insert __asan_init before checking for SanitizeAddress attr. |
| maybeInsertAsanInitAtFunctionEntry(F); |
| |
| if (!F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, |
| Attribute::SanitizeAddress)) |
| return false; |
| |
| if (!ClDebugFunc.empty() && ClDebugFunc != F.getName()) |
| return false; |
| |
| // We want to instrument every address only once per basic block (unless there |
| // are calls between uses). |
| SmallSet<Value*, 16> TempsToInstrument; |
| SmallVector<Instruction*, 16> ToInstrument; |
| SmallVector<Instruction*, 8> NoReturnCalls; |
| bool IsWrite; |
| |
| // Fill the set of memory operations to instrument. |
| for (Function::iterator FI = F.begin(), FE = F.end(); |
| FI != FE; ++FI) { |
| TempsToInstrument.clear(); |
| int NumInsnsPerBB = 0; |
| for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); |
| BI != BE; ++BI) { |
| if (LooksLikeCodeInBug11395(BI)) return false; |
| if (Value *Addr = isInterestingMemoryAccess(BI, &IsWrite)) { |
| if (ClOpt && ClOptSameTemp) { |
| if (!TempsToInstrument.insert(Addr)) |
| continue; // We've seen this temp in the current BB. |
| } |
| } else if (isa<MemIntrinsic>(BI) && ClMemIntrin) { |
| // ok, take it. |
| } else { |
| CallSite CS(BI); |
| if (CS) { |
| // A call inside BB. |
| TempsToInstrument.clear(); |
| if (CS.doesNotReturn()) |
| NoReturnCalls.push_back(CS.getInstruction()); |
| } |
| continue; |
| } |
| ToInstrument.push_back(BI); |
| NumInsnsPerBB++; |
| if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) |
| break; |
| } |
| } |
| |
| // Instrument. |
| int NumInstrumented = 0; |
| for (size_t i = 0, n = ToInstrument.size(); i != n; i++) { |
| Instruction *Inst = ToInstrument[i]; |
| if (ClDebugMin < 0 || ClDebugMax < 0 || |
| (NumInstrumented >= ClDebugMin && NumInstrumented <= ClDebugMax)) { |
| if (isInterestingMemoryAccess(Inst, &IsWrite)) |
| instrumentMop(Inst); |
| else |
| instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); |
| } |
| NumInstrumented++; |
| } |
| |
| FunctionStackPoisoner FSP(F, *this); |
| bool ChangedStack = FSP.runOnFunction(); |
| |
| // We must unpoison the stack before every NoReturn call (throw, _exit, etc). |
| // See e.g. http://code.google.com/p/address-sanitizer/issues/detail?id=37 |
| for (size_t i = 0, n = NoReturnCalls.size(); i != n; i++) { |
| Instruction *CI = NoReturnCalls[i]; |
| IRBuilder<> IRB(CI); |
| IRB.CreateCall(AsanHandleNoReturnFunc); |
| } |
| DEBUG(dbgs() << "ASAN done instrumenting:\n" << F << "\n"); |
| |
| return NumInstrumented > 0 || ChangedStack || !NoReturnCalls.empty(); |
| } |
| |
| static uint64_t ValueForPoison(uint64_t PoisonByte, size_t ShadowRedzoneSize) { |
| if (ShadowRedzoneSize == 1) return PoisonByte; |
| if (ShadowRedzoneSize == 2) return (PoisonByte << 8) + PoisonByte; |
| if (ShadowRedzoneSize == 4) |
| return (PoisonByte << 24) + (PoisonByte << 16) + |
| (PoisonByte << 8) + (PoisonByte); |
| llvm_unreachable("ShadowRedzoneSize is either 1, 2 or 4"); |
| } |
| |
| static void PoisonShadowPartialRightRedzone(uint8_t *Shadow, |
| size_t Size, |
| size_t RZSize, |
| size_t ShadowGranularity, |
| uint8_t Magic) { |
| for (size_t i = 0; i < RZSize; |
| i+= ShadowGranularity, Shadow++) { |
| if (i + ShadowGranularity <= Size) { |
| *Shadow = 0; // fully addressable |
| } else if (i >= Size) { |
| *Shadow = Magic; // unaddressable |
| } else { |
| *Shadow = Size - i; // first Size-i bytes are addressable |
| } |
| } |
| } |
| |
| // Workaround for bug 11395: we don't want to instrument stack in functions |
| // with large assembly blobs (32-bit only), otherwise reg alloc may crash. |
| // FIXME: remove once the bug 11395 is fixed. |
| bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { |
| if (LongSize != 32) return false; |
| CallInst *CI = dyn_cast<CallInst>(I); |
| if (!CI || !CI->isInlineAsm()) return false; |
| if (CI->getNumArgOperands() <= 5) return false; |
| // We have inline assembly with quite a few arguments. |
| return true; |
| } |
| |
| void FunctionStackPoisoner::initializeCallbacks(Module &M) { |
| IRBuilder<> IRB(*C); |
| AsanStackMallocFunc = checkInterfaceFunction(M.getOrInsertFunction( |
| kAsanStackMallocName, IntptrTy, IntptrTy, IntptrTy, NULL)); |
| AsanStackFreeFunc = checkInterfaceFunction(M.getOrInsertFunction( |
| kAsanStackFreeName, IRB.getVoidTy(), |
| IntptrTy, IntptrTy, IntptrTy, NULL)); |
| AsanPoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction( |
| kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); |
| AsanUnpoisonStackMemoryFunc = checkInterfaceFunction(M.getOrInsertFunction( |
| kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy, NULL)); |
| } |
| |
| void FunctionStackPoisoner::poisonRedZones( |
| const ArrayRef<AllocaInst*> &AllocaVec, IRBuilder<> IRB, Value *ShadowBase, |
| bool DoPoison) { |
| size_t ShadowRZSize = RedzoneSize() >> Mapping.Scale; |
| assert(ShadowRZSize >= 1 && ShadowRZSize <= 4); |
| Type *RZTy = Type::getIntNTy(*C, ShadowRZSize * 8); |
| Type *RZPtrTy = PointerType::get(RZTy, 0); |
| |
| Value *PoisonLeft = ConstantInt::get(RZTy, |
| ValueForPoison(DoPoison ? kAsanStackLeftRedzoneMagic : 0LL, ShadowRZSize)); |
| Value *PoisonMid = ConstantInt::get(RZTy, |
| ValueForPoison(DoPoison ? kAsanStackMidRedzoneMagic : 0LL, ShadowRZSize)); |
| Value *PoisonRight = ConstantInt::get(RZTy, |
| ValueForPoison(DoPoison ? kAsanStackRightRedzoneMagic : 0LL, ShadowRZSize)); |
| |
| // poison the first red zone. |
| IRB.CreateStore(PoisonLeft, IRB.CreateIntToPtr(ShadowBase, RZPtrTy)); |
| |
| // poison all other red zones. |
| uint64_t Pos = RedzoneSize(); |
| for (size_t i = 0, n = AllocaVec.size(); i < n; i++) { |
| AllocaInst *AI = AllocaVec[i]; |
| uint64_t SizeInBytes = getAllocaSizeInBytes(AI); |
| uint64_t AlignedSize = getAlignedAllocaSize(AI); |
| assert(AlignedSize - SizeInBytes < RedzoneSize()); |
| Value *Ptr = NULL; |
| |
| Pos += AlignedSize; |
| |
| assert(ShadowBase->getType() == IntptrTy); |
| if (SizeInBytes < AlignedSize) { |
| // Poison the partial redzone at right |
| Ptr = IRB.CreateAdd( |
| ShadowBase, ConstantInt::get(IntptrTy, |
| (Pos >> Mapping.Scale) - ShadowRZSize)); |
| size_t AddressableBytes = RedzoneSize() - (AlignedSize - SizeInBytes); |
| uint32_t Poison = 0; |
| if (DoPoison) { |
| PoisonShadowPartialRightRedzone((uint8_t*)&Poison, AddressableBytes, |
| RedzoneSize(), |
| 1ULL << Mapping.Scale, |
| kAsanStackPartialRedzoneMagic); |
| } |
| Value *PartialPoison = ConstantInt::get(RZTy, Poison); |
| IRB.CreateStore(PartialPoison, IRB.CreateIntToPtr(Ptr, RZPtrTy)); |
| } |
| |
| // Poison the full redzone at right. |
| Ptr = IRB.CreateAdd(ShadowBase, |
| ConstantInt::get(IntptrTy, Pos >> Mapping.Scale)); |
| bool LastAlloca = (i == AllocaVec.size() - 1); |
| Value *Poison = LastAlloca ? PoisonRight : PoisonMid; |
| IRB.CreateStore(Poison, IRB.CreateIntToPtr(Ptr, RZPtrTy)); |
| |
| Pos += RedzoneSize(); |
| } |
| } |
| |
| void FunctionStackPoisoner::poisonStack() { |
| uint64_t LocalStackSize = TotalStackSize + |
| (AllocaVec.size() + 1) * RedzoneSize(); |
| |
| bool DoStackMalloc = ASan.CheckUseAfterReturn |
| && LocalStackSize <= kMaxStackMallocSize; |
| |
| assert(AllocaVec.size() > 0); |
| Instruction *InsBefore = AllocaVec[0]; |
| IRBuilder<> IRB(InsBefore); |
| |
| |
| Type *ByteArrayTy = ArrayType::get(IRB.getInt8Ty(), LocalStackSize); |
| AllocaInst *MyAlloca = |
| new AllocaInst(ByteArrayTy, "MyAlloca", InsBefore); |
| if (ClRealignStack && StackAlignment < RedzoneSize()) |
| StackAlignment = RedzoneSize(); |
| MyAlloca->setAlignment(StackAlignment); |
| assert(MyAlloca->isStaticAlloca()); |
| Value *OrigStackBase = IRB.CreatePointerCast(MyAlloca, IntptrTy); |
| Value *LocalStackBase = OrigStackBase; |
| |
| if (DoStackMalloc) { |
| LocalStackBase = IRB.CreateCall2(AsanStackMallocFunc, |
| ConstantInt::get(IntptrTy, LocalStackSize), OrigStackBase); |
| } |
| |
| // This string will be parsed by the run-time (DescribeStackAddress). |
| SmallString<2048> StackDescriptionStorage; |
| raw_svector_ostream StackDescription(StackDescriptionStorage); |
| StackDescription << F.getName() << " " << AllocaVec.size() << " "; |
| |
| // Insert poison calls for lifetime intrinsics for alloca. |
| bool HavePoisonedAllocas = false; |
| for (size_t i = 0, n = AllocaPoisonCallVec.size(); i < n; i++) { |
| const AllocaPoisonCall &APC = AllocaPoisonCallVec[i]; |
| IntrinsicInst *II = APC.InsBefore; |
| AllocaInst *AI = findAllocaForValue(II->getArgOperand(1)); |
| assert(AI); |
| IRBuilder<> IRB(II); |
| poisonAlloca(AI, APC.Size, IRB, APC.DoPoison); |
| HavePoisonedAllocas |= APC.DoPoison; |
| } |
| |
| uint64_t Pos = RedzoneSize(); |
| // Replace Alloca instructions with base+offset. |
| for (size_t i = 0, n = AllocaVec.size(); i < n; i++) { |
| AllocaInst *AI = AllocaVec[i]; |
| uint64_t SizeInBytes = getAllocaSizeInBytes(AI); |
| StringRef Name = AI->getName(); |
| StackDescription << Pos << " " << SizeInBytes << " " |
| << Name.size() << " " << Name << " "; |
| uint64_t AlignedSize = getAlignedAllocaSize(AI); |
| assert((AlignedSize % RedzoneSize()) == 0); |
| Value *NewAllocaPtr = IRB.CreateIntToPtr( |
| IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Pos)), |
| AI->getType()); |
| replaceDbgDeclareForAlloca(AI, NewAllocaPtr, DIB); |
| AI->replaceAllUsesWith(NewAllocaPtr); |
| Pos += AlignedSize + RedzoneSize(); |
| } |
| assert(Pos == LocalStackSize); |
| |
| // Write the Magic value and the frame description constant to the redzone. |
| Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); |
| IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), |
| BasePlus0); |
| Value *BasePlus1 = IRB.CreateAdd(LocalStackBase, |
| ConstantInt::get(IntptrTy, |
| ASan.LongSize/8)); |
| BasePlus1 = IRB.CreateIntToPtr(BasePlus1, IntptrPtrTy); |
| GlobalVariable *StackDescriptionGlobal = |
| createPrivateGlobalForString(*F.getParent(), StackDescription.str()); |
| Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, |
| IntptrTy); |
| IRB.CreateStore(Description, BasePlus1); |
| |
| // Poison the stack redzones at the entry. |
| Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); |
| poisonRedZones(AllocaVec, IRB, ShadowBase, true); |
| |
| // Unpoison the stack before all ret instructions. |
| for (size_t i = 0, n = RetVec.size(); i < n; i++) { |
| Instruction *Ret = RetVec[i]; |
| IRBuilder<> IRBRet(Ret); |
| // Mark the current frame as retired. |
| IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), |
| BasePlus0); |
| // Unpoison the stack. |
| poisonRedZones(AllocaVec, IRBRet, ShadowBase, false); |
| if (DoStackMalloc) { |
| // In use-after-return mode, mark the whole stack frame unaddressable. |
| IRBRet.CreateCall3(AsanStackFreeFunc, LocalStackBase, |
| ConstantInt::get(IntptrTy, LocalStackSize), |
| OrigStackBase); |
| } else if (HavePoisonedAllocas) { |
| // If we poisoned some allocas in llvm.lifetime analysis, |
| // unpoison whole stack frame now. |
| assert(LocalStackBase == OrigStackBase); |
| poisonAlloca(LocalStackBase, LocalStackSize, IRBRet, false); |
| } |
| } |
| |
| // We are done. Remove the old unused alloca instructions. |
| for (size_t i = 0, n = AllocaVec.size(); i < n; i++) |
| AllocaVec[i]->eraseFromParent(); |
| } |
| |
| void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, |
| IRBuilder<> IRB, bool DoPoison) { |
| // For now just insert the call to ASan runtime. |
| Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); |
| Value *SizeArg = ConstantInt::get(IntptrTy, Size); |
| IRB.CreateCall2(DoPoison ? AsanPoisonStackMemoryFunc |
| : AsanUnpoisonStackMemoryFunc, |
| AddrArg, SizeArg); |
| } |
| |
| // Handling llvm.lifetime intrinsics for a given %alloca: |
| // (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. |
| // (2) if %size is constant, poison memory for llvm.lifetime.end (to detect |
| // invalid accesses) and unpoison it for llvm.lifetime.start (the memory |
| // could be poisoned by previous llvm.lifetime.end instruction, as the |
| // variable may go in and out of scope several times, e.g. in loops). |
| // (3) if we poisoned at least one %alloca in a function, |
| // unpoison the whole stack frame at function exit. |
| |
| AllocaInst *FunctionStackPoisoner::findAllocaForValue(Value *V) { |
| if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) |
| // We're intested only in allocas we can handle. |
| return isInterestingAlloca(*AI) ? AI : 0; |
| // See if we've already calculated (or started to calculate) alloca for a |
| // given value. |
| AllocaForValueMapTy::iterator I = AllocaForValue.find(V); |
| if (I != AllocaForValue.end()) |
| return I->second; |
| // Store 0 while we're calculating alloca for value V to avoid |
| // infinite recursion if the value references itself. |
| AllocaForValue[V] = 0; |
| AllocaInst *Res = 0; |
| if (CastInst *CI = dyn_cast<CastInst>(V)) |
| Res = findAllocaForValue(CI->getOperand(0)); |
| else if (PHINode *PN = dyn_cast<PHINode>(V)) { |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| Value *IncValue = PN->getIncomingValue(i); |
| // Allow self-referencing phi-nodes. |
| if (IncValue == PN) continue; |
| AllocaInst *IncValueAI = findAllocaForValue(IncValue); |
| // AI for incoming values should exist and should all be equal. |
| if (IncValueAI == 0 || (Res != 0 && IncValueAI != Res)) |
| return 0; |
| Res = IncValueAI; |
| } |
| } |
| if (Res != 0) |
| AllocaForValue[V] = Res; |
| return Res; |
| } |