blob: e8b5b4fe8d1b9e709befe8835870a8001b87befa [file] [log] [blame]
//===- BasicTargetTransformInfo.cpp - Basic target-independent TTI impl ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This file provides the implementation of a basic TargetTransformInfo pass
/// predicated on the target abstractions present in the target independent
/// code generator. It uses these (primarily TargetLowering) to model as much
/// of the TTI query interface as possible. It is included by most targets so
/// that they can specialize only a small subset of the query space.
///
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "basictti"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Target/TargetLowering.h"
#include <utility>
using namespace llvm;
namespace {
class BasicTTI : public ImmutablePass, public TargetTransformInfo {
const TargetLoweringBase *TLI;
/// Estimate the overhead of scalarizing an instruction. Insert and Extract
/// are set if the result needs to be inserted and/or extracted from vectors.
unsigned getScalarizationOverhead(Type *Ty, bool Insert, bool Extract) const;
public:
BasicTTI() : ImmutablePass(ID), TLI(0) {
llvm_unreachable("This pass cannot be directly constructed");
}
BasicTTI(const TargetLoweringBase *TLI) : ImmutablePass(ID), TLI(TLI) {
initializeBasicTTIPass(*PassRegistry::getPassRegistry());
}
virtual void initializePass() {
pushTTIStack(this);
}
virtual void finalizePass() {
popTTIStack();
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
TargetTransformInfo::getAnalysisUsage(AU);
}
/// Pass identification.
static char ID;
/// Provide necessary pointer adjustments for the two base classes.
virtual void *getAdjustedAnalysisPointer(const void *ID) {
if (ID == &TargetTransformInfo::ID)
return (TargetTransformInfo*)this;
return this;
}
/// \name Scalar TTI Implementations
/// @{
virtual bool isLegalAddImmediate(int64_t imm) const;
virtual bool isLegalICmpImmediate(int64_t imm) const;
virtual bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale) const;
virtual bool isTruncateFree(Type *Ty1, Type *Ty2) const;
virtual bool isTypeLegal(Type *Ty) const;
virtual unsigned getJumpBufAlignment() const;
virtual unsigned getJumpBufSize() const;
virtual bool shouldBuildLookupTables() const;
/// @}
/// \name Vector TTI Implementations
/// @{
virtual unsigned getNumberOfRegisters(bool Vector) const;
virtual unsigned getMaximumUnrollFactor() const;
virtual unsigned getRegisterBitWidth(bool Vector) const;
virtual unsigned getArithmeticInstrCost(unsigned Opcode, Type *Ty) const;
virtual unsigned getShuffleCost(ShuffleKind Kind, Type *Tp,
int Index, Type *SubTp) const;
virtual unsigned getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src) const;
virtual unsigned getCFInstrCost(unsigned Opcode) const;
virtual unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy) const;
virtual unsigned getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) const;
virtual unsigned getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace) const;
virtual unsigned getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
ArrayRef<Type*> Tys) const;
virtual unsigned getNumberOfParts(Type *Tp) const;
virtual unsigned getAddressComputationCost(Type *Ty) const;
/// @}
};
}
INITIALIZE_AG_PASS(BasicTTI, TargetTransformInfo, "basictti",
"Target independent code generator's TTI", true, true, false)
char BasicTTI::ID = 0;
ImmutablePass *
llvm::createBasicTargetTransformInfoPass(const TargetLoweringBase *TLI) {
return new BasicTTI(TLI);
}
bool BasicTTI::isLegalAddImmediate(int64_t imm) const {
return TLI->isLegalAddImmediate(imm);
}
bool BasicTTI::isLegalICmpImmediate(int64_t imm) const {
return TLI->isLegalICmpImmediate(imm);
}
bool BasicTTI::isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV,
int64_t BaseOffset, bool HasBaseReg,
int64_t Scale) const {
TargetLoweringBase::AddrMode AM;
AM.BaseGV = BaseGV;
AM.BaseOffs = BaseOffset;
AM.HasBaseReg = HasBaseReg;
AM.Scale = Scale;
return TLI->isLegalAddressingMode(AM, Ty);
}
bool BasicTTI::isTruncateFree(Type *Ty1, Type *Ty2) const {
return TLI->isTruncateFree(Ty1, Ty2);
}
bool BasicTTI::isTypeLegal(Type *Ty) const {
EVT T = TLI->getValueType(Ty);
return TLI->isTypeLegal(T);
}
unsigned BasicTTI::getJumpBufAlignment() const {
return TLI->getJumpBufAlignment();
}
unsigned BasicTTI::getJumpBufSize() const {
return TLI->getJumpBufSize();
}
bool BasicTTI::shouldBuildLookupTables() const {
return TLI->supportJumpTables() &&
(TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
}
//===----------------------------------------------------------------------===//
//
// Calls used by the vectorizers.
//
//===----------------------------------------------------------------------===//
unsigned BasicTTI::getScalarizationOverhead(Type *Ty, bool Insert,
bool Extract) const {
assert (Ty->isVectorTy() && "Can only scalarize vectors");
unsigned Cost = 0;
for (int i = 0, e = Ty->getVectorNumElements(); i < e; ++i) {
if (Insert)
Cost += TopTTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
if (Extract)
Cost += TopTTI->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
}
return Cost;
}
unsigned BasicTTI::getNumberOfRegisters(bool Vector) const {
return 1;
}
unsigned BasicTTI::getRegisterBitWidth(bool Vector) const {
return 32;
}
unsigned BasicTTI::getMaximumUnrollFactor() const {
return 1;
}
unsigned BasicTTI::getArithmeticInstrCost(unsigned Opcode, Type *Ty) const {
// Check if any of the operands are vector operands.
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Ty);
if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
// The operation is legal. Assume it costs 1.
// If the type is split to multiple registers, assume that thre is some
// overhead to this.
// TODO: Once we have extract/insert subvector cost we need to use them.
if (LT.first > 1)
return LT.first * 2;
return LT.first * 1;
}
if (!TLI->isOperationExpand(ISD, LT.second)) {
// If the operation is custom lowered then assume
// thare the code is twice as expensive.
return LT.first * 2;
}
// Else, assume that we need to scalarize this op.
if (Ty->isVectorTy()) {
unsigned Num = Ty->getVectorNumElements();
unsigned Cost = TopTTI->getArithmeticInstrCost(Opcode, Ty->getScalarType());
// return the cost of multiple scalar invocation plus the cost of inserting
// and extracting the values.
return getScalarizationOverhead(Ty, true, true) + Num * Cost;
}
// We don't know anything about this scalar instruction.
return 1;
}
unsigned BasicTTI::getShuffleCost(ShuffleKind Kind, Type *Tp, int Index,
Type *SubTp) const {
return 1;
}
unsigned BasicTTI::getCastInstrCost(unsigned Opcode, Type *Dst,
Type *Src) const {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(Src);
std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(Dst);
// Check for NOOP conversions.
if (SrcLT.first == DstLT.first &&
SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
// Bitcast between types that are legalized to the same type are free.
if (Opcode == Instruction::BitCast || Opcode == Instruction::Trunc)
return 0;
}
if (Opcode == Instruction::Trunc &&
TLI->isTruncateFree(SrcLT.second, DstLT.second))
return 0;
if (Opcode == Instruction::ZExt &&
TLI->isZExtFree(SrcLT.second, DstLT.second))
return 0;
// If the cast is marked as legal (or promote) then assume low cost.
if (TLI->isOperationLegalOrPromote(ISD, DstLT.second))
return 1;
// Handle scalar conversions.
if (!Src->isVectorTy() && !Dst->isVectorTy()) {
// Scalar bitcasts are usually free.
if (Opcode == Instruction::BitCast)
return 0;
// Just check the op cost. If the operation is legal then assume it costs 1.
if (!TLI->isOperationExpand(ISD, DstLT.second))
return 1;
// Assume that illegal scalar instruction are expensive.
return 4;
}
// Check vector-to-vector casts.
if (Dst->isVectorTy() && Src->isVectorTy()) {
// If the cast is between same-sized registers, then the check is simple.
if (SrcLT.first == DstLT.first &&
SrcLT.second.getSizeInBits() == DstLT.second.getSizeInBits()) {
// Assume that Zext is done using AND.
if (Opcode == Instruction::ZExt)
return 1;
// Assume that sext is done using SHL and SRA.
if (Opcode == Instruction::SExt)
return 2;
// Just check the op cost. If the operation is legal then assume it costs
// 1 and multiply by the type-legalization overhead.
if (!TLI->isOperationExpand(ISD, DstLT.second))
return SrcLT.first * 1;
}
// If we are converting vectors and the operation is illegal, or
// if the vectors are legalized to different types, estimate the
// scalarization costs.
unsigned Num = Dst->getVectorNumElements();
unsigned Cost = TopTTI->getCastInstrCost(Opcode, Dst->getScalarType(),
Src->getScalarType());
// Return the cost of multiple scalar invocation plus the cost of
// inserting and extracting the values.
return getScalarizationOverhead(Dst, true, true) + Num * Cost;
}
// We already handled vector-to-vector and scalar-to-scalar conversions. This
// is where we handle bitcast between vectors and scalars. We need to assume
// that the conversion is scalarized in one way or another.
if (Opcode == Instruction::BitCast)
// Illegal bitcasts are done by storing and loading from a stack slot.
return (Src->isVectorTy()? getScalarizationOverhead(Src, false, true):0) +
(Dst->isVectorTy()? getScalarizationOverhead(Dst, true, false):0);
llvm_unreachable("Unhandled cast");
}
unsigned BasicTTI::getCFInstrCost(unsigned Opcode) const {
// Branches are assumed to be predicted.
return 0;
}
unsigned BasicTTI::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
Type *CondTy) const {
int ISD = TLI->InstructionOpcodeToISD(Opcode);
assert(ISD && "Invalid opcode");
// Selects on vectors are actually vector selects.
if (ISD == ISD::SELECT) {
assert(CondTy && "CondTy must exist");
if (CondTy->isVectorTy())
ISD = ISD::VSELECT;
}
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(ValTy);
if (!TLI->isOperationExpand(ISD, LT.second)) {
// The operation is legal. Assume it costs 1. Multiply
// by the type-legalization overhead.
return LT.first * 1;
}
// Otherwise, assume that the cast is scalarized.
if (ValTy->isVectorTy()) {
unsigned Num = ValTy->getVectorNumElements();
if (CondTy)
CondTy = CondTy->getScalarType();
unsigned Cost = TopTTI->getCmpSelInstrCost(Opcode, ValTy->getScalarType(),
CondTy);
// Return the cost of multiple scalar invocation plus the cost of inserting
// and extracting the values.
return getScalarizationOverhead(ValTy, true, false) + Num * Cost;
}
// Unknown scalar opcode.
return 1;
}
unsigned BasicTTI::getVectorInstrCost(unsigned Opcode, Type *Val,
unsigned Index) const {
return 1;
}
unsigned BasicTTI::getMemoryOpCost(unsigned Opcode, Type *Src,
unsigned Alignment,
unsigned AddressSpace) const {
assert(!Src->isVoidTy() && "Invalid type");
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Src);
// Assume that all loads of legal types cost 1.
return LT.first;
}
unsigned BasicTTI::getIntrinsicInstrCost(Intrinsic::ID, Type *RetTy,
ArrayRef<Type *> Tys) const {
// assume that we need to scalarize this intrinsic.
unsigned ScalarizationCost = 0;
unsigned ScalarCalls = 1;
if (RetTy->isVectorTy()) {
ScalarizationCost = getScalarizationOverhead(RetTy, true, false);
ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
}
for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
if (Tys[i]->isVectorTy()) {
ScalarizationCost += getScalarizationOverhead(Tys[i], false, true);
ScalarCalls = std::max(ScalarCalls, RetTy->getVectorNumElements());
}
}
return ScalarCalls + ScalarizationCost;
}
unsigned BasicTTI::getNumberOfParts(Type *Tp) const {
std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(Tp);
return LT.first;
}
unsigned BasicTTI::getAddressComputationCost(Type *Ty) const {
return 0;
}