| //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file was developed by Evan Cheng and is distributed under |
| // the University of Illinois Open Source License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file defines the interfaces that ARM uses to lower LLVM code into a |
| // selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ARM.h" |
| #include "ARMAddressingModes.h" |
| #include "ARMConstantPoolValue.h" |
| #include "ARMISelLowering.h" |
| #include "ARMMachineFunctionInfo.h" |
| #include "ARMRegisterInfo.h" |
| #include "ARMSubtarget.h" |
| #include "ARMTargetMachine.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Instruction.h" |
| #include "llvm/CodeGen/MachineBasicBlock.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/SelectionDAG.h" |
| #include "llvm/CodeGen/SSARegMap.h" |
| #include "llvm/Target/TargetOptions.h" |
| #include "llvm/ADT/VectorExtras.h" |
| #include "llvm/Support/MathExtras.h" |
| using namespace llvm; |
| |
| ARMTargetLowering::ARMTargetLowering(TargetMachine &TM) |
| : TargetLowering(TM), ARMPCLabelIndex(0) { |
| Subtarget = &TM.getSubtarget<ARMSubtarget>(); |
| |
| if (Subtarget->isTargetDarwin()) { |
| // Don't have these. |
| setLibcallName(RTLIB::UINTTOFP_I64_F32, NULL); |
| setLibcallName(RTLIB::UINTTOFP_I64_F64, NULL); |
| |
| // Uses VFP for Thumb libfuncs if available. |
| if (Subtarget->isThumb() && Subtarget->hasVFP2()) { |
| // Single-precision floating-point arithmetic. |
| setLibcallName(RTLIB::ADD_F32, "__addsf3vfp"); |
| setLibcallName(RTLIB::SUB_F32, "__subsf3vfp"); |
| setLibcallName(RTLIB::MUL_F32, "__mulsf3vfp"); |
| setLibcallName(RTLIB::DIV_F32, "__divsf3vfp"); |
| |
| // Double-precision floating-point arithmetic. |
| setLibcallName(RTLIB::ADD_F64, "__adddf3vfp"); |
| setLibcallName(RTLIB::SUB_F64, "__subdf3vfp"); |
| setLibcallName(RTLIB::MUL_F64, "__muldf3vfp"); |
| setLibcallName(RTLIB::DIV_F64, "__divdf3vfp"); |
| |
| // Single-precision comparisons. |
| setLibcallName(RTLIB::OEQ_F32, "__eqsf2vfp"); |
| setLibcallName(RTLIB::UNE_F32, "__nesf2vfp"); |
| setLibcallName(RTLIB::OLT_F32, "__ltsf2vfp"); |
| setLibcallName(RTLIB::OLE_F32, "__lesf2vfp"); |
| setLibcallName(RTLIB::OGE_F32, "__gesf2vfp"); |
| setLibcallName(RTLIB::OGT_F32, "__gtsf2vfp"); |
| setLibcallName(RTLIB::UO_F32, "__unordsf2vfp"); |
| setLibcallName(RTLIB::O_F32, "__unordsf2vfp"); |
| |
| setCmpLibcallCC(RTLIB::OEQ_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::UNE_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OLT_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OLE_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OGE_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OGT_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::UO_F32, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::O_F32, ISD::SETEQ); |
| |
| // Double-precision comparisons. |
| setLibcallName(RTLIB::OEQ_F64, "__eqdf2vfp"); |
| setLibcallName(RTLIB::UNE_F64, "__nedf2vfp"); |
| setLibcallName(RTLIB::OLT_F64, "__ltdf2vfp"); |
| setLibcallName(RTLIB::OLE_F64, "__ledf2vfp"); |
| setLibcallName(RTLIB::OGE_F64, "__gedf2vfp"); |
| setLibcallName(RTLIB::OGT_F64, "__gtdf2vfp"); |
| setLibcallName(RTLIB::UO_F64, "__unorddf2vfp"); |
| setLibcallName(RTLIB::O_F64, "__unorddf2vfp"); |
| |
| setCmpLibcallCC(RTLIB::OEQ_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::UNE_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OLT_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OLE_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OGE_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::OGT_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::UO_F64, ISD::SETNE); |
| setCmpLibcallCC(RTLIB::O_F64, ISD::SETEQ); |
| |
| // Floating-point to integer conversions. |
| // i64 conversions are done via library routines even when generating VFP |
| // instructions, so use the same ones. |
| setLibcallName(RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp"); |
| setLibcallName(RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp"); |
| setLibcallName(RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp"); |
| setLibcallName(RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp"); |
| |
| // Conversions between floating types. |
| setLibcallName(RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp"); |
| setLibcallName(RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp"); |
| |
| // Integer to floating-point conversions. |
| // i64 conversions are done via library routines even when generating VFP |
| // instructions, so use the same ones. |
| // FIXME: There appears to be some naming inconsistency in ARM libgcc: e.g. |
| // __floatunsidf vs. __floatunssidfvfp. |
| setLibcallName(RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp"); |
| setLibcallName(RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp"); |
| setLibcallName(RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp"); |
| setLibcallName(RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp"); |
| } |
| } |
| |
| addRegisterClass(MVT::i32, ARM::GPRRegisterClass); |
| if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) { |
| addRegisterClass(MVT::f32, ARM::SPRRegisterClass); |
| addRegisterClass(MVT::f64, ARM::DPRRegisterClass); |
| } |
| computeRegisterProperties(); |
| |
| // ARM does not have f32 extending load. |
| setLoadXAction(ISD::EXTLOAD, MVT::f32, Expand); |
| |
| // ARM supports all 4 flavors of integer indexed load / store. |
| for (unsigned im = (unsigned)ISD::PRE_INC; |
| im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { |
| setIndexedLoadAction(im, MVT::i1, Legal); |
| setIndexedLoadAction(im, MVT::i8, Legal); |
| setIndexedLoadAction(im, MVT::i16, Legal); |
| setIndexedLoadAction(im, MVT::i32, Legal); |
| setIndexedStoreAction(im, MVT::i1, Legal); |
| setIndexedStoreAction(im, MVT::i8, Legal); |
| setIndexedStoreAction(im, MVT::i16, Legal); |
| setIndexedStoreAction(im, MVT::i32, Legal); |
| } |
| |
| // i64 operation support. |
| if (Subtarget->isThumb()) { |
| setOperationAction(ISD::MUL, MVT::i64, Expand); |
| setOperationAction(ISD::MULHU, MVT::i32, Expand); |
| setOperationAction(ISD::MULHS, MVT::i32, Expand); |
| } else { |
| setOperationAction(ISD::MUL, MVT::i64, Custom); |
| setOperationAction(ISD::MULHU, MVT::i32, Custom); |
| if (!Subtarget->hasV6Ops()) |
| setOperationAction(ISD::MULHS, MVT::i32, Custom); |
| } |
| setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::SRL, MVT::i64, Custom); |
| setOperationAction(ISD::SRA, MVT::i64, Custom); |
| |
| // ARM does not have ROTL. |
| setOperationAction(ISD::ROTL, MVT::i32, Expand); |
| setOperationAction(ISD::CTTZ , MVT::i32, Expand); |
| setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| if (!Subtarget->hasV5TOps() || Subtarget->isThumb()) |
| setOperationAction(ISD::CTLZ, MVT::i32, Expand); |
| |
| // Only ARMv6 has BSWAP. |
| if (!Subtarget->hasV6Ops()) |
| setOperationAction(ISD::BSWAP, MVT::i32, Expand); |
| |
| // These are expanded into libcalls. |
| setOperationAction(ISD::SDIV, MVT::i32, Expand); |
| setOperationAction(ISD::UDIV, MVT::i32, Expand); |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| |
| // Support label based line numbers. |
| setOperationAction(ISD::LOCATION, MVT::Other, Expand); |
| setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); |
| |
| setOperationAction(ISD::RET, MVT::Other, Custom); |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::ConstantPool, MVT::i32, Custom); |
| setOperationAction(ISD::GLOBAL_OFFSET_TABLE, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); |
| |
| // Expand mem operations genericly. |
| setOperationAction(ISD::MEMSET , MVT::Other, Expand); |
| setOperationAction(ISD::MEMCPY , MVT::Other, Custom); |
| setOperationAction(ISD::MEMMOVE , MVT::Other, Expand); |
| |
| // Use the default implementation. |
| setOperationAction(ISD::VASTART , MVT::Other, Expand); |
| setOperationAction(ISD::VAARG , MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY , MVT::Other, Expand); |
| setOperationAction(ISD::VAEND , MVT::Other, Expand); |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand); |
| |
| if (!Subtarget->hasV6Ops()) { |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); |
| } |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); |
| |
| if (!UseSoftFloat && Subtarget->hasVFP2() && !Subtarget->isThumb()) |
| // Turn f64->i64 into FMRRD iff target supports vfp2. |
| setOperationAction(ISD::BIT_CONVERT, MVT::i64, Custom); |
| |
| setOperationAction(ISD::SETCC , MVT::i32, Expand); |
| setOperationAction(ISD::SETCC , MVT::f32, Expand); |
| setOperationAction(ISD::SETCC , MVT::f64, Expand); |
| setOperationAction(ISD::SELECT , MVT::i32, Expand); |
| setOperationAction(ISD::SELECT , MVT::f32, Expand); |
| setOperationAction(ISD::SELECT , MVT::f64, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); |
| |
| setOperationAction(ISD::BRCOND , MVT::Other, Expand); |
| setOperationAction(ISD::BR_CC , MVT::i32, Custom); |
| setOperationAction(ISD::BR_CC , MVT::f32, Custom); |
| setOperationAction(ISD::BR_CC , MVT::f64, Custom); |
| setOperationAction(ISD::BR_JT , MVT::Other, Custom); |
| |
| setOperationAction(ISD::VASTART, MVT::Other, Custom); |
| setOperationAction(ISD::VACOPY, MVT::Other, Expand); |
| setOperationAction(ISD::VAEND, MVT::Other, Expand); |
| setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); |
| |
| // FP Constants can't be immediates. |
| setOperationAction(ISD::ConstantFP, MVT::f64, Expand); |
| setOperationAction(ISD::ConstantFP, MVT::f32, Expand); |
| |
| // We don't support sin/cos/fmod/copysign |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FREM , MVT::f64, Expand); |
| setOperationAction(ISD::FREM , MVT::f32, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); |
| |
| // int <-> fp are custom expanded into bit_convert + ARMISD ops. |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); |
| |
| setStackPointerRegisterToSaveRestore(ARM::SP); |
| setSchedulingPreference(SchedulingForRegPressure); |
| setIfCvtBlockSizeLimit(Subtarget->isThumb() ? 0 : 10); |
| setIfCvtDupBlockSizeLimit(Subtarget->isThumb() ? 0 : 2); |
| |
| maxStoresPerMemcpy = 1; //// temporary - rewrite interface to use type |
| } |
| |
| |
| const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| default: return 0; |
| case ARMISD::Wrapper: return "ARMISD::Wrapper"; |
| case ARMISD::WrapperJT: return "ARMISD::WrapperJT"; |
| case ARMISD::CALL: return "ARMISD::CALL"; |
| case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED"; |
| case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK"; |
| case ARMISD::tCALL: return "ARMISD::tCALL"; |
| case ARMISD::BRCOND: return "ARMISD::BRCOND"; |
| case ARMISD::BR_JT: return "ARMISD::BR_JT"; |
| case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG"; |
| case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD"; |
| case ARMISD::CMP: return "ARMISD::CMP"; |
| case ARMISD::CMPNZ: return "ARMISD::CMPNZ"; |
| case ARMISD::CMPFP: return "ARMISD::CMPFP"; |
| case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0"; |
| case ARMISD::FMSTAT: return "ARMISD::FMSTAT"; |
| case ARMISD::CMOV: return "ARMISD::CMOV"; |
| case ARMISD::CNEG: return "ARMISD::CNEG"; |
| |
| case ARMISD::FTOSI: return "ARMISD::FTOSI"; |
| case ARMISD::FTOUI: return "ARMISD::FTOUI"; |
| case ARMISD::SITOF: return "ARMISD::SITOF"; |
| case ARMISD::UITOF: return "ARMISD::UITOF"; |
| case ARMISD::MULHILOU: return "ARMISD::MULHILOU"; |
| case ARMISD::MULHILOS: return "ARMISD::MULHILOS"; |
| |
| case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG"; |
| case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG"; |
| case ARMISD::RRX: return "ARMISD::RRX"; |
| |
| case ARMISD::FMRRD: return "ARMISD::FMRRD"; |
| case ARMISD::FMDRR: return "ARMISD::FMDRR"; |
| |
| case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER"; |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Lowering Code |
| //===----------------------------------------------------------------------===// |
| |
| |
| /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC |
| static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) { |
| switch (CC) { |
| default: assert(0 && "Unknown condition code!"); |
| case ISD::SETNE: return ARMCC::NE; |
| case ISD::SETEQ: return ARMCC::EQ; |
| case ISD::SETGT: return ARMCC::GT; |
| case ISD::SETGE: return ARMCC::GE; |
| case ISD::SETLT: return ARMCC::LT; |
| case ISD::SETLE: return ARMCC::LE; |
| case ISD::SETUGT: return ARMCC::HI; |
| case ISD::SETUGE: return ARMCC::HS; |
| case ISD::SETULT: return ARMCC::LO; |
| case ISD::SETULE: return ARMCC::LS; |
| } |
| } |
| |
| /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. It |
| /// returns true if the operands should be inverted to form the proper |
| /// comparison. |
| static bool FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, |
| ARMCC::CondCodes &CondCode2) { |
| bool Invert = false; |
| CondCode2 = ARMCC::AL; |
| switch (CC) { |
| default: assert(0 && "Unknown FP condition!"); |
| case ISD::SETEQ: |
| case ISD::SETOEQ: CondCode = ARMCC::EQ; break; |
| case ISD::SETGT: |
| case ISD::SETOGT: CondCode = ARMCC::GT; break; |
| case ISD::SETGE: |
| case ISD::SETOGE: CondCode = ARMCC::GE; break; |
| case ISD::SETOLT: CondCode = ARMCC::MI; break; |
| case ISD::SETOLE: CondCode = ARMCC::GT; Invert = true; break; |
| case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break; |
| case ISD::SETO: CondCode = ARMCC::VC; break; |
| case ISD::SETUO: CondCode = ARMCC::VS; break; |
| case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break; |
| case ISD::SETUGT: CondCode = ARMCC::HI; break; |
| case ISD::SETUGE: CondCode = ARMCC::PL; break; |
| case ISD::SETLT: |
| case ISD::SETULT: CondCode = ARMCC::LT; break; |
| case ISD::SETLE: |
| case ISD::SETULE: CondCode = ARMCC::LE; break; |
| case ISD::SETNE: |
| case ISD::SETUNE: CondCode = ARMCC::NE; break; |
| } |
| return Invert; |
| } |
| |
| static void |
| HowToPassArgument(MVT::ValueType ObjectVT, unsigned NumGPRs, |
| unsigned StackOffset, unsigned &NeededGPRs, |
| unsigned &NeededStackSize, unsigned &GPRPad, |
| unsigned &StackPad, unsigned Flags) { |
| NeededStackSize = 0; |
| NeededGPRs = 0; |
| StackPad = 0; |
| GPRPad = 0; |
| unsigned align = (Flags >> ISD::ParamFlags::OrigAlignmentOffs); |
| GPRPad = NumGPRs % ((align + 3)/4); |
| StackPad = StackOffset % align; |
| unsigned firstGPR = NumGPRs + GPRPad; |
| switch (ObjectVT) { |
| default: assert(0 && "Unhandled argument type!"); |
| case MVT::i32: |
| case MVT::f32: |
| if (firstGPR < 4) |
| NeededGPRs = 1; |
| else |
| NeededStackSize = 4; |
| break; |
| case MVT::i64: |
| case MVT::f64: |
| if (firstGPR < 3) |
| NeededGPRs = 2; |
| else if (firstGPR == 3) { |
| NeededGPRs = 1; |
| NeededStackSize = 4; |
| } else |
| NeededStackSize = 8; |
| } |
| } |
| |
| /// LowerCALL - Lowering a ISD::CALL node into a callseq_start <- |
| /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter |
| /// nodes. |
| SDOperand ARMTargetLowering::LowerCALL(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType RetVT= Op.Val->getValueType(0); |
| SDOperand Chain = Op.getOperand(0); |
| unsigned CallConv = cast<ConstantSDNode>(Op.getOperand(1))->getValue(); |
| assert((CallConv == CallingConv::C || |
| CallConv == CallingConv::Fast) && "unknown calling convention"); |
| SDOperand Callee = Op.getOperand(4); |
| unsigned NumOps = (Op.getNumOperands() - 5) / 2; |
| unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot |
| unsigned NumGPRs = 0; // GPRs used for parameter passing. |
| |
| // Count how many bytes are to be pushed on the stack. |
| unsigned NumBytes = 0; |
| |
| // Add up all the space actually used. |
| for (unsigned i = 0; i < NumOps; ++i) { |
| unsigned ObjSize; |
| unsigned ObjGPRs; |
| unsigned StackPad; |
| unsigned GPRPad; |
| MVT::ValueType ObjectVT = Op.getOperand(5+2*i).getValueType(); |
| unsigned Flags = Op.getConstantOperandVal(5+2*i+1); |
| HowToPassArgument(ObjectVT, NumGPRs, NumBytes, ObjGPRs, ObjSize, |
| GPRPad, StackPad, Flags); |
| NumBytes += ObjSize + StackPad; |
| NumGPRs += ObjGPRs + GPRPad; |
| } |
| |
| // Adjust the stack pointer for the new arguments... |
| // These operations are automatically eliminated by the prolog/epilog pass |
| Chain = DAG.getCALLSEQ_START(Chain, |
| DAG.getConstant(NumBytes, MVT::i32)); |
| |
| SDOperand StackPtr = DAG.getRegister(ARM::SP, MVT::i32); |
| |
| static const unsigned GPRArgRegs[] = { |
| ARM::R0, ARM::R1, ARM::R2, ARM::R3 |
| }; |
| |
| NumGPRs = 0; |
| std::vector<std::pair<unsigned, SDOperand> > RegsToPass; |
| std::vector<SDOperand> MemOpChains; |
| for (unsigned i = 0; i != NumOps; ++i) { |
| SDOperand Arg = Op.getOperand(5+2*i); |
| unsigned Flags = Op.getConstantOperandVal(5+2*i+1); |
| MVT::ValueType ArgVT = Arg.getValueType(); |
| |
| unsigned ObjSize; |
| unsigned ObjGPRs; |
| unsigned GPRPad; |
| unsigned StackPad; |
| HowToPassArgument(ArgVT, NumGPRs, ArgOffset, ObjGPRs, |
| ObjSize, GPRPad, StackPad, Flags); |
| NumGPRs += GPRPad; |
| ArgOffset += StackPad; |
| if (ObjGPRs > 0) { |
| switch (ArgVT) { |
| default: assert(0 && "Unexpected ValueType for argument!"); |
| case MVT::i32: |
| RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Arg)); |
| break; |
| case MVT::f32: |
| RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], |
| DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Arg))); |
| break; |
| case MVT::i64: { |
| SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Arg, |
| DAG.getConstant(0, getPointerTy())); |
| SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Arg, |
| DAG.getConstant(1, getPointerTy())); |
| RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Lo)); |
| if (ObjGPRs == 2) |
| RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs+1], Hi)); |
| else { |
| SDOperand PtrOff= DAG.getConstant(ArgOffset, StackPtr.getValueType()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getStore(Chain, Hi, PtrOff, NULL, 0)); |
| } |
| break; |
| } |
| case MVT::f64: { |
| SDOperand Cvt = DAG.getNode(ARMISD::FMRRD, |
| DAG.getVTList(MVT::i32, MVT::i32), |
| &Arg, 1); |
| RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs], Cvt)); |
| if (ObjGPRs == 2) |
| RegsToPass.push_back(std::make_pair(GPRArgRegs[NumGPRs+1], |
| Cvt.getValue(1))); |
| else { |
| SDOperand PtrOff= DAG.getConstant(ArgOffset, StackPtr.getValueType()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getStore(Chain, Cvt.getValue(1), PtrOff, |
| NULL, 0)); |
| } |
| break; |
| } |
| } |
| } else { |
| assert(ObjSize != 0); |
| SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType()); |
| PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); |
| MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0)); |
| } |
| |
| NumGPRs += ObjGPRs; |
| ArgOffset += ObjSize; |
| } |
| |
| if (!MemOpChains.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &MemOpChains[0], MemOpChains.size()); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token chain |
| // and flag operands which copy the outgoing args into the appropriate regs. |
| SDOperand InFlag; |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second, |
| InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| // node so that legalize doesn't hack it. |
| bool isDirect = false; |
| bool isARMFunc = false; |
| bool isLocalARMFunc = false; |
| if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| GlobalValue *GV = G->getGlobal(); |
| isDirect = true; |
| bool isExt = (GV->isDeclaration() || GV->hasWeakLinkage() || |
| GV->hasLinkOnceLinkage()); |
| bool isStub = (isExt && Subtarget->isTargetDarwin()) && |
| getTargetMachine().getRelocationModel() != Reloc::Static; |
| isARMFunc = !Subtarget->isThumb() || isStub; |
| // ARM call to a local ARM function is predicable. |
| isLocalARMFunc = !Subtarget->isThumb() && !isExt; |
| // tBX takes a register source operand. |
| if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps()) { |
| ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex, |
| ARMCP::CPStub, 4); |
| SDOperand CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 2); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr); |
| Callee = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), CPAddr, NULL, 0); |
| SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); |
| Callee = DAG.getNode(ARMISD::PIC_ADD, getPointerTy(), Callee, PICLabel); |
| } else |
| Callee = DAG.getTargetGlobalAddress(GV, getPointerTy()); |
| } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| isDirect = true; |
| bool isStub = Subtarget->isTargetDarwin() && |
| getTargetMachine().getRelocationModel() != Reloc::Static; |
| isARMFunc = !Subtarget->isThumb() || isStub; |
| // tBX takes a register source operand. |
| const char *Sym = S->getSymbol(); |
| if (isARMFunc && Subtarget->isThumb() && !Subtarget->hasV5TOps()) { |
| ARMConstantPoolValue *CPV = new ARMConstantPoolValue(Sym, ARMPCLabelIndex, |
| ARMCP::CPStub, 4); |
| SDOperand CPAddr = DAG.getTargetConstantPool(CPV, getPointerTy(), 2); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr); |
| Callee = DAG.getLoad(getPointerTy(), DAG.getEntryNode(), CPAddr, NULL, 0); |
| SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); |
| Callee = DAG.getNode(ARMISD::PIC_ADD, getPointerTy(), Callee, PICLabel); |
| } else |
| Callee = DAG.getTargetExternalSymbol(Sym, getPointerTy()); |
| } |
| |
| // FIXME: handle tail calls differently. |
| unsigned CallOpc; |
| if (Subtarget->isThumb()) { |
| if (!Subtarget->hasV5TOps() && (!isDirect || isARMFunc)) |
| CallOpc = ARMISD::CALL_NOLINK; |
| else |
| CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL; |
| } else { |
| CallOpc = (isDirect || Subtarget->hasV5TOps()) |
| ? (isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL) |
| : ARMISD::CALL_NOLINK; |
| } |
| if (CallOpc == ARMISD::CALL_NOLINK && !Subtarget->isThumb()) { |
| // implicit def LR - LR mustn't be allocated as GRP:$dst of CALL_NOLINK |
| Chain = DAG.getCopyToReg(Chain, ARM::LR, |
| DAG.getNode(ISD::UNDEF, MVT::i32), InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| |
| std::vector<MVT::ValueType> NodeTys; |
| NodeTys.push_back(MVT::Other); // Returns a chain |
| NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use. |
| |
| std::vector<SDOperand> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are known live |
| // into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| |
| if (InFlag.Val) |
| Ops.push_back(InFlag); |
| Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| SDOperand CSOps[] = { Chain, DAG.getConstant(NumBytes, MVT::i32), InFlag }; |
| Chain = DAG.getNode(ISD::CALLSEQ_END, |
| DAG.getNodeValueTypes(MVT::Other, MVT::Flag), |
| ((RetVT != MVT::Other) ? 2 : 1), CSOps, 3); |
| if (RetVT != MVT::Other) |
| InFlag = Chain.getValue(1); |
| |
| std::vector<SDOperand> ResultVals; |
| NodeTys.clear(); |
| |
| // If the call has results, copy the values out of the ret val registers. |
| switch (RetVT) { |
| default: assert(0 && "Unexpected ret value!"); |
| case MVT::Other: |
| break; |
| case MVT::i32: |
| Chain = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| if (Op.Val->getValueType(1) == MVT::i32) { |
| // Returns a i64 value. |
| Chain = DAG.getCopyFromReg(Chain, ARM::R1, MVT::i32, |
| Chain.getValue(2)).getValue(1); |
| ResultVals.push_back(Chain.getValue(0)); |
| NodeTys.push_back(MVT::i32); |
| } |
| NodeTys.push_back(MVT::i32); |
| break; |
| case MVT::f32: |
| Chain = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag).getValue(1); |
| ResultVals.push_back(DAG.getNode(ISD::BIT_CONVERT, MVT::f32, |
| Chain.getValue(0))); |
| NodeTys.push_back(MVT::f32); |
| break; |
| case MVT::f64: { |
| SDOperand Lo = DAG.getCopyFromReg(Chain, ARM::R0, MVT::i32, InFlag); |
| SDOperand Hi = DAG.getCopyFromReg(Lo, ARM::R1, MVT::i32, Lo.getValue(2)); |
| ResultVals.push_back(DAG.getNode(ARMISD::FMDRR, MVT::f64, Lo, Hi)); |
| NodeTys.push_back(MVT::f64); |
| break; |
| } |
| } |
| |
| NodeTys.push_back(MVT::Other); |
| |
| if (ResultVals.empty()) |
| return Chain; |
| |
| ResultVals.push_back(Chain); |
| SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, &ResultVals[0], |
| ResultVals.size()); |
| return Res.getValue(Op.ResNo); |
| } |
| |
| static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand Copy; |
| SDOperand Chain = Op.getOperand(0); |
| switch(Op.getNumOperands()) { |
| default: |
| assert(0 && "Do not know how to return this many arguments!"); |
| abort(); |
| case 1: { |
| SDOperand LR = DAG.getRegister(ARM::LR, MVT::i32); |
| return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Chain); |
| } |
| case 3: |
| Op = Op.getOperand(1); |
| if (Op.getValueType() == MVT::f32) { |
| Op = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op); |
| } else if (Op.getValueType() == MVT::f64) { |
| // Recursively legalize f64 -> i64. |
| Op = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Op); |
| return DAG.getNode(ISD::RET, MVT::Other, Chain, Op, |
| DAG.getConstant(0, MVT::i32)); |
| } |
| Copy = DAG.getCopyToReg(Chain, ARM::R0, Op, SDOperand()); |
| if (DAG.getMachineFunction().liveout_empty()) |
| DAG.getMachineFunction().addLiveOut(ARM::R0); |
| break; |
| case 5: |
| Copy = DAG.getCopyToReg(Chain, ARM::R1, Op.getOperand(3), SDOperand()); |
| Copy = DAG.getCopyToReg(Copy, ARM::R0, Op.getOperand(1), Copy.getValue(1)); |
| // If we haven't noted the R0+R1 are live out, do so now. |
| if (DAG.getMachineFunction().liveout_empty()) { |
| DAG.getMachineFunction().addLiveOut(ARM::R0); |
| DAG.getMachineFunction().addLiveOut(ARM::R1); |
| } |
| break; |
| } |
| |
| //We must use RET_FLAG instead of BRIND because BRIND doesn't have a flag |
| return DAG.getNode(ARMISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1)); |
| } |
| |
| // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as |
| // their target countpart wrapped in the ARMISD::Wrapper node. Suppose N is |
| // one of the above mentioned nodes. It has to be wrapped because otherwise |
| // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only |
| // be used to form addressing mode. These wrapped nodes will be selected |
| // into MOVi. |
| static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType PtrVT = Op.getValueType(); |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| SDOperand Res; |
| if (CP->isMachineConstantPoolEntry()) |
| Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, |
| CP->getAlignment()); |
| else |
| Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, |
| CP->getAlignment()); |
| return DAG.getNode(ARMISD::Wrapper, MVT::i32, Res); |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "general dynamic" model |
| SDOperand |
| ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, |
| SelectionDAG &DAG) { |
| MVT::ValueType PtrVT = getPointerTy(); |
| unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; |
| ARMConstantPoolValue *CPV = |
| new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue, |
| PCAdj, "tlsgd", true); |
| SDOperand Argument = DAG.getTargetConstantPool(CPV, PtrVT, 2); |
| Argument = DAG.getNode(ARMISD::Wrapper, MVT::i32, Argument); |
| Argument = DAG.getLoad(PtrVT, DAG.getEntryNode(), Argument, NULL, 0); |
| SDOperand Chain = Argument.getValue(1); |
| |
| SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); |
| Argument = DAG.getNode(ARMISD::PIC_ADD, PtrVT, Argument, PICLabel); |
| |
| // call __tls_get_addr. |
| ArgListTy Args; |
| ArgListEntry Entry; |
| Entry.Node = Argument; |
| Entry.Ty = (const Type *) Type::Int32Ty; |
| Args.push_back(Entry); |
| std::pair<SDOperand, SDOperand> CallResult = |
| LowerCallTo(Chain, (const Type *) Type::Int32Ty, false, false, |
| CallingConv::C, false, |
| DAG.getExternalSymbol("__tls_get_addr", PtrVT), Args, DAG); |
| return CallResult.first; |
| } |
| |
| // Lower ISD::GlobalTLSAddress using the "initial exec" or |
| // "local exec" model. |
| SDOperand |
| ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA, |
| SelectionDAG &DAG) { |
| GlobalValue *GV = GA->getGlobal(); |
| SDOperand Offset; |
| SDOperand Chain = DAG.getEntryNode(); |
| MVT::ValueType PtrVT = getPointerTy(); |
| // Get the Thread Pointer |
| SDOperand ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, PtrVT); |
| |
| if (GV->isDeclaration()){ |
| // initial exec model |
| unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; |
| ARMConstantPoolValue *CPV = |
| new ARMConstantPoolValue(GA->getGlobal(), ARMPCLabelIndex, ARMCP::CPValue, |
| PCAdj, "gottpoff", true); |
| Offset = DAG.getTargetConstantPool(CPV, PtrVT, 2); |
| Offset = DAG.getNode(ARMISD::Wrapper, MVT::i32, Offset); |
| Offset = DAG.getLoad(PtrVT, Chain, Offset, NULL, 0); |
| Chain = Offset.getValue(1); |
| |
| SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); |
| Offset = DAG.getNode(ARMISD::PIC_ADD, PtrVT, Offset, PICLabel); |
| |
| Offset = DAG.getLoad(PtrVT, Chain, Offset, NULL, 0); |
| } else { |
| // local exec model |
| ARMConstantPoolValue *CPV = |
| new ARMConstantPoolValue(GV, ARMCP::CPValue, "tpoff"); |
| Offset = DAG.getTargetConstantPool(CPV, PtrVT, 2); |
| Offset = DAG.getNode(ARMISD::Wrapper, MVT::i32, Offset); |
| Offset = DAG.getLoad(PtrVT, Chain, Offset, NULL, 0); |
| } |
| |
| // The address of the thread local variable is the add of the thread |
| // pointer with the offset of the variable. |
| return DAG.getNode(ISD::ADD, PtrVT, ThreadPointer, Offset); |
| } |
| |
| SDOperand |
| ARMTargetLowering::LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) { |
| // TODO: implement the "local dynamic" model |
| assert(Subtarget->isTargetELF() && |
| "TLS not implemented for non-ELF targets"); |
| GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); |
| // If the relocation model is PIC, use the "General Dynamic" TLS Model, |
| // otherwise use the "Local Exec" TLS Model |
| if (getTargetMachine().getRelocationModel() == Reloc::PIC_) |
| return LowerToTLSGeneralDynamicModel(GA, DAG); |
| else |
| return LowerToTLSExecModels(GA, DAG); |
| } |
| |
| SDOperand ARMTargetLowering::LowerGlobalAddressELF(SDOperand Op, |
| SelectionDAG &DAG) { |
| MVT::ValueType PtrVT = getPointerTy(); |
| GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| Reloc::Model RelocM = getTargetMachine().getRelocationModel(); |
| if (RelocM == Reloc::PIC_) { |
| bool UseGOTOFF = GV->hasInternalLinkage() || GV->hasHiddenVisibility(); |
| ARMConstantPoolValue *CPV = |
| new ARMConstantPoolValue(GV, ARMCP::CPValue, UseGOTOFF ? "GOTOFF":"GOT"); |
| SDOperand CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 2); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr); |
| SDOperand Result = DAG.getLoad(PtrVT, DAG.getEntryNode(), CPAddr, NULL, 0); |
| SDOperand Chain = Result.getValue(1); |
| SDOperand GOT = DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, PtrVT); |
| Result = DAG.getNode(ISD::ADD, PtrVT, Result, GOT); |
| if (!UseGOTOFF) |
| Result = DAG.getLoad(PtrVT, Chain, Result, NULL, 0); |
| return Result; |
| } else { |
| SDOperand CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 2); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr); |
| return DAG.getLoad(PtrVT, DAG.getEntryNode(), CPAddr, NULL, 0); |
| } |
| } |
| |
| /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol |
| /// even in non-static mode. |
| static bool GVIsIndirectSymbol(GlobalValue *GV, Reloc::Model RelocM) { |
| return RelocM != Reloc::Static && |
| (GV->hasWeakLinkage() || GV->hasLinkOnceLinkage() || |
| (GV->isDeclaration() && !GV->hasNotBeenReadFromBitcode())); |
| } |
| |
| SDOperand ARMTargetLowering::LowerGlobalAddressDarwin(SDOperand Op, |
| SelectionDAG &DAG) { |
| MVT::ValueType PtrVT = getPointerTy(); |
| GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| Reloc::Model RelocM = getTargetMachine().getRelocationModel(); |
| bool IsIndirect = GVIsIndirectSymbol(GV, RelocM); |
| SDOperand CPAddr; |
| if (RelocM == Reloc::Static) |
| CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 2); |
| else { |
| unsigned PCAdj = (RelocM != Reloc::PIC_) |
| ? 0 : (Subtarget->isThumb() ? 4 : 8); |
| ARMCP::ARMCPKind Kind = IsIndirect ? ARMCP::CPNonLazyPtr |
| : ARMCP::CPValue; |
| ARMConstantPoolValue *CPV = new ARMConstantPoolValue(GV, ARMPCLabelIndex, |
| Kind, PCAdj); |
| CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 2); |
| } |
| CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr); |
| |
| SDOperand Result = DAG.getLoad(PtrVT, DAG.getEntryNode(), CPAddr, NULL, 0); |
| SDOperand Chain = Result.getValue(1); |
| |
| if (RelocM == Reloc::PIC_) { |
| SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); |
| Result = DAG.getNode(ARMISD::PIC_ADD, PtrVT, Result, PICLabel); |
| } |
| if (IsIndirect) |
| Result = DAG.getLoad(PtrVT, Chain, Result, NULL, 0); |
| |
| return Result; |
| } |
| |
| SDOperand ARMTargetLowering::LowerGLOBAL_OFFSET_TABLE(SDOperand Op, |
| SelectionDAG &DAG){ |
| assert(Subtarget->isTargetELF() && |
| "GLOBAL OFFSET TABLE not implemented for non-ELF targets"); |
| MVT::ValueType PtrVT = getPointerTy(); |
| unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; |
| ARMConstantPoolValue *CPV = new ARMConstantPoolValue("_GLOBAL_OFFSET_TABLE_", |
| ARMPCLabelIndex, |
| ARMCP::CPValue, PCAdj); |
| SDOperand CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 2); |
| CPAddr = DAG.getNode(ARMISD::Wrapper, MVT::i32, CPAddr); |
| SDOperand Result = DAG.getLoad(PtrVT, DAG.getEntryNode(), CPAddr, NULL, 0); |
| SDOperand PICLabel = DAG.getConstant(ARMPCLabelIndex++, MVT::i32); |
| return DAG.getNode(ARMISD::PIC_ADD, PtrVT, Result, PICLabel); |
| } |
| |
| static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG, |
| unsigned VarArgsFrameIndex) { |
| // vastart just stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy(); |
| SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT); |
| SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2)); |
| return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(), |
| SV->getOffset()); |
| } |
| |
| static SDOperand LowerFORMAL_ARGUMENT(SDOperand Op, SelectionDAG &DAG, |
| unsigned *vRegs, unsigned ArgNo, |
| unsigned &NumGPRs, unsigned &ArgOffset) { |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType(); |
| SDOperand Root = Op.getOperand(0); |
| std::vector<SDOperand> ArgValues; |
| SSARegMap *RegMap = MF.getSSARegMap(); |
| |
| static const unsigned GPRArgRegs[] = { |
| ARM::R0, ARM::R1, ARM::R2, ARM::R3 |
| }; |
| |
| unsigned ObjSize; |
| unsigned ObjGPRs; |
| unsigned GPRPad; |
| unsigned StackPad; |
| unsigned Flags = Op.getConstantOperandVal(ArgNo + 3); |
| HowToPassArgument(ObjectVT, NumGPRs, ArgOffset, ObjGPRs, |
| ObjSize, GPRPad, StackPad, Flags); |
| NumGPRs += GPRPad; |
| ArgOffset += StackPad; |
| |
| SDOperand ArgValue; |
| if (ObjGPRs == 1) { |
| unsigned VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass); |
| MF.addLiveIn(GPRArgRegs[NumGPRs], VReg); |
| vRegs[NumGPRs] = VReg; |
| ArgValue = DAG.getCopyFromReg(Root, VReg, MVT::i32); |
| if (ObjectVT == MVT::f32) |
| ArgValue = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, ArgValue); |
| } else if (ObjGPRs == 2) { |
| unsigned VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass); |
| MF.addLiveIn(GPRArgRegs[NumGPRs], VReg); |
| vRegs[NumGPRs] = VReg; |
| ArgValue = DAG.getCopyFromReg(Root, VReg, MVT::i32); |
| |
| VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass); |
| MF.addLiveIn(GPRArgRegs[NumGPRs+1], VReg); |
| vRegs[NumGPRs+1] = VReg; |
| SDOperand ArgValue2 = DAG.getCopyFromReg(Root, VReg, MVT::i32); |
| |
| if (ObjectVT == MVT::i64) |
| ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2); |
| else |
| ArgValue = DAG.getNode(ARMISD::FMDRR, MVT::f64, ArgValue, ArgValue2); |
| } |
| NumGPRs += ObjGPRs; |
| |
| if (ObjSize) { |
| // If the argument is actually used, emit a load from the right stack |
| // slot. |
| if (!Op.Val->hasNUsesOfValue(0, ArgNo)) { |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); |
| SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); |
| if (ObjGPRs == 0) |
| ArgValue = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0); |
| else { |
| SDOperand ArgValue2 = |
| DAG.getLoad(MVT::i32, Root, FIN, NULL, 0); |
| if (ObjectVT == MVT::i64) |
| ArgValue= DAG.getNode(ISD::BUILD_PAIR, MVT::i64, ArgValue, ArgValue2); |
| else |
| ArgValue= DAG.getNode(ARMISD::FMDRR, MVT::f64, ArgValue, ArgValue2); |
| } |
| } else { |
| // Don't emit a dead load. |
| ArgValue = DAG.getNode(ISD::UNDEF, ObjectVT); |
| } |
| |
| ArgOffset += ObjSize; // Move on to the next argument. |
| } |
| |
| return ArgValue; |
| } |
| |
| SDOperand |
| ARMTargetLowering::LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG) { |
| std::vector<SDOperand> ArgValues; |
| SDOperand Root = Op.getOperand(0); |
| unsigned ArgOffset = 0; // Frame mechanisms handle retaddr slot |
| unsigned NumGPRs = 0; // GPRs used for parameter passing. |
| unsigned VRegs[4]; |
| |
| unsigned NumArgs = Op.Val->getNumValues()-1; |
| for (unsigned ArgNo = 0; ArgNo < NumArgs; ++ArgNo) |
| ArgValues.push_back(LowerFORMAL_ARGUMENT(Op, DAG, VRegs, ArgNo, |
| NumGPRs, ArgOffset)); |
| |
| bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0; |
| if (isVarArg) { |
| static const unsigned GPRArgRegs[] = { |
| ARM::R0, ARM::R1, ARM::R2, ARM::R3 |
| }; |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| SSARegMap *RegMap = MF.getSSARegMap(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); |
| unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment(); |
| unsigned VARegSize = (4 - NumGPRs) * 4; |
| unsigned VARegSaveSize = (VARegSize + Align - 1) & ~(Align - 1); |
| if (VARegSaveSize) { |
| // If this function is vararg, store any remaining integer argument regs |
| // to their spots on the stack so that they may be loaded by deferencing |
| // the result of va_next. |
| AFI->setVarArgsRegSaveSize(VARegSaveSize); |
| VarArgsFrameIndex = MFI->CreateFixedObject(VARegSaveSize, ArgOffset + |
| VARegSaveSize - VARegSize); |
| SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, getPointerTy()); |
| |
| SmallVector<SDOperand, 4> MemOps; |
| for (; NumGPRs < 4; ++NumGPRs) { |
| unsigned VReg = RegMap->createVirtualRegister(&ARM::GPRRegClass); |
| MF.addLiveIn(GPRArgRegs[NumGPRs], VReg); |
| SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i32); |
| SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0); |
| MemOps.push_back(Store); |
| FIN = DAG.getNode(ISD::ADD, getPointerTy(), FIN, |
| DAG.getConstant(4, getPointerTy())); |
| } |
| if (!MemOps.empty()) |
| Root = DAG.getNode(ISD::TokenFactor, MVT::Other, |
| &MemOps[0], MemOps.size()); |
| } else |
| // This will point to the next argument passed via stack. |
| VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset); |
| } |
| |
| ArgValues.push_back(Root); |
| |
| // Return the new list of results. |
| std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(), |
| Op.Val->value_end()); |
| return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size()); |
| } |
| |
| /// isFloatingPointZero - Return true if this is +0.0. |
| static bool isFloatingPointZero(SDOperand Op) { |
| if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) |
| return CFP->isExactlyValue(0.0); |
| else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) { |
| // Maybe this has already been legalized into the constant pool? |
| if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) { |
| SDOperand WrapperOp = Op.getOperand(1).getOperand(0); |
| if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp)) |
| if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) |
| return CFP->isExactlyValue(0.0); |
| } |
| } |
| return false; |
| } |
| |
| static bool isLegalCmpImmediate(unsigned C, bool isThumb) { |
| return ( isThumb && (C & ~255U) == 0) || |
| (!isThumb && ARM_AM::getSOImmVal(C) != -1); |
| } |
| |
| /// Returns appropriate ARM CMP (cmp) and corresponding condition code for |
| /// the given operands. |
| static SDOperand getARMCmp(SDOperand LHS, SDOperand RHS, ISD::CondCode CC, |
| SDOperand &ARMCC, SelectionDAG &DAG, bool isThumb) { |
| if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.Val)) { |
| unsigned C = RHSC->getValue(); |
| if (!isLegalCmpImmediate(C, isThumb)) { |
| // Constant does not fit, try adjusting it by one? |
| switch (CC) { |
| default: break; |
| case ISD::SETLT: |
| case ISD::SETGE: |
| if (isLegalCmpImmediate(C-1, isThumb)) { |
| CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; |
| RHS = DAG.getConstant(C-1, MVT::i32); |
| } |
| break; |
| case ISD::SETULT: |
| case ISD::SETUGE: |
| if (C > 0 && isLegalCmpImmediate(C-1, isThumb)) { |
| CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; |
| RHS = DAG.getConstant(C-1, MVT::i32); |
| } |
| break; |
| case ISD::SETLE: |
| case ISD::SETGT: |
| if (isLegalCmpImmediate(C+1, isThumb)) { |
| CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; |
| RHS = DAG.getConstant(C+1, MVT::i32); |
| } |
| break; |
| case ISD::SETULE: |
| case ISD::SETUGT: |
| if (C < 0xffffffff && isLegalCmpImmediate(C+1, isThumb)) { |
| CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; |
| RHS = DAG.getConstant(C+1, MVT::i32); |
| } |
| break; |
| } |
| } |
| } |
| |
| ARMCC::CondCodes CondCode = IntCCToARMCC(CC); |
| ARMISD::NodeType CompareType; |
| switch (CondCode) { |
| default: |
| CompareType = ARMISD::CMP; |
| break; |
| case ARMCC::EQ: |
| case ARMCC::NE: |
| case ARMCC::MI: |
| case ARMCC::PL: |
| // Uses only N and Z Flags |
| CompareType = ARMISD::CMPNZ; |
| break; |
| } |
| ARMCC = DAG.getConstant(CondCode, MVT::i32); |
| return DAG.getNode(CompareType, MVT::Flag, LHS, RHS); |
| } |
| |
| /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands. |
| static SDOperand getVFPCmp(SDOperand LHS, SDOperand RHS, SelectionDAG &DAG) { |
| SDOperand Cmp; |
| if (!isFloatingPointZero(RHS)) |
| Cmp = DAG.getNode(ARMISD::CMPFP, MVT::Flag, LHS, RHS); |
| else |
| Cmp = DAG.getNode(ARMISD::CMPFPw0, MVT::Flag, LHS); |
| return DAG.getNode(ARMISD::FMSTAT, MVT::Flag, Cmp); |
| } |
| |
| static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| MVT::ValueType VT = Op.getValueType(); |
| SDOperand LHS = Op.getOperand(0); |
| SDOperand RHS = Op.getOperand(1); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); |
| SDOperand TrueVal = Op.getOperand(2); |
| SDOperand FalseVal = Op.getOperand(3); |
| |
| if (LHS.getValueType() == MVT::i32) { |
| SDOperand ARMCC; |
| SDOperand CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDOperand Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb()); |
| return DAG.getNode(ARMISD::CMOV, VT, FalseVal, TrueVal, ARMCC, CCR, Cmp); |
| } |
| |
| ARMCC::CondCodes CondCode, CondCode2; |
| if (FPCCToARMCC(CC, CondCode, CondCode2)) |
| std::swap(TrueVal, FalseVal); |
| |
| SDOperand ARMCC = DAG.getConstant(CondCode, MVT::i32); |
| SDOperand CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDOperand Cmp = getVFPCmp(LHS, RHS, DAG); |
| SDOperand Result = DAG.getNode(ARMISD::CMOV, VT, FalseVal, TrueVal, |
| ARMCC, CCR, Cmp); |
| if (CondCode2 != ARMCC::AL) { |
| SDOperand ARMCC2 = DAG.getConstant(CondCode2, MVT::i32); |
| // FIXME: Needs another CMP because flag can have but one use. |
| SDOperand Cmp2 = getVFPCmp(LHS, RHS, DAG); |
| Result = DAG.getNode(ARMISD::CMOV, VT, Result, TrueVal, ARMCC2, CCR, Cmp2); |
| } |
| return Result; |
| } |
| |
| static SDOperand LowerBR_CC(SDOperand Op, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| SDOperand Chain = Op.getOperand(0); |
| ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); |
| SDOperand LHS = Op.getOperand(2); |
| SDOperand RHS = Op.getOperand(3); |
| SDOperand Dest = Op.getOperand(4); |
| |
| if (LHS.getValueType() == MVT::i32) { |
| SDOperand ARMCC; |
| SDOperand CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDOperand Cmp = getARMCmp(LHS, RHS, CC, ARMCC, DAG, ST->isThumb()); |
| return DAG.getNode(ARMISD::BRCOND, MVT::Other, Chain, Dest, ARMCC, CCR,Cmp); |
| } |
| |
| assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); |
| ARMCC::CondCodes CondCode, CondCode2; |
| if (FPCCToARMCC(CC, CondCode, CondCode2)) |
| // Swap the LHS/RHS of the comparison if needed. |
| std::swap(LHS, RHS); |
| |
| SDOperand Cmp = getVFPCmp(LHS, RHS, DAG); |
| SDOperand ARMCC = DAG.getConstant(CondCode, MVT::i32); |
| SDOperand CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Flag); |
| SDOperand Ops[] = { Chain, Dest, ARMCC, CCR, Cmp }; |
| SDOperand Res = DAG.getNode(ARMISD::BRCOND, VTList, Ops, 5); |
| if (CondCode2 != ARMCC::AL) { |
| ARMCC = DAG.getConstant(CondCode2, MVT::i32); |
| SDOperand Ops[] = { Res, Dest, ARMCC, CCR, Res.getValue(1) }; |
| Res = DAG.getNode(ARMISD::BRCOND, VTList, Ops, 5); |
| } |
| return Res; |
| } |
| |
| SDOperand ARMTargetLowering::LowerBR_JT(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand Chain = Op.getOperand(0); |
| SDOperand Table = Op.getOperand(1); |
| SDOperand Index = Op.getOperand(2); |
| |
| MVT::ValueType PTy = getPointerTy(); |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); |
| ARMFunctionInfo *AFI = DAG.getMachineFunction().getInfo<ARMFunctionInfo>(); |
| SDOperand UId = DAG.getConstant(AFI->createJumpTableUId(), PTy); |
| SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy); |
| Table = DAG.getNode(ARMISD::WrapperJT, MVT::i32, JTI, UId); |
| Index = DAG.getNode(ISD::MUL, PTy, Index, DAG.getConstant(4, PTy)); |
| SDOperand Addr = DAG.getNode(ISD::ADD, PTy, Index, Table); |
| bool isPIC = getTargetMachine().getRelocationModel() == Reloc::PIC_; |
| Addr = DAG.getLoad(isPIC ? (MVT::ValueType)MVT::i32 : PTy, |
| Chain, Addr, NULL, 0); |
| Chain = Addr.getValue(1); |
| if (isPIC) |
| Addr = DAG.getNode(ISD::ADD, PTy, Addr, Table); |
| return DAG.getNode(ARMISD::BR_JT, MVT::Other, Chain, Addr, JTI, UId); |
| } |
| |
| static SDOperand LowerFP_TO_INT(SDOperand Op, SelectionDAG &DAG) { |
| unsigned Opc = |
| Op.getOpcode() == ISD::FP_TO_SINT ? ARMISD::FTOSI : ARMISD::FTOUI; |
| Op = DAG.getNode(Opc, MVT::f32, Op.getOperand(0)); |
| return DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op); |
| } |
| |
| static SDOperand LowerINT_TO_FP(SDOperand Op, SelectionDAG &DAG) { |
| MVT::ValueType VT = Op.getValueType(); |
| unsigned Opc = |
| Op.getOpcode() == ISD::SINT_TO_FP ? ARMISD::SITOF : ARMISD::UITOF; |
| |
| Op = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, Op.getOperand(0)); |
| return DAG.getNode(Opc, VT, Op); |
| } |
| |
| static SDOperand LowerFCOPYSIGN(SDOperand Op, SelectionDAG &DAG) { |
| // Implement fcopysign with a fabs and a conditional fneg. |
| SDOperand Tmp0 = Op.getOperand(0); |
| SDOperand Tmp1 = Op.getOperand(1); |
| MVT::ValueType VT = Op.getValueType(); |
| MVT::ValueType SrcVT = Tmp1.getValueType(); |
| SDOperand AbsVal = DAG.getNode(ISD::FABS, VT, Tmp0); |
| SDOperand Cmp = getVFPCmp(Tmp1, DAG.getConstantFP(0.0, SrcVT), DAG); |
| SDOperand ARMCC = DAG.getConstant(ARMCC::LT, MVT::i32); |
| SDOperand CCR = DAG.getRegister(ARM::CPSR, MVT::i32); |
| return DAG.getNode(ARMISD::CNEG, VT, AbsVal, AbsVal, ARMCC, CCR, Cmp); |
| } |
| |
| static SDOperand LowerBIT_CONVERT(SDOperand Op, SelectionDAG &DAG) { |
| // Turn f64->i64 into FMRRD. |
| assert(Op.getValueType() == MVT::i64 && |
| Op.getOperand(0).getValueType() == MVT::f64); |
| |
| Op = Op.getOperand(0); |
| SDOperand Cvt = DAG.getNode(ARMISD::FMRRD, DAG.getVTList(MVT::i32, MVT::i32), |
| &Op, 1); |
| |
| // Merge the pieces into a single i64 value. |
| return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Cvt, Cvt.getValue(1)); |
| } |
| |
| static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) { |
| // FIXME: All this code is target-independent. Create a new target-indep |
| // MULHILO node and move this code to the legalizer. |
| // |
| assert(Op.getValueType() == MVT::i64 && "Only handles i64 expand right now!"); |
| |
| SDOperand LL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), |
| DAG.getConstant(0, MVT::i32)); |
| SDOperand RL = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(1), |
| DAG.getConstant(0, MVT::i32)); |
| |
| unsigned LHSSB = DAG.ComputeNumSignBits(Op.getOperand(0)); |
| unsigned RHSSB = DAG.ComputeNumSignBits(Op.getOperand(1)); |
| |
| SDOperand Lo, Hi; |
| // Figure out how to lower this multiply. |
| if (LHSSB >= 33 && RHSSB >= 33) { |
| // If the input values are both sign extended, we can emit a mulhs+mul. |
| Lo = DAG.getNode(ISD::MUL, MVT::i32, LL, RL); |
| Hi = DAG.getNode(ISD::MULHS, MVT::i32, LL, RL); |
| } else if (LHSSB == 32 && RHSSB == 32 && |
| DAG.MaskedValueIsZero(Op.getOperand(0), 0xFFFFFFFF00000000ULL) && |
| DAG.MaskedValueIsZero(Op.getOperand(1), 0xFFFFFFFF00000000ULL)) { |
| // If the inputs are zero extended, use mulhu. |
| Lo = DAG.getNode(ISD::MUL, MVT::i32, LL, RL); |
| Hi = DAG.getNode(ISD::MULHU, MVT::i32, LL, RL); |
| } else { |
| SDOperand LH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), |
| DAG.getConstant(1, MVT::i32)); |
| SDOperand RH = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(1), |
| DAG.getConstant(1, MVT::i32)); |
| |
| // Lo,Hi = umul LHS, RHS. |
| SDOperand Ops[] = { LL, RL }; |
| SDOperand UMul64 = DAG.getNode(ARMISD::MULHILOU, |
| DAG.getVTList(MVT::i32, MVT::i32), Ops, 2); |
| Lo = UMul64; |
| Hi = UMul64.getValue(1); |
| RH = DAG.getNode(ISD::MUL, MVT::i32, LL, RH); |
| LH = DAG.getNode(ISD::MUL, MVT::i32, LH, RL); |
| Hi = DAG.getNode(ISD::ADD, MVT::i32, Hi, RH); |
| Hi = DAG.getNode(ISD::ADD, MVT::i32, Hi, LH); |
| } |
| |
| // Merge the pieces into a single i64 value. |
| return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); |
| } |
| |
| static SDOperand LowerMULHU(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand Ops[] = { Op.getOperand(0), Op.getOperand(1) }; |
| return DAG.getNode(ARMISD::MULHILOU, |
| DAG.getVTList(MVT::i32, MVT::i32), Ops, 2).getValue(1); |
| } |
| |
| static SDOperand LowerMULHS(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand Ops[] = { Op.getOperand(0), Op.getOperand(1) }; |
| return DAG.getNode(ARMISD::MULHILOS, |
| DAG.getVTList(MVT::i32, MVT::i32), Ops, 2).getValue(1); |
| } |
| |
| static SDOperand LowerSRx(SDOperand Op, SelectionDAG &DAG, |
| const ARMSubtarget *ST) { |
| assert(Op.getValueType() == MVT::i64 && |
| (Op.getOpcode() == ISD::SRL || Op.getOpcode() == ISD::SRA) && |
| "Unknown shift to lower!"); |
| |
| // We only lower SRA, SRL of 1 here, all others use generic lowering. |
| if (!isa<ConstantSDNode>(Op.getOperand(1)) || |
| cast<ConstantSDNode>(Op.getOperand(1))->getValue() != 1) |
| return SDOperand(); |
| |
| // If we are in thumb mode, we don't have RRX. |
| if (ST->isThumb()) return SDOperand(); |
| |
| // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr. |
| SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), |
| DAG.getConstant(0, MVT::i32)); |
| SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0), |
| DAG.getConstant(1, MVT::i32)); |
| |
| // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and |
| // captures the result into a carry flag. |
| unsigned Opc = Op.getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG; |
| Hi = DAG.getNode(Opc, DAG.getVTList(MVT::i32, MVT::Flag), &Hi, 1); |
| |
| // The low part is an ARMISD::RRX operand, which shifts the carry in. |
| Lo = DAG.getNode(ARMISD::RRX, MVT::i32, Lo, Hi.getValue(1)); |
| |
| // Merge the pieces into a single i64 value. |
| return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); |
| } |
| |
| SDOperand ARMTargetLowering::LowerMEMCPY(SDOperand Op, SelectionDAG &DAG) { |
| SDOperand Chain = Op.getOperand(0); |
| SDOperand Dest = Op.getOperand(1); |
| SDOperand Src = Op.getOperand(2); |
| SDOperand Count = Op.getOperand(3); |
| unsigned Align = |
| (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); |
| if (Align == 0) Align = 1; |
| |
| ConstantSDNode *I = dyn_cast<ConstantSDNode>(Count); |
| // Just call memcpy if: |
| // not 4-byte aligned |
| // size is unknown |
| // size is >= the threshold. |
| if ((Align & 3) != 0 || |
| !I || |
| I->getValue() >= 64 || |
| (I->getValue() & 3) != 0) { |
| MVT::ValueType IntPtr = getPointerTy(); |
| TargetLowering::ArgListTy Args; |
| TargetLowering::ArgListEntry Entry; |
| Entry.Ty = getTargetData()->getIntPtrType(); |
| Entry.Node = Op.getOperand(1); Args.push_back(Entry); |
| Entry.Node = Op.getOperand(2); Args.push_back(Entry); |
| Entry.Node = Op.getOperand(3); Args.push_back(Entry); |
| std::pair<SDOperand,SDOperand> CallResult = |
| LowerCallTo(Chain, Type::VoidTy, false, false, CallingConv::C, false, |
| DAG.getExternalSymbol("memcpy", IntPtr), Args, DAG); |
| return CallResult.second; |
| } |
| |
| // Otherwise do repeated 4-byte loads and stores. To be improved. |
| assert((I->getValue() & 3) == 0); |
| assert((Align & 3) == 0); |
| unsigned NumMemOps = I->getValue() >> 2; |
| unsigned EmittedNumMemOps = 0; |
| unsigned SrcOff = 0, DstOff = 0; |
| MVT::ValueType VT = MVT::i32; |
| unsigned VTSize = 4; |
| const unsigned MAX_LOADS_IN_LDM = 6; |
| SDOperand LoadChains[MAX_LOADS_IN_LDM]; |
| SDOperand Loads[MAX_LOADS_IN_LDM]; |
| |
| // Emit up to 4 loads, then a TokenFactor barrier, then the same |
| // number of stores. The loads and stores will get combined into |
| // ldm/stm later on. |
| while(EmittedNumMemOps < NumMemOps) { |
| unsigned i; |
| for (i=0; i<MAX_LOADS_IN_LDM && EmittedNumMemOps+i < NumMemOps; i++) { |
| Loads[i] = DAG.getLoad(VT, Chain, |
| DAG.getNode(ISD::ADD, VT, Src, |
| DAG.getConstant(SrcOff, VT)), |
| NULL, 0); |
| LoadChains[i] = Loads[i].getValue(1); |
| SrcOff += VTSize; |
| } |
| |
| Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &LoadChains[0], i); |
| |
| for (i=0; i<MAX_LOADS_IN_LDM && EmittedNumMemOps+i < NumMemOps; i++) { |
| Chain = DAG.getStore(Chain, Loads[i], |
| DAG.getNode(ISD::ADD, VT, Dest, |
| DAG.getConstant(DstOff, VT)), |
| NULL, 0); |
| DstOff += VTSize; |
| } |
| EmittedNumMemOps += i; |
| } |
| |
| return Chain; |
| } |
| |
| SDOperand ARMTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { |
| switch (Op.getOpcode()) { |
| default: assert(0 && "Don't know how to custom lower this!"); abort(); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| case ISD::GlobalAddress: |
| return Subtarget->isTargetDarwin() ? LowerGlobalAddressDarwin(Op, DAG) : |
| LowerGlobalAddressELF(Op, DAG); |
| case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); |
| case ISD::CALL: return LowerCALL(Op, DAG); |
| case ISD::RET: return LowerRET(Op, DAG); |
| case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG, Subtarget); |
| case ISD::BR_CC: return LowerBR_CC(Op, DAG, Subtarget); |
| case ISD::BR_JT: return LowerBR_JT(Op, DAG); |
| case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex); |
| case ISD::SINT_TO_FP: |
| case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); |
| case ISD::FP_TO_SINT: |
| case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); |
| case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); |
| case ISD::BIT_CONVERT: return LowerBIT_CONVERT(Op, DAG); |
| case ISD::MUL: return LowerMUL(Op, DAG); |
| case ISD::MULHU: return LowerMULHU(Op, DAG); |
| case ISD::MULHS: return LowerMULHS(Op, DAG); |
| case ISD::SRL: |
| case ISD::SRA: return LowerSRx(Op, DAG, Subtarget); |
| case ISD::FORMAL_ARGUMENTS: |
| return LowerFORMAL_ARGUMENTS(Op, DAG); |
| case ISD::RETURNADDR: break; |
| case ISD::FRAMEADDR: break; |
| case ISD::GLOBAL_OFFSET_TABLE: return LowerGLOBAL_OFFSET_TABLE(Op, DAG); |
| case ISD::MEMCPY: return LowerMEMCPY(Op, DAG); |
| } |
| return SDOperand(); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ARM Scheduler Hooks |
| //===----------------------------------------------------------------------===// |
| |
| MachineBasicBlock * |
| ARMTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, |
| MachineBasicBlock *BB) { |
| const TargetInstrInfo *TII = getTargetMachine().getInstrInfo(); |
| switch (MI->getOpcode()) { |
| default: assert(false && "Unexpected instr type to insert"); |
| case ARM::tMOVCCr: { |
| // To "insert" a SELECT_CC instruction, we actually have to insert the |
| // diamond control-flow pattern. The incoming instruction knows the |
| // destination vreg to set, the condition code register to branch on, the |
| // true/false values to select between, and a branch opcode to use. |
| const BasicBlock *LLVM_BB = BB->getBasicBlock(); |
| ilist<MachineBasicBlock>::iterator It = BB; |
| ++It; |
| |
| // thisMBB: |
| // ... |
| // TrueVal = ... |
| // cmpTY ccX, r1, r2 |
| // bCC copy1MBB |
| // fallthrough --> copy0MBB |
| MachineBasicBlock *thisMBB = BB; |
| MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); |
| MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); |
| BuildMI(BB, TII->get(ARM::tBcc)).addMBB(sinkMBB) |
| .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg()); |
| MachineFunction *F = BB->getParent(); |
| F->getBasicBlockList().insert(It, copy0MBB); |
| F->getBasicBlockList().insert(It, sinkMBB); |
| // Update machine-CFG edges by first adding all successors of the current |
| // block to the new block which will contain the Phi node for the select. |
| for(MachineBasicBlock::succ_iterator i = BB->succ_begin(), |
| e = BB->succ_end(); i != e; ++i) |
| sinkMBB->addSuccessor(*i); |
| // Next, remove all successors of the current block, and add the true |
| // and fallthrough blocks as its successors. |
| while(!BB->succ_empty()) |
| BB->removeSuccessor(BB->succ_begin()); |
| BB->addSuccessor(copy0MBB); |
| BB->addSuccessor(sinkMBB); |
| |
| // copy0MBB: |
| // %FalseValue = ... |
| // # fallthrough to sinkMBB |
| BB = copy0MBB; |
| |
| // Update machine-CFG edges |
| BB->addSuccessor(sinkMBB); |
| |
| // sinkMBB: |
| // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] |
| // ... |
| BB = sinkMBB; |
| BuildMI(BB, TII->get(ARM::PHI), MI->getOperand(0).getReg()) |
| .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) |
| .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); |
| |
| delete MI; // The pseudo instruction is gone now. |
| return BB; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ARM Optimization Hooks |
| //===----------------------------------------------------------------------===// |
| |
| /// isLegalAddressImmediate - Return true if the integer value can be used |
| /// as the offset of the target addressing mode for load / store of the |
| /// given type. |
| static bool isLegalAddressImmediate(int64_t V, MVT::ValueType VT, |
| const ARMSubtarget *Subtarget) { |
| if (V == 0) |
| return true; |
| |
| if (Subtarget->isThumb()) { |
| if (V < 0) |
| return false; |
| |
| unsigned Scale = 1; |
| switch (VT) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| // Scale == 1; |
| break; |
| case MVT::i16: |
| // Scale == 2; |
| Scale = 2; |
| break; |
| case MVT::i32: |
| // Scale == 4; |
| Scale = 4; |
| break; |
| } |
| |
| if ((V & (Scale - 1)) != 0) |
| return false; |
| V /= Scale; |
| return V == V & ((1LL << 5) - 1); |
| } |
| |
| if (V < 0) |
| V = - V; |
| switch (VT) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i32: |
| // +- imm12 |
| return V == V & ((1LL << 12) - 1); |
| case MVT::i16: |
| // +- imm8 |
| return V == V & ((1LL << 8) - 1); |
| case MVT::f32: |
| case MVT::f64: |
| if (!Subtarget->hasVFP2()) |
| return false; |
| if ((V & 3) != 0) |
| return false; |
| V >>= 2; |
| return V == V & ((1LL << 8) - 1); |
| } |
| } |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented |
| /// by AM is legal for this target, for a load/store of the specified type. |
| bool ARMTargetLowering::isLegalAddressingMode(const AddrMode &AM, |
| const Type *Ty) const { |
| if (!isLegalAddressImmediate(AM.BaseOffs, getValueType(Ty), Subtarget)) |
| return false; |
| |
| // Can never fold addr of global into load/store. |
| if (AM.BaseGV) |
| return false; |
| |
| switch (AM.Scale) { |
| case 0: // no scale reg, must be "r+i" or "r", or "i". |
| break; |
| case 1: |
| if (Subtarget->isThumb()) |
| return false; |
| // FALL THROUGH. |
| default: |
| // ARM doesn't support any R+R*scale+imm addr modes. |
| if (AM.BaseOffs) |
| return false; |
| |
| int Scale = AM.Scale; |
| switch (getValueType(Ty)) { |
| default: return false; |
| case MVT::i1: |
| case MVT::i8: |
| case MVT::i32: |
| case MVT::i64: |
| // This assumes i64 is legalized to a pair of i32. If not (i.e. |
| // ldrd / strd are used, then its address mode is same as i16. |
| // r + r |
| if (Scale < 0) Scale = -Scale; |
| if (Scale == 1) |
| return true; |
| // r + r << imm |
| return isPowerOf2_32(Scale & ~1); |
| case MVT::i16: |
| // r + r |
| if (((unsigned)AM.HasBaseReg + Scale) <= 2) |
| return true; |
| return false; |
| |
| case MVT::isVoid: |
| // Note, we allow "void" uses (basically, uses that aren't loads or |
| // stores), because arm allows folding a scale into many arithmetic |
| // operations. This should be made more precise and revisited later. |
| |
| // Allow r << imm, but the imm has to be a multiple of two. |
| if (AM.Scale & 1) return false; |
| return isPowerOf2_32(AM.Scale); |
| } |
| break; |
| } |
| return true; |
| } |
| |
| |
| static bool getIndexedAddressParts(SDNode *Ptr, MVT::ValueType VT, |
| bool isSEXTLoad, SDOperand &Base, |
| SDOperand &Offset, bool &isInc, |
| SelectionDAG &DAG) { |
| if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) |
| return false; |
| |
| if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) { |
| // AddressingMode 3 |
| Base = Ptr->getOperand(0); |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { |
| int RHSC = (int)RHS->getValue(); |
| if (RHSC < 0 && RHSC > -256) { |
| isInc = false; |
| Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); |
| return true; |
| } |
| } |
| isInc = (Ptr->getOpcode() == ISD::ADD); |
| Offset = Ptr->getOperand(1); |
| return true; |
| } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) { |
| // AddressingMode 2 |
| if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { |
| int RHSC = (int)RHS->getValue(); |
| if (RHSC < 0 && RHSC > -0x1000) { |
| isInc = false; |
| Offset = DAG.getConstant(-RHSC, RHS->getValueType(0)); |
| Base = Ptr->getOperand(0); |
| return true; |
| } |
| } |
| |
| if (Ptr->getOpcode() == ISD::ADD) { |
| isInc = true; |
| ARM_AM::ShiftOpc ShOpcVal= ARM_AM::getShiftOpcForNode(Ptr->getOperand(0)); |
| if (ShOpcVal != ARM_AM::no_shift) { |
| Base = Ptr->getOperand(1); |
| Offset = Ptr->getOperand(0); |
| } else { |
| Base = Ptr->getOperand(0); |
| Offset = Ptr->getOperand(1); |
| } |
| return true; |
| } |
| |
| isInc = (Ptr->getOpcode() == ISD::ADD); |
| Base = Ptr->getOperand(0); |
| Offset = Ptr->getOperand(1); |
| return true; |
| } |
| |
| // FIXME: Use FLDM / FSTM to emulate indexed FP load / store. |
| return false; |
| } |
| |
| /// getPreIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if the node's address |
| /// can be legally represented as pre-indexed load / store address. |
| bool |
| ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base, |
| SDOperand &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) { |
| if (Subtarget->isThumb()) |
| return false; |
| |
| MVT::ValueType VT; |
| SDOperand Ptr; |
| bool isSEXTLoad = false; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| Ptr = LD->getBasePtr(); |
| VT = LD->getLoadedVT(); |
| isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| Ptr = ST->getBasePtr(); |
| VT = ST->getStoredVT(); |
| } else |
| return false; |
| |
| bool isInc; |
| bool isLegal = getIndexedAddressParts(Ptr.Val, VT, isSEXTLoad, Base, Offset, |
| isInc, DAG); |
| if (isLegal) { |
| AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC; |
| return true; |
| } |
| return false; |
| } |
| |
| /// getPostIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if this node can be |
| /// combined with a load / store to form a post-indexed load / store. |
| bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, |
| SDOperand &Base, |
| SDOperand &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) { |
| if (Subtarget->isThumb()) |
| return false; |
| |
| MVT::ValueType VT; |
| SDOperand Ptr; |
| bool isSEXTLoad = false; |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| VT = LD->getLoadedVT(); |
| isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| VT = ST->getStoredVT(); |
| } else |
| return false; |
| |
| bool isInc; |
| bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, |
| isInc, DAG); |
| if (isLegal) { |
| AM = isInc ? ISD::POST_INC : ISD::POST_DEC; |
| return true; |
| } |
| return false; |
| } |
| |
| void ARMTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op, |
| uint64_t Mask, |
| uint64_t &KnownZero, |
| uint64_t &KnownOne, |
| const SelectionDAG &DAG, |
| unsigned Depth) const { |
| KnownZero = 0; |
| KnownOne = 0; |
| switch (Op.getOpcode()) { |
| default: break; |
| case ARMISD::CMOV: { |
| // Bits are known zero/one if known on the LHS and RHS. |
| DAG.ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1); |
| if (KnownZero == 0 && KnownOne == 0) return; |
| |
| uint64_t KnownZeroRHS, KnownOneRHS; |
| DAG.ComputeMaskedBits(Op.getOperand(1), Mask, |
| KnownZeroRHS, KnownOneRHS, Depth+1); |
| KnownZero &= KnownZeroRHS; |
| KnownOne &= KnownOneRHS; |
| return; |
| } |
| } |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // ARM Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| /// getConstraintType - Given a constraint letter, return the type of |
| /// constraint it is for this target. |
| ARMTargetLowering::ConstraintType |
| ARMTargetLowering::getConstraintType(const std::string &Constraint) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| default: break; |
| case 'l': return C_RegisterClass; |
| case 'w': return C_RegisterClass; |
| } |
| } |
| return TargetLowering::getConstraintType(Constraint); |
| } |
| |
| std::pair<unsigned, const TargetRegisterClass*> |
| ARMTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, |
| MVT::ValueType VT) const { |
| if (Constraint.size() == 1) { |
| // GCC RS6000 Constraint Letters |
| switch (Constraint[0]) { |
| case 'l': |
| // FIXME: in thumb mode, 'l' is only low-regs. |
| // FALL THROUGH. |
| case 'r': |
| return std::make_pair(0U, ARM::GPRRegisterClass); |
| case 'w': |
| if (VT == MVT::f32) |
| return std::make_pair(0U, ARM::SPRRegisterClass); |
| if (VT == MVT::f64) |
| return std::make_pair(0U, ARM::DPRRegisterClass); |
| break; |
| } |
| } |
| return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| } |
| |
| std::vector<unsigned> ARMTargetLowering:: |
| getRegClassForInlineAsmConstraint(const std::string &Constraint, |
| MVT::ValueType VT) const { |
| if (Constraint.size() != 1) |
| return std::vector<unsigned>(); |
| |
| switch (Constraint[0]) { // GCC ARM Constraint Letters |
| default: break; |
| case 'l': |
| case 'r': |
| return make_vector<unsigned>(ARM::R0, ARM::R1, ARM::R2, ARM::R3, |
| ARM::R4, ARM::R5, ARM::R6, ARM::R7, |
| ARM::R8, ARM::R9, ARM::R10, ARM::R11, |
| ARM::R12, ARM::LR, 0); |
| case 'w': |
| if (VT == MVT::f32) |
| return make_vector<unsigned>(ARM::S0, ARM::S1, ARM::S2, ARM::S3, |
| ARM::S4, ARM::S5, ARM::S6, ARM::S7, |
| ARM::S8, ARM::S9, ARM::S10, ARM::S11, |
| ARM::S12,ARM::S13,ARM::S14,ARM::S15, |
| ARM::S16,ARM::S17,ARM::S18,ARM::S19, |
| ARM::S20,ARM::S21,ARM::S22,ARM::S23, |
| ARM::S24,ARM::S25,ARM::S26,ARM::S27, |
| ARM::S28,ARM::S29,ARM::S30,ARM::S31, 0); |
| if (VT == MVT::f64) |
| return make_vector<unsigned>(ARM::D0, ARM::D1, ARM::D2, ARM::D3, |
| ARM::D4, ARM::D5, ARM::D6, ARM::D7, |
| ARM::D8, ARM::D9, ARM::D10,ARM::D11, |
| ARM::D12,ARM::D13,ARM::D14,ARM::D15, 0); |
| break; |
| } |
| |
| return std::vector<unsigned>(); |
| } |