| //===- PassManager.cpp - LLVM Pass Infrastructure Implementation ----------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the LLVM Pass Manager infrastructure. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| |
| #include "llvm/PassManagers.h" |
| #include "llvm/Assembly/PrintModulePass.h" |
| #include "llvm/Assembly/Writer.h" |
| #include "llvm/IR/Module.h" |
| #include "llvm/PassManager.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/ManagedStatic.h" |
| #include "llvm/Support/Mutex.h" |
| #include "llvm/Support/PassNameParser.h" |
| #include "llvm/Support/Timer.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| #include <map> |
| using namespace llvm; |
| |
| // See PassManagers.h for Pass Manager infrastructure overview. |
| |
| namespace llvm { |
| |
| //===----------------------------------------------------------------------===// |
| // Pass debugging information. Often it is useful to find out what pass is |
| // running when a crash occurs in a utility. When this library is compiled with |
| // debugging on, a command line option (--debug-pass) is enabled that causes the |
| // pass name to be printed before it executes. |
| // |
| |
| // Different debug levels that can be enabled... |
| enum PassDebugLevel { |
| None, Arguments, Structure, Executions, Details |
| }; |
| |
| static cl::opt<enum PassDebugLevel> |
| PassDebugging("debug-pass", cl::Hidden, |
| cl::desc("Print PassManager debugging information"), |
| cl::values( |
| clEnumVal(None , "disable debug output"), |
| clEnumVal(Arguments , "print pass arguments to pass to 'opt'"), |
| clEnumVal(Structure , "print pass structure before run()"), |
| clEnumVal(Executions, "print pass name before it is executed"), |
| clEnumVal(Details , "print pass details when it is executed"), |
| clEnumValEnd)); |
| |
| typedef llvm::cl::list<const llvm::PassInfo *, bool, PassNameParser> |
| PassOptionList; |
| |
| // Print IR out before/after specified passes. |
| static PassOptionList |
| PrintBefore("print-before", |
| llvm::cl::desc("Print IR before specified passes"), |
| cl::Hidden); |
| |
| static PassOptionList |
| PrintAfter("print-after", |
| llvm::cl::desc("Print IR after specified passes"), |
| cl::Hidden); |
| |
| static cl::opt<bool> |
| PrintBeforeAll("print-before-all", |
| llvm::cl::desc("Print IR before each pass"), |
| cl::init(false)); |
| static cl::opt<bool> |
| PrintAfterAll("print-after-all", |
| llvm::cl::desc("Print IR after each pass"), |
| cl::init(false)); |
| |
| /// This is a helper to determine whether to print IR before or |
| /// after a pass. |
| |
| static bool ShouldPrintBeforeOrAfterPass(const PassInfo *PI, |
| PassOptionList &PassesToPrint) { |
| for (unsigned i = 0, ie = PassesToPrint.size(); i < ie; ++i) { |
| const llvm::PassInfo *PassInf = PassesToPrint[i]; |
| if (PassInf) |
| if (PassInf->getPassArgument() == PI->getPassArgument()) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| /// This is a utility to check whether a pass should have IR dumped |
| /// before it. |
| static bool ShouldPrintBeforePass(const PassInfo *PI) { |
| return PrintBeforeAll || ShouldPrintBeforeOrAfterPass(PI, PrintBefore); |
| } |
| |
| /// This is a utility to check whether a pass should have IR dumped |
| /// after it. |
| static bool ShouldPrintAfterPass(const PassInfo *PI) { |
| return PrintAfterAll || ShouldPrintBeforeOrAfterPass(PI, PrintAfter); |
| } |
| |
| } // End of llvm namespace |
| |
| /// isPassDebuggingExecutionsOrMore - Return true if -debug-pass=Executions |
| /// or higher is specified. |
| bool PMDataManager::isPassDebuggingExecutionsOrMore() const { |
| return PassDebugging >= Executions; |
| } |
| |
| |
| |
| |
| void PassManagerPrettyStackEntry::print(raw_ostream &OS) const { |
| if (V == 0 && M == 0) |
| OS << "Releasing pass '"; |
| else |
| OS << "Running pass '"; |
| |
| OS << P->getPassName() << "'"; |
| |
| if (M) { |
| OS << " on module '" << M->getModuleIdentifier() << "'.\n"; |
| return; |
| } |
| if (V == 0) { |
| OS << '\n'; |
| return; |
| } |
| |
| OS << " on "; |
| if (isa<Function>(V)) |
| OS << "function"; |
| else if (isa<BasicBlock>(V)) |
| OS << "basic block"; |
| else |
| OS << "value"; |
| |
| OS << " '"; |
| WriteAsOperand(OS, V, /*PrintTy=*/false, M); |
| OS << "'\n"; |
| } |
| |
| |
| namespace { |
| |
| //===----------------------------------------------------------------------===// |
| // BBPassManager |
| // |
| /// BBPassManager manages BasicBlockPass. It batches all the |
| /// pass together and sequence them to process one basic block before |
| /// processing next basic block. |
| class BBPassManager : public PMDataManager, public FunctionPass { |
| |
| public: |
| static char ID; |
| explicit BBPassManager() |
| : PMDataManager(), FunctionPass(ID) {} |
| |
| /// Execute all of the passes scheduled for execution. Keep track of |
| /// whether any of the passes modifies the function, and if so, return true. |
| bool runOnFunction(Function &F); |
| |
| /// Pass Manager itself does not invalidate any analysis info. |
| void getAnalysisUsage(AnalysisUsage &Info) const { |
| Info.setPreservesAll(); |
| } |
| |
| bool doInitialization(Module &M); |
| bool doInitialization(Function &F); |
| bool doFinalization(Module &M); |
| bool doFinalization(Function &F); |
| |
| virtual PMDataManager *getAsPMDataManager() { return this; } |
| virtual Pass *getAsPass() { return this; } |
| |
| virtual const char *getPassName() const { |
| return "BasicBlock Pass Manager"; |
| } |
| |
| // Print passes managed by this manager |
| void dumpPassStructure(unsigned Offset) { |
| llvm::dbgs().indent(Offset*2) << "BasicBlockPass Manager\n"; |
| for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { |
| BasicBlockPass *BP = getContainedPass(Index); |
| BP->dumpPassStructure(Offset + 1); |
| dumpLastUses(BP, Offset+1); |
| } |
| } |
| |
| BasicBlockPass *getContainedPass(unsigned N) { |
| assert(N < PassVector.size() && "Pass number out of range!"); |
| BasicBlockPass *BP = static_cast<BasicBlockPass *>(PassVector[N]); |
| return BP; |
| } |
| |
| virtual PassManagerType getPassManagerType() const { |
| return PMT_BasicBlockPassManager; |
| } |
| }; |
| |
| char BBPassManager::ID = 0; |
| } |
| |
| namespace llvm { |
| |
| //===----------------------------------------------------------------------===// |
| // FunctionPassManagerImpl |
| // |
| /// FunctionPassManagerImpl manages FPPassManagers |
| class FunctionPassManagerImpl : public Pass, |
| public PMDataManager, |
| public PMTopLevelManager { |
| virtual void anchor(); |
| private: |
| bool wasRun; |
| public: |
| static char ID; |
| explicit FunctionPassManagerImpl() : |
| Pass(PT_PassManager, ID), PMDataManager(), |
| PMTopLevelManager(new FPPassManager()), wasRun(false) {} |
| |
| /// add - Add a pass to the queue of passes to run. This passes ownership of |
| /// the Pass to the PassManager. When the PassManager is destroyed, the pass |
| /// will be destroyed as well, so there is no need to delete the pass. This |
| /// implies that all passes MUST be allocated with 'new'. |
| void add(Pass *P) { |
| schedulePass(P); |
| } |
| |
| /// createPrinterPass - Get a function printer pass. |
| Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const { |
| return createPrintFunctionPass(Banner, &O); |
| } |
| |
| // Prepare for running an on the fly pass, freeing memory if needed |
| // from a previous run. |
| void releaseMemoryOnTheFly(); |
| |
| /// run - Execute all of the passes scheduled for execution. Keep track of |
| /// whether any of the passes modifies the module, and if so, return true. |
| bool run(Function &F); |
| |
| /// doInitialization - Run all of the initializers for the function passes. |
| /// |
| bool doInitialization(Module &M); |
| |
| /// doFinalization - Run all of the finalizers for the function passes. |
| /// |
| bool doFinalization(Module &M); |
| |
| |
| virtual PMDataManager *getAsPMDataManager() { return this; } |
| virtual Pass *getAsPass() { return this; } |
| virtual PassManagerType getTopLevelPassManagerType() { |
| return PMT_FunctionPassManager; |
| } |
| |
| /// Pass Manager itself does not invalidate any analysis info. |
| void getAnalysisUsage(AnalysisUsage &Info) const { |
| Info.setPreservesAll(); |
| } |
| |
| FPPassManager *getContainedManager(unsigned N) { |
| assert(N < PassManagers.size() && "Pass number out of range!"); |
| FPPassManager *FP = static_cast<FPPassManager *>(PassManagers[N]); |
| return FP; |
| } |
| }; |
| |
| void FunctionPassManagerImpl::anchor() {} |
| |
| char FunctionPassManagerImpl::ID = 0; |
| |
| //===----------------------------------------------------------------------===// |
| // MPPassManager |
| // |
| /// MPPassManager manages ModulePasses and function pass managers. |
| /// It batches all Module passes and function pass managers together and |
| /// sequences them to process one module. |
| class MPPassManager : public Pass, public PMDataManager { |
| public: |
| static char ID; |
| explicit MPPassManager() : |
| Pass(PT_PassManager, ID), PMDataManager() { } |
| |
| // Delete on the fly managers. |
| virtual ~MPPassManager() { |
| for (std::map<Pass *, FunctionPassManagerImpl *>::iterator |
| I = OnTheFlyManagers.begin(), E = OnTheFlyManagers.end(); |
| I != E; ++I) { |
| FunctionPassManagerImpl *FPP = I->second; |
| delete FPP; |
| } |
| } |
| |
| /// createPrinterPass - Get a module printer pass. |
| Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const { |
| return createPrintModulePass(&O, false, Banner); |
| } |
| |
| /// run - Execute all of the passes scheduled for execution. Keep track of |
| /// whether any of the passes modifies the module, and if so, return true. |
| bool runOnModule(Module &M); |
| |
| using llvm::Pass::doInitialization; |
| using llvm::Pass::doFinalization; |
| |
| /// doInitialization - Run all of the initializers for the module passes. |
| /// |
| bool doInitialization(); |
| |
| /// doFinalization - Run all of the finalizers for the module passes. |
| /// |
| bool doFinalization(); |
| |
| /// Pass Manager itself does not invalidate any analysis info. |
| void getAnalysisUsage(AnalysisUsage &Info) const { |
| Info.setPreservesAll(); |
| } |
| |
| /// Add RequiredPass into list of lower level passes required by pass P. |
| /// RequiredPass is run on the fly by Pass Manager when P requests it |
| /// through getAnalysis interface. |
| virtual void addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass); |
| |
| /// Return function pass corresponding to PassInfo PI, that is |
| /// required by module pass MP. Instantiate analysis pass, by using |
| /// its runOnFunction() for function F. |
| virtual Pass* getOnTheFlyPass(Pass *MP, AnalysisID PI, Function &F); |
| |
| virtual const char *getPassName() const { |
| return "Module Pass Manager"; |
| } |
| |
| virtual PMDataManager *getAsPMDataManager() { return this; } |
| virtual Pass *getAsPass() { return this; } |
| |
| // Print passes managed by this manager |
| void dumpPassStructure(unsigned Offset) { |
| llvm::dbgs().indent(Offset*2) << "ModulePass Manager\n"; |
| for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { |
| ModulePass *MP = getContainedPass(Index); |
| MP->dumpPassStructure(Offset + 1); |
| std::map<Pass *, FunctionPassManagerImpl *>::const_iterator I = |
| OnTheFlyManagers.find(MP); |
| if (I != OnTheFlyManagers.end()) |
| I->second->dumpPassStructure(Offset + 2); |
| dumpLastUses(MP, Offset+1); |
| } |
| } |
| |
| ModulePass *getContainedPass(unsigned N) { |
| assert(N < PassVector.size() && "Pass number out of range!"); |
| return static_cast<ModulePass *>(PassVector[N]); |
| } |
| |
| virtual PassManagerType getPassManagerType() const { |
| return PMT_ModulePassManager; |
| } |
| |
| private: |
| /// Collection of on the fly FPPassManagers. These managers manage |
| /// function passes that are required by module passes. |
| std::map<Pass *, FunctionPassManagerImpl *> OnTheFlyManagers; |
| }; |
| |
| char MPPassManager::ID = 0; |
| //===----------------------------------------------------------------------===// |
| // PassManagerImpl |
| // |
| |
| /// PassManagerImpl manages MPPassManagers |
| class PassManagerImpl : public Pass, |
| public PMDataManager, |
| public PMTopLevelManager { |
| virtual void anchor(); |
| |
| public: |
| static char ID; |
| explicit PassManagerImpl() : |
| Pass(PT_PassManager, ID), PMDataManager(), |
| PMTopLevelManager(new MPPassManager()) {} |
| |
| /// add - Add a pass to the queue of passes to run. This passes ownership of |
| /// the Pass to the PassManager. When the PassManager is destroyed, the pass |
| /// will be destroyed as well, so there is no need to delete the pass. This |
| /// implies that all passes MUST be allocated with 'new'. |
| void add(Pass *P) { |
| schedulePass(P); |
| } |
| |
| /// createPrinterPass - Get a module printer pass. |
| Pass *createPrinterPass(raw_ostream &O, const std::string &Banner) const { |
| return createPrintModulePass(&O, false, Banner); |
| } |
| |
| /// run - Execute all of the passes scheduled for execution. Keep track of |
| /// whether any of the passes modifies the module, and if so, return true. |
| bool run(Module &M); |
| |
| using llvm::Pass::doInitialization; |
| using llvm::Pass::doFinalization; |
| |
| /// doInitialization - Run all of the initializers for the module passes. |
| /// |
| bool doInitialization(); |
| |
| /// doFinalization - Run all of the finalizers for the module passes. |
| /// |
| bool doFinalization(); |
| |
| /// Pass Manager itself does not invalidate any analysis info. |
| void getAnalysisUsage(AnalysisUsage &Info) const { |
| Info.setPreservesAll(); |
| } |
| |
| virtual PMDataManager *getAsPMDataManager() { return this; } |
| virtual Pass *getAsPass() { return this; } |
| virtual PassManagerType getTopLevelPassManagerType() { |
| return PMT_ModulePassManager; |
| } |
| |
| MPPassManager *getContainedManager(unsigned N) { |
| assert(N < PassManagers.size() && "Pass number out of range!"); |
| MPPassManager *MP = static_cast<MPPassManager *>(PassManagers[N]); |
| return MP; |
| } |
| }; |
| |
| void PassManagerImpl::anchor() {} |
| |
| char PassManagerImpl::ID = 0; |
| } // End of llvm namespace |
| |
| namespace { |
| |
| //===----------------------------------------------------------------------===// |
| /// TimingInfo Class - This class is used to calculate information about the |
| /// amount of time each pass takes to execute. This only happens when |
| /// -time-passes is enabled on the command line. |
| /// |
| |
| static ManagedStatic<sys::SmartMutex<true> > TimingInfoMutex; |
| |
| class TimingInfo { |
| DenseMap<Pass*, Timer*> TimingData; |
| TimerGroup TG; |
| public: |
| // Use 'create' member to get this. |
| TimingInfo() : TG("... Pass execution timing report ...") {} |
| |
| // TimingDtor - Print out information about timing information |
| ~TimingInfo() { |
| // Delete all of the timers, which accumulate their info into the |
| // TimerGroup. |
| for (DenseMap<Pass*, Timer*>::iterator I = TimingData.begin(), |
| E = TimingData.end(); I != E; ++I) |
| delete I->second; |
| // TimerGroup is deleted next, printing the report. |
| } |
| |
| // createTheTimeInfo - This method either initializes the TheTimeInfo pointer |
| // to a non null value (if the -time-passes option is enabled) or it leaves it |
| // null. It may be called multiple times. |
| static void createTheTimeInfo(); |
| |
| /// getPassTimer - Return the timer for the specified pass if it exists. |
| Timer *getPassTimer(Pass *P) { |
| if (P->getAsPMDataManager()) |
| return 0; |
| |
| sys::SmartScopedLock<true> Lock(*TimingInfoMutex); |
| Timer *&T = TimingData[P]; |
| if (T == 0) |
| T = new Timer(P->getPassName(), TG); |
| return T; |
| } |
| }; |
| |
| } // End of anon namespace |
| |
| static TimingInfo *TheTimeInfo; |
| |
| //===----------------------------------------------------------------------===// |
| // PMTopLevelManager implementation |
| |
| /// Initialize top level manager. Create first pass manager. |
| PMTopLevelManager::PMTopLevelManager(PMDataManager *PMDM) { |
| PMDM->setTopLevelManager(this); |
| addPassManager(PMDM); |
| activeStack.push(PMDM); |
| } |
| |
| /// Set pass P as the last user of the given analysis passes. |
| void |
| PMTopLevelManager::setLastUser(ArrayRef<Pass*> AnalysisPasses, Pass *P) { |
| unsigned PDepth = 0; |
| if (P->getResolver()) |
| PDepth = P->getResolver()->getPMDataManager().getDepth(); |
| |
| for (SmallVectorImpl<Pass *>::const_iterator I = AnalysisPasses.begin(), |
| E = AnalysisPasses.end(); I != E; ++I) { |
| Pass *AP = *I; |
| LastUser[AP] = P; |
| |
| if (P == AP) |
| continue; |
| |
| // Update the last users of passes that are required transitive by AP. |
| AnalysisUsage *AnUsage = findAnalysisUsage(AP); |
| const AnalysisUsage::VectorType &IDs = AnUsage->getRequiredTransitiveSet(); |
| SmallVector<Pass *, 12> LastUses; |
| SmallVector<Pass *, 12> LastPMUses; |
| for (AnalysisUsage::VectorType::const_iterator I = IDs.begin(), |
| E = IDs.end(); I != E; ++I) { |
| Pass *AnalysisPass = findAnalysisPass(*I); |
| assert(AnalysisPass && "Expected analysis pass to exist."); |
| AnalysisResolver *AR = AnalysisPass->getResolver(); |
| assert(AR && "Expected analysis resolver to exist."); |
| unsigned APDepth = AR->getPMDataManager().getDepth(); |
| |
| if (PDepth == APDepth) |
| LastUses.push_back(AnalysisPass); |
| else if (PDepth > APDepth) |
| LastPMUses.push_back(AnalysisPass); |
| } |
| |
| setLastUser(LastUses, P); |
| |
| // If this pass has a corresponding pass manager, push higher level |
| // analysis to this pass manager. |
| if (P->getResolver()) |
| setLastUser(LastPMUses, P->getResolver()->getPMDataManager().getAsPass()); |
| |
| |
| // If AP is the last user of other passes then make P last user of |
| // such passes. |
| for (DenseMap<Pass *, Pass *>::iterator LUI = LastUser.begin(), |
| LUE = LastUser.end(); LUI != LUE; ++LUI) { |
| if (LUI->second == AP) |
| // DenseMap iterator is not invalidated here because |
| // this is just updating existing entries. |
| LastUser[LUI->first] = P; |
| } |
| } |
| } |
| |
| /// Collect passes whose last user is P |
| void PMTopLevelManager::collectLastUses(SmallVectorImpl<Pass *> &LastUses, |
| Pass *P) { |
| DenseMap<Pass *, SmallPtrSet<Pass *, 8> >::iterator DMI = |
| InversedLastUser.find(P); |
| if (DMI == InversedLastUser.end()) |
| return; |
| |
| SmallPtrSet<Pass *, 8> &LU = DMI->second; |
| for (SmallPtrSet<Pass *, 8>::iterator I = LU.begin(), |
| E = LU.end(); I != E; ++I) { |
| LastUses.push_back(*I); |
| } |
| |
| } |
| |
| AnalysisUsage *PMTopLevelManager::findAnalysisUsage(Pass *P) { |
| AnalysisUsage *AnUsage = NULL; |
| DenseMap<Pass *, AnalysisUsage *>::iterator DMI = AnUsageMap.find(P); |
| if (DMI != AnUsageMap.end()) |
| AnUsage = DMI->second; |
| else { |
| AnUsage = new AnalysisUsage(); |
| P->getAnalysisUsage(*AnUsage); |
| AnUsageMap[P] = AnUsage; |
| } |
| return AnUsage; |
| } |
| |
| /// Schedule pass P for execution. Make sure that passes required by |
| /// P are run before P is run. Update analysis info maintained by |
| /// the manager. Remove dead passes. This is a recursive function. |
| void PMTopLevelManager::schedulePass(Pass *P) { |
| |
| // TODO : Allocate function manager for this pass, other wise required set |
| // may be inserted into previous function manager |
| |
| // Give pass a chance to prepare the stage. |
| P->preparePassManager(activeStack); |
| |
| // If P is an analysis pass and it is available then do not |
| // generate the analysis again. Stale analysis info should not be |
| // available at this point. |
| const PassInfo *PI = |
| PassRegistry::getPassRegistry()->getPassInfo(P->getPassID()); |
| if (PI && PI->isAnalysis() && findAnalysisPass(P->getPassID())) { |
| delete P; |
| return; |
| } |
| |
| AnalysisUsage *AnUsage = findAnalysisUsage(P); |
| |
| bool checkAnalysis = true; |
| while (checkAnalysis) { |
| checkAnalysis = false; |
| |
| const AnalysisUsage::VectorType &RequiredSet = AnUsage->getRequiredSet(); |
| for (AnalysisUsage::VectorType::const_iterator I = RequiredSet.begin(), |
| E = RequiredSet.end(); I != E; ++I) { |
| |
| Pass *AnalysisPass = findAnalysisPass(*I); |
| if (!AnalysisPass) { |
| const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(*I); |
| |
| if (PI == NULL) { |
| // Pass P is not in the global PassRegistry |
| dbgs() << "Pass '" << P->getPassName() << "' is not initialized." << "\n"; |
| dbgs() << "Verify if there is a pass dependency cycle." << "\n"; |
| dbgs() << "Required Passes:" << "\n"; |
| for (AnalysisUsage::VectorType::const_iterator I2 = RequiredSet.begin(), |
| E = RequiredSet.end(); I2 != E && I2 != I; ++I2) { |
| Pass *AnalysisPass2 = findAnalysisPass(*I2); |
| if (AnalysisPass2) { |
| dbgs() << "\t" << AnalysisPass2->getPassName() << "\n"; |
| } else { |
| dbgs() << "\t" << "Error: Required pass not found! Possible causes:" << "\n"; |
| dbgs() << "\t\t" << "- Pass misconfiguration (e.g.: missing macros)" << "\n"; |
| dbgs() << "\t\t" << "- Corruption of the global PassRegistry" << "\n"; |
| } |
| } |
| } |
| |
| assert(PI && "Expected required passes to be initialized"); |
| AnalysisPass = PI->createPass(); |
| if (P->getPotentialPassManagerType () == |
| AnalysisPass->getPotentialPassManagerType()) |
| // Schedule analysis pass that is managed by the same pass manager. |
| schedulePass(AnalysisPass); |
| else if (P->getPotentialPassManagerType () > |
| AnalysisPass->getPotentialPassManagerType()) { |
| // Schedule analysis pass that is managed by a new manager. |
| schedulePass(AnalysisPass); |
| // Recheck analysis passes to ensure that required analyses that |
| // are already checked are still available. |
| checkAnalysis = true; |
| } else |
| // Do not schedule this analysis. Lower level analsyis |
| // passes are run on the fly. |
| delete AnalysisPass; |
| } |
| } |
| } |
| |
| // Now all required passes are available. |
| if (ImmutablePass *IP = P->getAsImmutablePass()) { |
| // P is a immutable pass and it will be managed by this |
| // top level manager. Set up analysis resolver to connect them. |
| PMDataManager *DM = getAsPMDataManager(); |
| AnalysisResolver *AR = new AnalysisResolver(*DM); |
| P->setResolver(AR); |
| DM->initializeAnalysisImpl(P); |
| addImmutablePass(IP); |
| DM->recordAvailableAnalysis(IP); |
| return; |
| } |
| |
| if (PI && !PI->isAnalysis() && ShouldPrintBeforePass(PI)) { |
| Pass *PP = P->createPrinterPass( |
| dbgs(), std::string("*** IR Dump Before ") + P->getPassName() + " ***"); |
| PP->assignPassManager(activeStack, getTopLevelPassManagerType()); |
| } |
| |
| // Add the requested pass to the best available pass manager. |
| P->assignPassManager(activeStack, getTopLevelPassManagerType()); |
| |
| if (PI && !PI->isAnalysis() && ShouldPrintAfterPass(PI)) { |
| Pass *PP = P->createPrinterPass( |
| dbgs(), std::string("*** IR Dump After ") + P->getPassName() + " ***"); |
| PP->assignPassManager(activeStack, getTopLevelPassManagerType()); |
| } |
| } |
| |
| /// Find the pass that implements Analysis AID. Search immutable |
| /// passes and all pass managers. If desired pass is not found |
| /// then return NULL. |
| Pass *PMTopLevelManager::findAnalysisPass(AnalysisID AID) { |
| |
| // Check pass managers |
| for (SmallVectorImpl<PMDataManager *>::iterator I = PassManagers.begin(), |
| E = PassManagers.end(); I != E; ++I) |
| if (Pass *P = (*I)->findAnalysisPass(AID, false)) |
| return P; |
| |
| // Check other pass managers |
| for (SmallVectorImpl<PMDataManager *>::iterator |
| I = IndirectPassManagers.begin(), |
| E = IndirectPassManagers.end(); I != E; ++I) |
| if (Pass *P = (*I)->findAnalysisPass(AID, false)) |
| return P; |
| |
| // Check the immutable passes. Iterate in reverse order so that we find |
| // the most recently registered passes first. |
| for (SmallVector<ImmutablePass *, 8>::reverse_iterator I = |
| ImmutablePasses.rbegin(), E = ImmutablePasses.rend(); I != E; ++I) { |
| AnalysisID PI = (*I)->getPassID(); |
| if (PI == AID) |
| return *I; |
| |
| // If Pass not found then check the interfaces implemented by Immutable Pass |
| const PassInfo *PassInf = |
| PassRegistry::getPassRegistry()->getPassInfo(PI); |
| assert(PassInf && "Expected all immutable passes to be initialized"); |
| const std::vector<const PassInfo*> &ImmPI = |
| PassInf->getInterfacesImplemented(); |
| for (std::vector<const PassInfo*>::const_iterator II = ImmPI.begin(), |
| EE = ImmPI.end(); II != EE; ++II) { |
| if ((*II)->getTypeInfo() == AID) |
| return *I; |
| } |
| } |
| |
| return 0; |
| } |
| |
| // Print passes managed by this top level manager. |
| void PMTopLevelManager::dumpPasses() const { |
| |
| if (PassDebugging < Structure) |
| return; |
| |
| // Print out the immutable passes |
| for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) { |
| ImmutablePasses[i]->dumpPassStructure(0); |
| } |
| |
| // Every class that derives from PMDataManager also derives from Pass |
| // (sometimes indirectly), but there's no inheritance relationship |
| // between PMDataManager and Pass, so we have to getAsPass to get |
| // from a PMDataManager* to a Pass*. |
| for (SmallVector<PMDataManager *, 8>::const_iterator I = PassManagers.begin(), |
| E = PassManagers.end(); I != E; ++I) |
| (*I)->getAsPass()->dumpPassStructure(1); |
| } |
| |
| void PMTopLevelManager::dumpArguments() const { |
| |
| if (PassDebugging < Arguments) |
| return; |
| |
| dbgs() << "Pass Arguments: "; |
| for (SmallVector<ImmutablePass *, 8>::const_iterator I = |
| ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I) |
| if (const PassInfo *PI = |
| PassRegistry::getPassRegistry()->getPassInfo((*I)->getPassID())) { |
| assert(PI && "Expected all immutable passes to be initialized"); |
| if (!PI->isAnalysisGroup()) |
| dbgs() << " -" << PI->getPassArgument(); |
| } |
| for (SmallVector<PMDataManager *, 8>::const_iterator I = PassManagers.begin(), |
| E = PassManagers.end(); I != E; ++I) |
| (*I)->dumpPassArguments(); |
| dbgs() << "\n"; |
| } |
| |
| void PMTopLevelManager::initializeAllAnalysisInfo() { |
| for (SmallVectorImpl<PMDataManager *>::iterator I = PassManagers.begin(), |
| E = PassManagers.end(); I != E; ++I) |
| (*I)->initializeAnalysisInfo(); |
| |
| // Initailize other pass managers |
| for (SmallVectorImpl<PMDataManager *>::iterator |
| I = IndirectPassManagers.begin(), E = IndirectPassManagers.end(); |
| I != E; ++I) |
| (*I)->initializeAnalysisInfo(); |
| |
| for (DenseMap<Pass *, Pass *>::iterator DMI = LastUser.begin(), |
| DME = LastUser.end(); DMI != DME; ++DMI) { |
| DenseMap<Pass *, SmallPtrSet<Pass *, 8> >::iterator InvDMI = |
| InversedLastUser.find(DMI->second); |
| if (InvDMI != InversedLastUser.end()) { |
| SmallPtrSet<Pass *, 8> &L = InvDMI->second; |
| L.insert(DMI->first); |
| } else { |
| SmallPtrSet<Pass *, 8> L; L.insert(DMI->first); |
| InversedLastUser[DMI->second] = L; |
| } |
| } |
| } |
| |
| /// Destructor |
| PMTopLevelManager::~PMTopLevelManager() { |
| for (SmallVectorImpl<PMDataManager *>::iterator I = PassManagers.begin(), |
| E = PassManagers.end(); I != E; ++I) |
| delete *I; |
| |
| for (SmallVectorImpl<ImmutablePass *>::iterator |
| I = ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I) |
| delete *I; |
| |
| for (DenseMap<Pass *, AnalysisUsage *>::iterator DMI = AnUsageMap.begin(), |
| DME = AnUsageMap.end(); DMI != DME; ++DMI) |
| delete DMI->second; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PMDataManager implementation |
| |
| /// Augement AvailableAnalysis by adding analysis made available by pass P. |
| void PMDataManager::recordAvailableAnalysis(Pass *P) { |
| AnalysisID PI = P->getPassID(); |
| |
| AvailableAnalysis[PI] = P; |
| |
| assert(!AvailableAnalysis.empty()); |
| |
| // This pass is the current implementation of all of the interfaces it |
| // implements as well. |
| const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(PI); |
| if (PInf == 0) return; |
| const std::vector<const PassInfo*> &II = PInf->getInterfacesImplemented(); |
| for (unsigned i = 0, e = II.size(); i != e; ++i) |
| AvailableAnalysis[II[i]->getTypeInfo()] = P; |
| } |
| |
| // Return true if P preserves high level analysis used by other |
| // passes managed by this manager |
| bool PMDataManager::preserveHigherLevelAnalysis(Pass *P) { |
| AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); |
| if (AnUsage->getPreservesAll()) |
| return true; |
| |
| const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet(); |
| for (SmallVectorImpl<Pass *>::iterator I = HigherLevelAnalysis.begin(), |
| E = HigherLevelAnalysis.end(); I != E; ++I) { |
| Pass *P1 = *I; |
| if (P1->getAsImmutablePass() == 0 && |
| std::find(PreservedSet.begin(), PreservedSet.end(), |
| P1->getPassID()) == |
| PreservedSet.end()) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| /// verifyPreservedAnalysis -- Verify analysis preserved by pass P. |
| void PMDataManager::verifyPreservedAnalysis(Pass *P) { |
| // Don't do this unless assertions are enabled. |
| #ifdef NDEBUG |
| return; |
| #endif |
| AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); |
| const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet(); |
| |
| // Verify preserved analysis |
| for (AnalysisUsage::VectorType::const_iterator I = PreservedSet.begin(), |
| E = PreservedSet.end(); I != E; ++I) { |
| AnalysisID AID = *I; |
| if (Pass *AP = findAnalysisPass(AID, true)) { |
| TimeRegion PassTimer(getPassTimer(AP)); |
| AP->verifyAnalysis(); |
| } |
| } |
| } |
| |
| /// Remove Analysis not preserved by Pass P |
| void PMDataManager::removeNotPreservedAnalysis(Pass *P) { |
| AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); |
| if (AnUsage->getPreservesAll()) |
| return; |
| |
| const AnalysisUsage::VectorType &PreservedSet = AnUsage->getPreservedSet(); |
| for (DenseMap<AnalysisID, Pass*>::iterator I = AvailableAnalysis.begin(), |
| E = AvailableAnalysis.end(); I != E; ) { |
| DenseMap<AnalysisID, Pass*>::iterator Info = I++; |
| if (Info->second->getAsImmutablePass() == 0 && |
| std::find(PreservedSet.begin(), PreservedSet.end(), Info->first) == |
| PreservedSet.end()) { |
| // Remove this analysis |
| if (PassDebugging >= Details) { |
| Pass *S = Info->second; |
| dbgs() << " -- '" << P->getPassName() << "' is not preserving '"; |
| dbgs() << S->getPassName() << "'\n"; |
| } |
| AvailableAnalysis.erase(Info); |
| } |
| } |
| |
| // Check inherited analysis also. If P is not preserving analysis |
| // provided by parent manager then remove it here. |
| for (unsigned Index = 0; Index < PMT_Last; ++Index) { |
| |
| if (!InheritedAnalysis[Index]) |
| continue; |
| |
| for (DenseMap<AnalysisID, Pass*>::iterator |
| I = InheritedAnalysis[Index]->begin(), |
| E = InheritedAnalysis[Index]->end(); I != E; ) { |
| DenseMap<AnalysisID, Pass *>::iterator Info = I++; |
| if (Info->second->getAsImmutablePass() == 0 && |
| std::find(PreservedSet.begin(), PreservedSet.end(), Info->first) == |
| PreservedSet.end()) { |
| // Remove this analysis |
| if (PassDebugging >= Details) { |
| Pass *S = Info->second; |
| dbgs() << " -- '" << P->getPassName() << "' is not preserving '"; |
| dbgs() << S->getPassName() << "'\n"; |
| } |
| InheritedAnalysis[Index]->erase(Info); |
| } |
| } |
| } |
| } |
| |
| /// Remove analysis passes that are not used any longer |
| void PMDataManager::removeDeadPasses(Pass *P, StringRef Msg, |
| enum PassDebuggingString DBG_STR) { |
| |
| SmallVector<Pass *, 12> DeadPasses; |
| |
| // If this is a on the fly manager then it does not have TPM. |
| if (!TPM) |
| return; |
| |
| TPM->collectLastUses(DeadPasses, P); |
| |
| if (PassDebugging >= Details && !DeadPasses.empty()) { |
| dbgs() << " -*- '" << P->getPassName(); |
| dbgs() << "' is the last user of following pass instances."; |
| dbgs() << " Free these instances\n"; |
| } |
| |
| for (SmallVectorImpl<Pass *>::iterator I = DeadPasses.begin(), |
| E = DeadPasses.end(); I != E; ++I) |
| freePass(*I, Msg, DBG_STR); |
| } |
| |
| void PMDataManager::freePass(Pass *P, StringRef Msg, |
| enum PassDebuggingString DBG_STR) { |
| dumpPassInfo(P, FREEING_MSG, DBG_STR, Msg); |
| |
| { |
| // If the pass crashes releasing memory, remember this. |
| PassManagerPrettyStackEntry X(P); |
| TimeRegion PassTimer(getPassTimer(P)); |
| |
| P->releaseMemory(); |
| } |
| |
| AnalysisID PI = P->getPassID(); |
| if (const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(PI)) { |
| // Remove the pass itself (if it is not already removed). |
| AvailableAnalysis.erase(PI); |
| |
| // Remove all interfaces this pass implements, for which it is also |
| // listed as the available implementation. |
| const std::vector<const PassInfo*> &II = PInf->getInterfacesImplemented(); |
| for (unsigned i = 0, e = II.size(); i != e; ++i) { |
| DenseMap<AnalysisID, Pass*>::iterator Pos = |
| AvailableAnalysis.find(II[i]->getTypeInfo()); |
| if (Pos != AvailableAnalysis.end() && Pos->second == P) |
| AvailableAnalysis.erase(Pos); |
| } |
| } |
| } |
| |
| /// Add pass P into the PassVector. Update |
| /// AvailableAnalysis appropriately if ProcessAnalysis is true. |
| void PMDataManager::add(Pass *P, bool ProcessAnalysis) { |
| // This manager is going to manage pass P. Set up analysis resolver |
| // to connect them. |
| AnalysisResolver *AR = new AnalysisResolver(*this); |
| P->setResolver(AR); |
| |
| // If a FunctionPass F is the last user of ModulePass info M |
| // then the F's manager, not F, records itself as a last user of M. |
| SmallVector<Pass *, 12> TransferLastUses; |
| |
| if (!ProcessAnalysis) { |
| // Add pass |
| PassVector.push_back(P); |
| return; |
| } |
| |
| // At the moment, this pass is the last user of all required passes. |
| SmallVector<Pass *, 12> LastUses; |
| SmallVector<Pass *, 8> RequiredPasses; |
| SmallVector<AnalysisID, 8> ReqAnalysisNotAvailable; |
| |
| unsigned PDepth = this->getDepth(); |
| |
| collectRequiredAnalysis(RequiredPasses, |
| ReqAnalysisNotAvailable, P); |
| for (SmallVectorImpl<Pass *>::iterator I = RequiredPasses.begin(), |
| E = RequiredPasses.end(); I != E; ++I) { |
| Pass *PRequired = *I; |
| unsigned RDepth = 0; |
| |
| assert(PRequired->getResolver() && "Analysis Resolver is not set"); |
| PMDataManager &DM = PRequired->getResolver()->getPMDataManager(); |
| RDepth = DM.getDepth(); |
| |
| if (PDepth == RDepth) |
| LastUses.push_back(PRequired); |
| else if (PDepth > RDepth) { |
| // Let the parent claim responsibility of last use |
| TransferLastUses.push_back(PRequired); |
| // Keep track of higher level analysis used by this manager. |
| HigherLevelAnalysis.push_back(PRequired); |
| } else |
| llvm_unreachable("Unable to accommodate Required Pass"); |
| } |
| |
| // Set P as P's last user until someone starts using P. |
| // However, if P is a Pass Manager then it does not need |
| // to record its last user. |
| if (P->getAsPMDataManager() == 0) |
| LastUses.push_back(P); |
| TPM->setLastUser(LastUses, P); |
| |
| if (!TransferLastUses.empty()) { |
| Pass *My_PM = getAsPass(); |
| TPM->setLastUser(TransferLastUses, My_PM); |
| TransferLastUses.clear(); |
| } |
| |
| // Now, take care of required analyses that are not available. |
| for (SmallVectorImpl<AnalysisID>::iterator |
| I = ReqAnalysisNotAvailable.begin(), |
| E = ReqAnalysisNotAvailable.end() ;I != E; ++I) { |
| const PassInfo *PI = PassRegistry::getPassRegistry()->getPassInfo(*I); |
| Pass *AnalysisPass = PI->createPass(); |
| this->addLowerLevelRequiredPass(P, AnalysisPass); |
| } |
| |
| // Take a note of analysis required and made available by this pass. |
| // Remove the analysis not preserved by this pass |
| removeNotPreservedAnalysis(P); |
| recordAvailableAnalysis(P); |
| |
| // Add pass |
| PassVector.push_back(P); |
| } |
| |
| |
| /// Populate RP with analysis pass that are required by |
| /// pass P and are available. Populate RP_NotAvail with analysis |
| /// pass that are required by pass P but are not available. |
| void PMDataManager::collectRequiredAnalysis(SmallVectorImpl<Pass *> &RP, |
| SmallVectorImpl<AnalysisID> &RP_NotAvail, |
| Pass *P) { |
| AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); |
| const AnalysisUsage::VectorType &RequiredSet = AnUsage->getRequiredSet(); |
| for (AnalysisUsage::VectorType::const_iterator |
| I = RequiredSet.begin(), E = RequiredSet.end(); I != E; ++I) { |
| if (Pass *AnalysisPass = findAnalysisPass(*I, true)) |
| RP.push_back(AnalysisPass); |
| else |
| RP_NotAvail.push_back(*I); |
| } |
| |
| const AnalysisUsage::VectorType &IDs = AnUsage->getRequiredTransitiveSet(); |
| for (AnalysisUsage::VectorType::const_iterator I = IDs.begin(), |
| E = IDs.end(); I != E; ++I) { |
| if (Pass *AnalysisPass = findAnalysisPass(*I, true)) |
| RP.push_back(AnalysisPass); |
| else |
| RP_NotAvail.push_back(*I); |
| } |
| } |
| |
| // All Required analyses should be available to the pass as it runs! Here |
| // we fill in the AnalysisImpls member of the pass so that it can |
| // successfully use the getAnalysis() method to retrieve the |
| // implementations it needs. |
| // |
| void PMDataManager::initializeAnalysisImpl(Pass *P) { |
| AnalysisUsage *AnUsage = TPM->findAnalysisUsage(P); |
| |
| for (AnalysisUsage::VectorType::const_iterator |
| I = AnUsage->getRequiredSet().begin(), |
| E = AnUsage->getRequiredSet().end(); I != E; ++I) { |
| Pass *Impl = findAnalysisPass(*I, true); |
| if (Impl == 0) |
| // This may be analysis pass that is initialized on the fly. |
| // If that is not the case then it will raise an assert when it is used. |
| continue; |
| AnalysisResolver *AR = P->getResolver(); |
| assert(AR && "Analysis Resolver is not set"); |
| AR->addAnalysisImplsPair(*I, Impl); |
| } |
| } |
| |
| /// Find the pass that implements Analysis AID. If desired pass is not found |
| /// then return NULL. |
| Pass *PMDataManager::findAnalysisPass(AnalysisID AID, bool SearchParent) { |
| |
| // Check if AvailableAnalysis map has one entry. |
| DenseMap<AnalysisID, Pass*>::const_iterator I = AvailableAnalysis.find(AID); |
| |
| if (I != AvailableAnalysis.end()) |
| return I->second; |
| |
| // Search Parents through TopLevelManager |
| if (SearchParent) |
| return TPM->findAnalysisPass(AID); |
| |
| return NULL; |
| } |
| |
| // Print list of passes that are last used by P. |
| void PMDataManager::dumpLastUses(Pass *P, unsigned Offset) const{ |
| |
| SmallVector<Pass *, 12> LUses; |
| |
| // If this is a on the fly manager then it does not have TPM. |
| if (!TPM) |
| return; |
| |
| TPM->collectLastUses(LUses, P); |
| |
| for (SmallVectorImpl<Pass *>::iterator I = LUses.begin(), |
| E = LUses.end(); I != E; ++I) { |
| llvm::dbgs() << "--" << std::string(Offset*2, ' '); |
| (*I)->dumpPassStructure(0); |
| } |
| } |
| |
| void PMDataManager::dumpPassArguments() const { |
| for (SmallVectorImpl<Pass *>::const_iterator I = PassVector.begin(), |
| E = PassVector.end(); I != E; ++I) { |
| if (PMDataManager *PMD = (*I)->getAsPMDataManager()) |
| PMD->dumpPassArguments(); |
| else |
| if (const PassInfo *PI = |
| PassRegistry::getPassRegistry()->getPassInfo((*I)->getPassID())) |
| if (!PI->isAnalysisGroup()) |
| dbgs() << " -" << PI->getPassArgument(); |
| } |
| } |
| |
| void PMDataManager::dumpPassInfo(Pass *P, enum PassDebuggingString S1, |
| enum PassDebuggingString S2, |
| StringRef Msg) { |
| if (PassDebugging < Executions) |
| return; |
| dbgs() << (void*)this << std::string(getDepth()*2+1, ' '); |
| switch (S1) { |
| case EXECUTION_MSG: |
| dbgs() << "Executing Pass '" << P->getPassName(); |
| break; |
| case MODIFICATION_MSG: |
| dbgs() << "Made Modification '" << P->getPassName(); |
| break; |
| case FREEING_MSG: |
| dbgs() << " Freeing Pass '" << P->getPassName(); |
| break; |
| default: |
| break; |
| } |
| switch (S2) { |
| case ON_BASICBLOCK_MSG: |
| dbgs() << "' on BasicBlock '" << Msg << "'...\n"; |
| break; |
| case ON_FUNCTION_MSG: |
| dbgs() << "' on Function '" << Msg << "'...\n"; |
| break; |
| case ON_MODULE_MSG: |
| dbgs() << "' on Module '" << Msg << "'...\n"; |
| break; |
| case ON_REGION_MSG: |
| dbgs() << "' on Region '" << Msg << "'...\n"; |
| break; |
| case ON_LOOP_MSG: |
| dbgs() << "' on Loop '" << Msg << "'...\n"; |
| break; |
| case ON_CG_MSG: |
| dbgs() << "' on Call Graph Nodes '" << Msg << "'...\n"; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| void PMDataManager::dumpRequiredSet(const Pass *P) const { |
| if (PassDebugging < Details) |
| return; |
| |
| AnalysisUsage analysisUsage; |
| P->getAnalysisUsage(analysisUsage); |
| dumpAnalysisUsage("Required", P, analysisUsage.getRequiredSet()); |
| } |
| |
| void PMDataManager::dumpPreservedSet(const Pass *P) const { |
| if (PassDebugging < Details) |
| return; |
| |
| AnalysisUsage analysisUsage; |
| P->getAnalysisUsage(analysisUsage); |
| dumpAnalysisUsage("Preserved", P, analysisUsage.getPreservedSet()); |
| } |
| |
| void PMDataManager::dumpAnalysisUsage(StringRef Msg, const Pass *P, |
| const AnalysisUsage::VectorType &Set) const { |
| assert(PassDebugging >= Details); |
| if (Set.empty()) |
| return; |
| dbgs() << (const void*)P << std::string(getDepth()*2+3, ' ') << Msg << " Analyses:"; |
| for (unsigned i = 0; i != Set.size(); ++i) { |
| if (i) dbgs() << ','; |
| const PassInfo *PInf = PassRegistry::getPassRegistry()->getPassInfo(Set[i]); |
| if (!PInf) { |
| // Some preserved passes, such as AliasAnalysis, may not be initialized by |
| // all drivers. |
| dbgs() << " Uninitialized Pass"; |
| continue; |
| } |
| dbgs() << ' ' << PInf->getPassName(); |
| } |
| dbgs() << '\n'; |
| } |
| |
| /// Add RequiredPass into list of lower level passes required by pass P. |
| /// RequiredPass is run on the fly by Pass Manager when P requests it |
| /// through getAnalysis interface. |
| /// This should be handled by specific pass manager. |
| void PMDataManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) { |
| if (TPM) { |
| TPM->dumpArguments(); |
| TPM->dumpPasses(); |
| } |
| |
| // Module Level pass may required Function Level analysis info |
| // (e.g. dominator info). Pass manager uses on the fly function pass manager |
| // to provide this on demand. In that case, in Pass manager terminology, |
| // module level pass is requiring lower level analysis info managed by |
| // lower level pass manager. |
| |
| // When Pass manager is not able to order required analysis info, Pass manager |
| // checks whether any lower level manager will be able to provide this |
| // analysis info on demand or not. |
| #ifndef NDEBUG |
| dbgs() << "Unable to schedule '" << RequiredPass->getPassName(); |
| dbgs() << "' required by '" << P->getPassName() << "'\n"; |
| #endif |
| llvm_unreachable("Unable to schedule pass"); |
| } |
| |
| Pass *PMDataManager::getOnTheFlyPass(Pass *P, AnalysisID PI, Function &F) { |
| llvm_unreachable("Unable to find on the fly pass"); |
| } |
| |
| // Destructor |
| PMDataManager::~PMDataManager() { |
| for (SmallVectorImpl<Pass *>::iterator I = PassVector.begin(), |
| E = PassVector.end(); I != E; ++I) |
| delete *I; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // NOTE: Is this the right place to define this method ? |
| // getAnalysisIfAvailable - Return analysis result or null if it doesn't exist. |
| Pass *AnalysisResolver::getAnalysisIfAvailable(AnalysisID ID, bool dir) const { |
| return PM.findAnalysisPass(ID, dir); |
| } |
| |
| Pass *AnalysisResolver::findImplPass(Pass *P, AnalysisID AnalysisPI, |
| Function &F) { |
| return PM.getOnTheFlyPass(P, AnalysisPI, F); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // BBPassManager implementation |
| |
| /// Execute all of the passes scheduled for execution by invoking |
| /// runOnBasicBlock method. Keep track of whether any of the passes modifies |
| /// the function, and if so, return true. |
| bool BBPassManager::runOnFunction(Function &F) { |
| if (F.isDeclaration()) |
| return false; |
| |
| bool Changed = doInitialization(F); |
| |
| for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) |
| for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { |
| BasicBlockPass *BP = getContainedPass(Index); |
| bool LocalChanged = false; |
| |
| dumpPassInfo(BP, EXECUTION_MSG, ON_BASICBLOCK_MSG, I->getName()); |
| dumpRequiredSet(BP); |
| |
| initializeAnalysisImpl(BP); |
| |
| { |
| // If the pass crashes, remember this. |
| PassManagerPrettyStackEntry X(BP, *I); |
| TimeRegion PassTimer(getPassTimer(BP)); |
| |
| LocalChanged |= BP->runOnBasicBlock(*I); |
| } |
| |
| Changed |= LocalChanged; |
| if (LocalChanged) |
| dumpPassInfo(BP, MODIFICATION_MSG, ON_BASICBLOCK_MSG, |
| I->getName()); |
| dumpPreservedSet(BP); |
| |
| verifyPreservedAnalysis(BP); |
| removeNotPreservedAnalysis(BP); |
| recordAvailableAnalysis(BP); |
| removeDeadPasses(BP, I->getName(), ON_BASICBLOCK_MSG); |
| } |
| |
| return doFinalization(F) || Changed; |
| } |
| |
| // Implement doInitialization and doFinalization |
| bool BBPassManager::doInitialization(Module &M) { |
| bool Changed = false; |
| |
| for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) |
| Changed |= getContainedPass(Index)->doInitialization(M); |
| |
| return Changed; |
| } |
| |
| bool BBPassManager::doFinalization(Module &M) { |
| bool Changed = false; |
| |
| for (int Index = getNumContainedPasses() - 1; Index >= 0; --Index) |
| Changed |= getContainedPass(Index)->doFinalization(M); |
| |
| return Changed; |
| } |
| |
| bool BBPassManager::doInitialization(Function &F) { |
| bool Changed = false; |
| |
| for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { |
| BasicBlockPass *BP = getContainedPass(Index); |
| Changed |= BP->doInitialization(F); |
| } |
| |
| return Changed; |
| } |
| |
| bool BBPassManager::doFinalization(Function &F) { |
| bool Changed = false; |
| |
| for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { |
| BasicBlockPass *BP = getContainedPass(Index); |
| Changed |= BP->doFinalization(F); |
| } |
| |
| return Changed; |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // FunctionPassManager implementation |
| |
| /// Create new Function pass manager |
| FunctionPassManager::FunctionPassManager(Module *m) : M(m) { |
| FPM = new FunctionPassManagerImpl(); |
| // FPM is the top level manager. |
| FPM->setTopLevelManager(FPM); |
| |
| AnalysisResolver *AR = new AnalysisResolver(*FPM); |
| FPM->setResolver(AR); |
| } |
| |
| FunctionPassManager::~FunctionPassManager() { |
| delete FPM; |
| } |
| |
| /// add - Add a pass to the queue of passes to run. This passes |
| /// ownership of the Pass to the PassManager. When the |
| /// PassManager_X is destroyed, the pass will be destroyed as well, so |
| /// there is no need to delete the pass. (TODO delete passes.) |
| /// This implies that all passes MUST be allocated with 'new'. |
| void FunctionPassManager::add(Pass *P) { |
| FPM->add(P); |
| } |
| |
| /// run - Execute all of the passes scheduled for execution. Keep |
| /// track of whether any of the passes modifies the function, and if |
| /// so, return true. |
| /// |
| bool FunctionPassManager::run(Function &F) { |
| if (F.isMaterializable()) { |
| std::string errstr; |
| if (F.Materialize(&errstr)) |
| report_fatal_error("Error reading bitcode file: " + Twine(errstr)); |
| } |
| return FPM->run(F); |
| } |
| |
| |
| /// doInitialization - Run all of the initializers for the function passes. |
| /// |
| bool FunctionPassManager::doInitialization() { |
| return FPM->doInitialization(*M); |
| } |
| |
| /// doFinalization - Run all of the finalizers for the function passes. |
| /// |
| bool FunctionPassManager::doFinalization() { |
| return FPM->doFinalization(*M); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FunctionPassManagerImpl implementation |
| // |
| bool FunctionPassManagerImpl::doInitialization(Module &M) { |
| bool Changed = false; |
| |
| dumpArguments(); |
| dumpPasses(); |
| |
| SmallVectorImpl<ImmutablePass *>& IPV = getImmutablePasses(); |
| for (SmallVectorImpl<ImmutablePass *>::const_iterator I = IPV.begin(), |
| E = IPV.end(); I != E; ++I) { |
| Changed |= (*I)->doInitialization(M); |
| } |
| |
| for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) |
| Changed |= getContainedManager(Index)->doInitialization(M); |
| |
| return Changed; |
| } |
| |
| bool FunctionPassManagerImpl::doFinalization(Module &M) { |
| bool Changed = false; |
| |
| for (int Index = getNumContainedManagers() - 1; Index >= 0; --Index) |
| Changed |= getContainedManager(Index)->doFinalization(M); |
| |
| SmallVectorImpl<ImmutablePass *>& IPV = getImmutablePasses(); |
| for (SmallVectorImpl<ImmutablePass *>::const_iterator I = IPV.begin(), |
| E = IPV.end(); I != E; ++I) { |
| Changed |= (*I)->doFinalization(M); |
| } |
| |
| return Changed; |
| } |
| |
| /// cleanup - After running all passes, clean up pass manager cache. |
| void FPPassManager::cleanup() { |
| for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { |
| FunctionPass *FP = getContainedPass(Index); |
| AnalysisResolver *AR = FP->getResolver(); |
| assert(AR && "Analysis Resolver is not set"); |
| AR->clearAnalysisImpls(); |
| } |
| } |
| |
| void FunctionPassManagerImpl::releaseMemoryOnTheFly() { |
| if (!wasRun) |
| return; |
| for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) { |
| FPPassManager *FPPM = getContainedManager(Index); |
| for (unsigned Index = 0; Index < FPPM->getNumContainedPasses(); ++Index) { |
| FPPM->getContainedPass(Index)->releaseMemory(); |
| } |
| } |
| wasRun = false; |
| } |
| |
| // Execute all the passes managed by this top level manager. |
| // Return true if any function is modified by a pass. |
| bool FunctionPassManagerImpl::run(Function &F) { |
| bool Changed = false; |
| TimingInfo::createTheTimeInfo(); |
| |
| initializeAllAnalysisInfo(); |
| for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) |
| Changed |= getContainedManager(Index)->runOnFunction(F); |
| |
| for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) |
| getContainedManager(Index)->cleanup(); |
| |
| wasRun = true; |
| return Changed; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // FPPassManager implementation |
| |
| char FPPassManager::ID = 0; |
| /// Print passes managed by this manager |
| void FPPassManager::dumpPassStructure(unsigned Offset) { |
| dbgs().indent(Offset*2) << "FunctionPass Manager\n"; |
| for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { |
| FunctionPass *FP = getContainedPass(Index); |
| FP->dumpPassStructure(Offset + 1); |
| dumpLastUses(FP, Offset+1); |
| } |
| } |
| |
| |
| /// Execute all of the passes scheduled for execution by invoking |
| /// runOnFunction method. Keep track of whether any of the passes modifies |
| /// the function, and if so, return true. |
| bool FPPassManager::runOnFunction(Function &F) { |
| if (F.isDeclaration()) |
| return false; |
| |
| bool Changed = false; |
| |
| // Collect inherited analysis from Module level pass manager. |
| populateInheritedAnalysis(TPM->activeStack); |
| |
| for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { |
| FunctionPass *FP = getContainedPass(Index); |
| bool LocalChanged = false; |
| |
| dumpPassInfo(FP, EXECUTION_MSG, ON_FUNCTION_MSG, F.getName()); |
| dumpRequiredSet(FP); |
| |
| initializeAnalysisImpl(FP); |
| |
| { |
| PassManagerPrettyStackEntry X(FP, F); |
| TimeRegion PassTimer(getPassTimer(FP)); |
| |
| LocalChanged |= FP->runOnFunction(F); |
| } |
| |
| Changed |= LocalChanged; |
| if (LocalChanged) |
| dumpPassInfo(FP, MODIFICATION_MSG, ON_FUNCTION_MSG, F.getName()); |
| dumpPreservedSet(FP); |
| |
| verifyPreservedAnalysis(FP); |
| removeNotPreservedAnalysis(FP); |
| recordAvailableAnalysis(FP); |
| removeDeadPasses(FP, F.getName(), ON_FUNCTION_MSG); |
| } |
| return Changed; |
| } |
| |
| bool FPPassManager::runOnModule(Module &M) { |
| bool Changed = false; |
| |
| for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) |
| Changed |= runOnFunction(*I); |
| |
| return Changed; |
| } |
| |
| bool FPPassManager::doInitialization(Module &M) { |
| bool Changed = false; |
| |
| for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) |
| Changed |= getContainedPass(Index)->doInitialization(M); |
| |
| return Changed; |
| } |
| |
| bool FPPassManager::doFinalization(Module &M) { |
| bool Changed = false; |
| |
| for (int Index = getNumContainedPasses() - 1; Index >= 0; --Index) |
| Changed |= getContainedPass(Index)->doFinalization(M); |
| |
| return Changed; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // MPPassManager implementation |
| |
| /// Execute all of the passes scheduled for execution by invoking |
| /// runOnModule method. Keep track of whether any of the passes modifies |
| /// the module, and if so, return true. |
| bool |
| MPPassManager::runOnModule(Module &M) { |
| bool Changed = false; |
| |
| // Initialize on-the-fly passes |
| for (std::map<Pass *, FunctionPassManagerImpl *>::iterator |
| I = OnTheFlyManagers.begin(), E = OnTheFlyManagers.end(); |
| I != E; ++I) { |
| FunctionPassManagerImpl *FPP = I->second; |
| Changed |= FPP->doInitialization(M); |
| } |
| |
| // Initialize module passes |
| for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) |
| Changed |= getContainedPass(Index)->doInitialization(M); |
| |
| for (unsigned Index = 0; Index < getNumContainedPasses(); ++Index) { |
| ModulePass *MP = getContainedPass(Index); |
| bool LocalChanged = false; |
| |
| dumpPassInfo(MP, EXECUTION_MSG, ON_MODULE_MSG, M.getModuleIdentifier()); |
| dumpRequiredSet(MP); |
| |
| initializeAnalysisImpl(MP); |
| |
| { |
| PassManagerPrettyStackEntry X(MP, M); |
| TimeRegion PassTimer(getPassTimer(MP)); |
| |
| LocalChanged |= MP->runOnModule(M); |
| } |
| |
| Changed |= LocalChanged; |
| if (LocalChanged) |
| dumpPassInfo(MP, MODIFICATION_MSG, ON_MODULE_MSG, |
| M.getModuleIdentifier()); |
| dumpPreservedSet(MP); |
| |
| verifyPreservedAnalysis(MP); |
| removeNotPreservedAnalysis(MP); |
| recordAvailableAnalysis(MP); |
| removeDeadPasses(MP, M.getModuleIdentifier(), ON_MODULE_MSG); |
| } |
| |
| // Finalize module passes |
| for (int Index = getNumContainedPasses() - 1; Index >= 0; --Index) |
| Changed |= getContainedPass(Index)->doFinalization(M); |
| |
| // Finalize on-the-fly passes |
| for (std::map<Pass *, FunctionPassManagerImpl *>::iterator |
| I = OnTheFlyManagers.begin(), E = OnTheFlyManagers.end(); |
| I != E; ++I) { |
| FunctionPassManagerImpl *FPP = I->second; |
| // We don't know when is the last time an on-the-fly pass is run, |
| // so we need to releaseMemory / finalize here |
| FPP->releaseMemoryOnTheFly(); |
| Changed |= FPP->doFinalization(M); |
| } |
| |
| return Changed; |
| } |
| |
| /// Add RequiredPass into list of lower level passes required by pass P. |
| /// RequiredPass is run on the fly by Pass Manager when P requests it |
| /// through getAnalysis interface. |
| void MPPassManager::addLowerLevelRequiredPass(Pass *P, Pass *RequiredPass) { |
| assert(P->getPotentialPassManagerType() == PMT_ModulePassManager && |
| "Unable to handle Pass that requires lower level Analysis pass"); |
| assert((P->getPotentialPassManagerType() < |
| RequiredPass->getPotentialPassManagerType()) && |
| "Unable to handle Pass that requires lower level Analysis pass"); |
| |
| FunctionPassManagerImpl *FPP = OnTheFlyManagers[P]; |
| if (!FPP) { |
| FPP = new FunctionPassManagerImpl(); |
| // FPP is the top level manager. |
| FPP->setTopLevelManager(FPP); |
| |
| OnTheFlyManagers[P] = FPP; |
| } |
| FPP->add(RequiredPass); |
| |
| // Register P as the last user of RequiredPass. |
| if (RequiredPass) { |
| SmallVector<Pass *, 1> LU; |
| LU.push_back(RequiredPass); |
| FPP->setLastUser(LU, P); |
| } |
| } |
| |
| /// Return function pass corresponding to PassInfo PI, that is |
| /// required by module pass MP. Instantiate analysis pass, by using |
| /// its runOnFunction() for function F. |
| Pass* MPPassManager::getOnTheFlyPass(Pass *MP, AnalysisID PI, Function &F){ |
| FunctionPassManagerImpl *FPP = OnTheFlyManagers[MP]; |
| assert(FPP && "Unable to find on the fly pass"); |
| |
| FPP->releaseMemoryOnTheFly(); |
| FPP->run(F); |
| return ((PMTopLevelManager*)FPP)->findAnalysisPass(PI); |
| } |
| |
| |
| //===----------------------------------------------------------------------===// |
| // PassManagerImpl implementation |
| |
| // |
| /// run - Execute all of the passes scheduled for execution. Keep track of |
| /// whether any of the passes modifies the module, and if so, return true. |
| bool PassManagerImpl::run(Module &M) { |
| bool Changed = false; |
| TimingInfo::createTheTimeInfo(); |
| |
| dumpArguments(); |
| dumpPasses(); |
| |
| SmallVectorImpl<ImmutablePass *>& IPV = getImmutablePasses(); |
| for (SmallVectorImpl<ImmutablePass *>::const_iterator I = IPV.begin(), |
| E = IPV.end(); I != E; ++I) { |
| Changed |= (*I)->doInitialization(M); |
| } |
| |
| initializeAllAnalysisInfo(); |
| for (unsigned Index = 0; Index < getNumContainedManagers(); ++Index) |
| Changed |= getContainedManager(Index)->runOnModule(M); |
| |
| for (SmallVectorImpl<ImmutablePass *>::const_iterator I = IPV.begin(), |
| E = IPV.end(); I != E; ++I) { |
| Changed |= (*I)->doFinalization(M); |
| } |
| |
| return Changed; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PassManager implementation |
| |
| /// Create new pass manager |
| PassManager::PassManager() { |
| PM = new PassManagerImpl(); |
| // PM is the top level manager |
| PM->setTopLevelManager(PM); |
| } |
| |
| PassManager::~PassManager() { |
| delete PM; |
| } |
| |
| /// add - Add a pass to the queue of passes to run. This passes ownership of |
| /// the Pass to the PassManager. When the PassManager is destroyed, the pass |
| /// will be destroyed as well, so there is no need to delete the pass. This |
| /// implies that all passes MUST be allocated with 'new'. |
| void PassManager::add(Pass *P) { |
| PM->add(P); |
| } |
| |
| /// run - Execute all of the passes scheduled for execution. Keep track of |
| /// whether any of the passes modifies the module, and if so, return true. |
| bool PassManager::run(Module &M) { |
| return PM->run(M); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TimingInfo Class - This class is used to calculate information about the |
| // amount of time each pass takes to execute. This only happens with |
| // -time-passes is enabled on the command line. |
| // |
| bool llvm::TimePassesIsEnabled = false; |
| static cl::opt<bool,true> |
| EnableTiming("time-passes", cl::location(TimePassesIsEnabled), |
| cl::desc("Time each pass, printing elapsed time for each on exit")); |
| |
| // createTheTimeInfo - This method either initializes the TheTimeInfo pointer to |
| // a non null value (if the -time-passes option is enabled) or it leaves it |
| // null. It may be called multiple times. |
| void TimingInfo::createTheTimeInfo() { |
| if (!TimePassesIsEnabled || TheTimeInfo) return; |
| |
| // Constructed the first time this is called, iff -time-passes is enabled. |
| // This guarantees that the object will be constructed before static globals, |
| // thus it will be destroyed before them. |
| static ManagedStatic<TimingInfo> TTI; |
| TheTimeInfo = &*TTI; |
| } |
| |
| /// If TimingInfo is enabled then start pass timer. |
| Timer *llvm::getPassTimer(Pass *P) { |
| if (TheTimeInfo) |
| return TheTimeInfo->getPassTimer(P); |
| return 0; |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // PMStack implementation |
| // |
| |
| // Pop Pass Manager from the stack and clear its analysis info. |
| void PMStack::pop() { |
| |
| PMDataManager *Top = this->top(); |
| Top->initializeAnalysisInfo(); |
| |
| S.pop_back(); |
| } |
| |
| // Push PM on the stack and set its top level manager. |
| void PMStack::push(PMDataManager *PM) { |
| assert(PM && "Unable to push. Pass Manager expected"); |
| assert(PM->getDepth()==0 && "Pass Manager depth set too early"); |
| |
| if (!this->empty()) { |
| assert(PM->getPassManagerType() > this->top()->getPassManagerType() |
| && "pushing bad pass manager to PMStack"); |
| PMTopLevelManager *TPM = this->top()->getTopLevelManager(); |
| |
| assert(TPM && "Unable to find top level manager"); |
| TPM->addIndirectPassManager(PM); |
| PM->setTopLevelManager(TPM); |
| PM->setDepth(this->top()->getDepth()+1); |
| } else { |
| assert((PM->getPassManagerType() == PMT_ModulePassManager |
| || PM->getPassManagerType() == PMT_FunctionPassManager) |
| && "pushing bad pass manager to PMStack"); |
| PM->setDepth(1); |
| } |
| |
| S.push_back(PM); |
| } |
| |
| // Dump content of the pass manager stack. |
| void PMStack::dump() const { |
| for (std::vector<PMDataManager *>::const_iterator I = S.begin(), |
| E = S.end(); I != E; ++I) |
| dbgs() << (*I)->getAsPass()->getPassName() << ' '; |
| |
| if (!S.empty()) |
| dbgs() << '\n'; |
| } |
| |
| /// Find appropriate Module Pass Manager in the PM Stack and |
| /// add self into that manager. |
| void ModulePass::assignPassManager(PMStack &PMS, |
| PassManagerType PreferredType) { |
| // Find Module Pass Manager |
| while (!PMS.empty()) { |
| PassManagerType TopPMType = PMS.top()->getPassManagerType(); |
| if (TopPMType == PreferredType) |
| break; // We found desired pass manager |
| else if (TopPMType > PMT_ModulePassManager) |
| PMS.pop(); // Pop children pass managers |
| else |
| break; |
| } |
| assert(!PMS.empty() && "Unable to find appropriate Pass Manager"); |
| PMS.top()->add(this); |
| } |
| |
| /// Find appropriate Function Pass Manager or Call Graph Pass Manager |
| /// in the PM Stack and add self into that manager. |
| void FunctionPass::assignPassManager(PMStack &PMS, |
| PassManagerType PreferredType) { |
| |
| // Find Function Pass Manager |
| while (!PMS.empty()) { |
| if (PMS.top()->getPassManagerType() > PMT_FunctionPassManager) |
| PMS.pop(); |
| else |
| break; |
| } |
| |
| // Create new Function Pass Manager if needed. |
| FPPassManager *FPP; |
| if (PMS.top()->getPassManagerType() == PMT_FunctionPassManager) { |
| FPP = (FPPassManager *)PMS.top(); |
| } else { |
| assert(!PMS.empty() && "Unable to create Function Pass Manager"); |
| PMDataManager *PMD = PMS.top(); |
| |
| // [1] Create new Function Pass Manager |
| FPP = new FPPassManager(); |
| FPP->populateInheritedAnalysis(PMS); |
| |
| // [2] Set up new manager's top level manager |
| PMTopLevelManager *TPM = PMD->getTopLevelManager(); |
| TPM->addIndirectPassManager(FPP); |
| |
| // [3] Assign manager to manage this new manager. This may create |
| // and push new managers into PMS |
| FPP->assignPassManager(PMS, PMD->getPassManagerType()); |
| |
| // [4] Push new manager into PMS |
| PMS.push(FPP); |
| } |
| |
| // Assign FPP as the manager of this pass. |
| FPP->add(this); |
| } |
| |
| /// Find appropriate Basic Pass Manager or Call Graph Pass Manager |
| /// in the PM Stack and add self into that manager. |
| void BasicBlockPass::assignPassManager(PMStack &PMS, |
| PassManagerType PreferredType) { |
| BBPassManager *BBP; |
| |
| // Basic Pass Manager is a leaf pass manager. It does not handle |
| // any other pass manager. |
| if (!PMS.empty() && |
| PMS.top()->getPassManagerType() == PMT_BasicBlockPassManager) { |
| BBP = (BBPassManager *)PMS.top(); |
| } else { |
| // If leaf manager is not Basic Block Pass manager then create new |
| // basic Block Pass manager. |
| assert(!PMS.empty() && "Unable to create BasicBlock Pass Manager"); |
| PMDataManager *PMD = PMS.top(); |
| |
| // [1] Create new Basic Block Manager |
| BBP = new BBPassManager(); |
| |
| // [2] Set up new manager's top level manager |
| // Basic Block Pass Manager does not live by itself |
| PMTopLevelManager *TPM = PMD->getTopLevelManager(); |
| TPM->addIndirectPassManager(BBP); |
| |
| // [3] Assign manager to manage this new manager. This may create |
| // and push new managers into PMS |
| BBP->assignPassManager(PMS, PreferredType); |
| |
| // [4] Push new manager into PMS |
| PMS.push(BBP); |
| } |
| |
| // Assign BBP as the manager of this pass. |
| BBP->add(this); |
| } |
| |
| PassManagerBase::~PassManagerBase() {} |