| //===-- PPCInstrInfo.cpp - PowerPC Instruction Information ----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file contains the PowerPC implementation of the TargetInstrInfo class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "PPCInstrInfo.h" |
| #include "MCTargetDesc/PPCPredicates.h" |
| #include "PPC.h" |
| #include "PPCHazardRecognizers.h" |
| #include "PPCInstrBuilder.h" |
| #include "PPCMachineFunctionInfo.h" |
| #include "PPCTargetMachine.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineMemOperand.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/PseudoSourceValue.h" |
| #include "llvm/MC/MCAsmInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/TargetRegistry.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| #define GET_INSTRINFO_CTOR |
| #include "PPCGenInstrInfo.inc" |
| |
| namespace llvm { |
| extern cl::opt<bool> DisablePPC32RS; |
| extern cl::opt<bool> DisablePPC64RS; |
| } |
| |
| using namespace llvm; |
| |
| static cl:: |
| opt<bool> DisableCTRLoopAnal("disable-ppc-ctrloop-analysis", cl::Hidden, |
| cl::desc("Disable analysis for CTR loops")); |
| |
| PPCInstrInfo::PPCInstrInfo(PPCTargetMachine &tm) |
| : PPCGenInstrInfo(PPC::ADJCALLSTACKDOWN, PPC::ADJCALLSTACKUP), |
| TM(tm), RI(*TM.getSubtargetImpl(), *this) {} |
| |
| /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for |
| /// this target when scheduling the DAG. |
| ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetHazardRecognizer( |
| const TargetMachine *TM, |
| const ScheduleDAG *DAG) const { |
| unsigned Directive = TM->getSubtarget<PPCSubtarget>().getDarwinDirective(); |
| if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2 || |
| Directive == PPC::DIR_E500mc || Directive == PPC::DIR_E5500) { |
| const InstrItineraryData *II = TM->getInstrItineraryData(); |
| return new PPCScoreboardHazardRecognizer(II, DAG); |
| } |
| |
| return TargetInstrInfo::CreateTargetHazardRecognizer(TM, DAG); |
| } |
| |
| /// CreateTargetPostRAHazardRecognizer - Return the postRA hazard recognizer |
| /// to use for this target when scheduling the DAG. |
| ScheduleHazardRecognizer *PPCInstrInfo::CreateTargetPostRAHazardRecognizer( |
| const InstrItineraryData *II, |
| const ScheduleDAG *DAG) const { |
| unsigned Directive = TM.getSubtarget<PPCSubtarget>().getDarwinDirective(); |
| |
| // Most subtargets use a PPC970 recognizer. |
| if (Directive != PPC::DIR_440 && Directive != PPC::DIR_A2 && |
| Directive != PPC::DIR_E500mc && Directive != PPC::DIR_E5500) { |
| const TargetInstrInfo *TII = TM.getInstrInfo(); |
| assert(TII && "No InstrInfo?"); |
| |
| return new PPCHazardRecognizer970(*TII); |
| } |
| |
| return new PPCScoreboardHazardRecognizer(II, DAG); |
| } |
| |
| // Detect 32 -> 64-bit extensions where we may reuse the low sub-register. |
| bool PPCInstrInfo::isCoalescableExtInstr(const MachineInstr &MI, |
| unsigned &SrcReg, unsigned &DstReg, |
| unsigned &SubIdx) const { |
| switch (MI.getOpcode()) { |
| default: return false; |
| case PPC::EXTSW: |
| case PPC::EXTSW_32_64: |
| SrcReg = MI.getOperand(1).getReg(); |
| DstReg = MI.getOperand(0).getReg(); |
| SubIdx = PPC::sub_32; |
| return true; |
| } |
| } |
| |
| unsigned PPCInstrInfo::isLoadFromStackSlot(const MachineInstr *MI, |
| int &FrameIndex) const { |
| switch (MI->getOpcode()) { |
| default: break; |
| case PPC::LD: |
| case PPC::LWZ: |
| case PPC::LFS: |
| case PPC::LFD: |
| if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && |
| MI->getOperand(2).isFI()) { |
| FrameIndex = MI->getOperand(2).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| unsigned PPCInstrInfo::isStoreToStackSlot(const MachineInstr *MI, |
| int &FrameIndex) const { |
| switch (MI->getOpcode()) { |
| default: break; |
| case PPC::STD: |
| case PPC::STW: |
| case PPC::STFS: |
| case PPC::STFD: |
| if (MI->getOperand(1).isImm() && !MI->getOperand(1).getImm() && |
| MI->getOperand(2).isFI()) { |
| FrameIndex = MI->getOperand(2).getIndex(); |
| return MI->getOperand(0).getReg(); |
| } |
| break; |
| } |
| return 0; |
| } |
| |
| // commuteInstruction - We can commute rlwimi instructions, but only if the |
| // rotate amt is zero. We also have to munge the immediates a bit. |
| MachineInstr * |
| PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const { |
| MachineFunction &MF = *MI->getParent()->getParent(); |
| |
| // Normal instructions can be commuted the obvious way. |
| if (MI->getOpcode() != PPC::RLWIMI) |
| return TargetInstrInfo::commuteInstruction(MI, NewMI); |
| |
| // Cannot commute if it has a non-zero rotate count. |
| if (MI->getOperand(3).getImm() != 0) |
| return 0; |
| |
| // If we have a zero rotate count, we have: |
| // M = mask(MB,ME) |
| // Op0 = (Op1 & ~M) | (Op2 & M) |
| // Change this to: |
| // M = mask((ME+1)&31, (MB-1)&31) |
| // Op0 = (Op2 & ~M) | (Op1 & M) |
| |
| // Swap op1/op2 |
| unsigned Reg0 = MI->getOperand(0).getReg(); |
| unsigned Reg1 = MI->getOperand(1).getReg(); |
| unsigned Reg2 = MI->getOperand(2).getReg(); |
| bool Reg1IsKill = MI->getOperand(1).isKill(); |
| bool Reg2IsKill = MI->getOperand(2).isKill(); |
| bool ChangeReg0 = false; |
| // If machine instrs are no longer in two-address forms, update |
| // destination register as well. |
| if (Reg0 == Reg1) { |
| // Must be two address instruction! |
| assert(MI->getDesc().getOperandConstraint(0, MCOI::TIED_TO) && |
| "Expecting a two-address instruction!"); |
| Reg2IsKill = false; |
| ChangeReg0 = true; |
| } |
| |
| // Masks. |
| unsigned MB = MI->getOperand(4).getImm(); |
| unsigned ME = MI->getOperand(5).getImm(); |
| |
| if (NewMI) { |
| // Create a new instruction. |
| unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg(); |
| bool Reg0IsDead = MI->getOperand(0).isDead(); |
| return BuildMI(MF, MI->getDebugLoc(), MI->getDesc()) |
| .addReg(Reg0, RegState::Define | getDeadRegState(Reg0IsDead)) |
| .addReg(Reg2, getKillRegState(Reg2IsKill)) |
| .addReg(Reg1, getKillRegState(Reg1IsKill)) |
| .addImm((ME+1) & 31) |
| .addImm((MB-1) & 31); |
| } |
| |
| if (ChangeReg0) |
| MI->getOperand(0).setReg(Reg2); |
| MI->getOperand(2).setReg(Reg1); |
| MI->getOperand(1).setReg(Reg2); |
| MI->getOperand(2).setIsKill(Reg1IsKill); |
| MI->getOperand(1).setIsKill(Reg2IsKill); |
| |
| // Swap the mask around. |
| MI->getOperand(4).setImm((ME+1) & 31); |
| MI->getOperand(5).setImm((MB-1) & 31); |
| return MI; |
| } |
| |
| void PPCInstrInfo::insertNoop(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI) const { |
| DebugLoc DL; |
| BuildMI(MBB, MI, DL, get(PPC::NOP)); |
| } |
| |
| |
| // Branch analysis. |
| // Note: If the condition register is set to CTR or CTR8 then this is a |
| // BDNZ (imm == 1) or BDZ (imm == 0) branch. |
| bool PPCInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB, |
| MachineBasicBlock *&FBB, |
| SmallVectorImpl<MachineOperand> &Cond, |
| bool AllowModify) const { |
| bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); |
| |
| // If the block has no terminators, it just falls into the block after it. |
| MachineBasicBlock::iterator I = MBB.end(); |
| if (I == MBB.begin()) |
| return false; |
| --I; |
| while (I->isDebugValue()) { |
| if (I == MBB.begin()) |
| return false; |
| --I; |
| } |
| if (!isUnpredicatedTerminator(I)) |
| return false; |
| |
| // Get the last instruction in the block. |
| MachineInstr *LastInst = I; |
| |
| // If there is only one terminator instruction, process it. |
| if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) { |
| if (LastInst->getOpcode() == PPC::B) { |
| if (!LastInst->getOperand(0).isMBB()) |
| return true; |
| TBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } else if (LastInst->getOpcode() == PPC::BCC) { |
| if (!LastInst->getOperand(2).isMBB()) |
| return true; |
| // Block ends with fall-through condbranch. |
| TBB = LastInst->getOperand(2).getMBB(); |
| Cond.push_back(LastInst->getOperand(0)); |
| Cond.push_back(LastInst->getOperand(1)); |
| return false; |
| } else if (LastInst->getOpcode() == PPC::BDNZ8 || |
| LastInst->getOpcode() == PPC::BDNZ) { |
| if (!LastInst->getOperand(0).isMBB()) |
| return true; |
| if (DisableCTRLoopAnal) |
| return true; |
| TBB = LastInst->getOperand(0).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(1)); |
| Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, |
| true)); |
| return false; |
| } else if (LastInst->getOpcode() == PPC::BDZ8 || |
| LastInst->getOpcode() == PPC::BDZ) { |
| if (!LastInst->getOperand(0).isMBB()) |
| return true; |
| if (DisableCTRLoopAnal) |
| return true; |
| TBB = LastInst->getOperand(0).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(0)); |
| Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, |
| true)); |
| return false; |
| } |
| |
| // Otherwise, don't know what this is. |
| return true; |
| } |
| |
| // Get the instruction before it if it's a terminator. |
| MachineInstr *SecondLastInst = I; |
| |
| // If there are three terminators, we don't know what sort of block this is. |
| if (SecondLastInst && I != MBB.begin() && |
| isUnpredicatedTerminator(--I)) |
| return true; |
| |
| // If the block ends with PPC::B and PPC:BCC, handle it. |
| if (SecondLastInst->getOpcode() == PPC::BCC && |
| LastInst->getOpcode() == PPC::B) { |
| if (!SecondLastInst->getOperand(2).isMBB() || |
| !LastInst->getOperand(0).isMBB()) |
| return true; |
| TBB = SecondLastInst->getOperand(2).getMBB(); |
| Cond.push_back(SecondLastInst->getOperand(0)); |
| Cond.push_back(SecondLastInst->getOperand(1)); |
| FBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } else if ((SecondLastInst->getOpcode() == PPC::BDNZ8 || |
| SecondLastInst->getOpcode() == PPC::BDNZ) && |
| LastInst->getOpcode() == PPC::B) { |
| if (!SecondLastInst->getOperand(0).isMBB() || |
| !LastInst->getOperand(0).isMBB()) |
| return true; |
| if (DisableCTRLoopAnal) |
| return true; |
| TBB = SecondLastInst->getOperand(0).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(1)); |
| Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, |
| true)); |
| FBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } else if ((SecondLastInst->getOpcode() == PPC::BDZ8 || |
| SecondLastInst->getOpcode() == PPC::BDZ) && |
| LastInst->getOpcode() == PPC::B) { |
| if (!SecondLastInst->getOperand(0).isMBB() || |
| !LastInst->getOperand(0).isMBB()) |
| return true; |
| if (DisableCTRLoopAnal) |
| return true; |
| TBB = SecondLastInst->getOperand(0).getMBB(); |
| Cond.push_back(MachineOperand::CreateImm(0)); |
| Cond.push_back(MachineOperand::CreateReg(isPPC64 ? PPC::CTR8 : PPC::CTR, |
| true)); |
| FBB = LastInst->getOperand(0).getMBB(); |
| return false; |
| } |
| |
| // If the block ends with two PPC:Bs, handle it. The second one is not |
| // executed, so remove it. |
| if (SecondLastInst->getOpcode() == PPC::B && |
| LastInst->getOpcode() == PPC::B) { |
| if (!SecondLastInst->getOperand(0).isMBB()) |
| return true; |
| TBB = SecondLastInst->getOperand(0).getMBB(); |
| I = LastInst; |
| if (AllowModify) |
| I->eraseFromParent(); |
| return false; |
| } |
| |
| // Otherwise, can't handle this. |
| return true; |
| } |
| |
| unsigned PPCInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const { |
| MachineBasicBlock::iterator I = MBB.end(); |
| if (I == MBB.begin()) return 0; |
| --I; |
| while (I->isDebugValue()) { |
| if (I == MBB.begin()) |
| return 0; |
| --I; |
| } |
| if (I->getOpcode() != PPC::B && I->getOpcode() != PPC::BCC && |
| I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && |
| I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) |
| return 0; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| |
| I = MBB.end(); |
| |
| if (I == MBB.begin()) return 1; |
| --I; |
| if (I->getOpcode() != PPC::BCC && |
| I->getOpcode() != PPC::BDNZ8 && I->getOpcode() != PPC::BDNZ && |
| I->getOpcode() != PPC::BDZ8 && I->getOpcode() != PPC::BDZ) |
| return 1; |
| |
| // Remove the branch. |
| I->eraseFromParent(); |
| return 2; |
| } |
| |
| unsigned |
| PPCInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB, |
| MachineBasicBlock *FBB, |
| const SmallVectorImpl<MachineOperand> &Cond, |
| DebugLoc DL) const { |
| // Shouldn't be a fall through. |
| assert(TBB && "InsertBranch must not be told to insert a fallthrough"); |
| assert((Cond.size() == 2 || Cond.size() == 0) && |
| "PPC branch conditions have two components!"); |
| |
| bool isPPC64 = TM.getSubtargetImpl()->isPPC64(); |
| |
| // One-way branch. |
| if (FBB == 0) { |
| if (Cond.empty()) // Unconditional branch |
| BuildMI(&MBB, DL, get(PPC::B)).addMBB(TBB); |
| else if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) |
| BuildMI(&MBB, DL, get(Cond[0].getImm() ? |
| (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : |
| (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); |
| else // Conditional branch |
| BuildMI(&MBB, DL, get(PPC::BCC)) |
| .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); |
| return 1; |
| } |
| |
| // Two-way Conditional Branch. |
| if (Cond[1].getReg() == PPC::CTR || Cond[1].getReg() == PPC::CTR8) |
| BuildMI(&MBB, DL, get(Cond[0].getImm() ? |
| (isPPC64 ? PPC::BDNZ8 : PPC::BDNZ) : |
| (isPPC64 ? PPC::BDZ8 : PPC::BDZ))).addMBB(TBB); |
| else |
| BuildMI(&MBB, DL, get(PPC::BCC)) |
| .addImm(Cond[0].getImm()).addReg(Cond[1].getReg()).addMBB(TBB); |
| BuildMI(&MBB, DL, get(PPC::B)).addMBB(FBB); |
| return 2; |
| } |
| |
| void PPCInstrInfo::copyPhysReg(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator I, DebugLoc DL, |
| unsigned DestReg, unsigned SrcReg, |
| bool KillSrc) const { |
| unsigned Opc; |
| if (PPC::GPRCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::OR; |
| else if (PPC::G8RCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::OR8; |
| else if (PPC::F4RCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::FMR; |
| else if (PPC::CRRCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::MCRF; |
| else if (PPC::VRRCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::VOR; |
| else if (PPC::CRBITRCRegClass.contains(DestReg, SrcReg)) |
| Opc = PPC::CROR; |
| else |
| llvm_unreachable("Impossible reg-to-reg copy"); |
| |
| const MCInstrDesc &MCID = get(Opc); |
| if (MCID.getNumOperands() == 3) |
| BuildMI(MBB, I, DL, MCID, DestReg) |
| .addReg(SrcReg).addReg(SrcReg, getKillRegState(KillSrc)); |
| else |
| BuildMI(MBB, I, DL, MCID, DestReg).addReg(SrcReg, getKillRegState(KillSrc)); |
| } |
| |
| // This function returns true if a CR spill is necessary and false otherwise. |
| bool |
| PPCInstrInfo::StoreRegToStackSlot(MachineFunction &MF, |
| unsigned SrcReg, bool isKill, |
| int FrameIdx, |
| const TargetRegisterClass *RC, |
| SmallVectorImpl<MachineInstr*> &NewMIs) const{ |
| DebugLoc DL; |
| if (PPC::GPRCRegClass.hasSubClassEq(RC)) { |
| if (SrcReg != PPC::LR) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) |
| .addReg(SrcReg, |
| getKillRegState(isKill)), |
| FrameIdx)); |
| } else { |
| // FIXME: this spills LR immediately to memory in one step. To do this, |
| // we use R11, which we know cannot be used in the prolog/epilog. This is |
| // a hack. |
| NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR), PPC::R11)); |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STW)) |
| .addReg(PPC::R11, |
| getKillRegState(isKill)), |
| FrameIdx)); |
| } |
| } else if (PPC::G8RCRegClass.hasSubClassEq(RC)) { |
| if (SrcReg != PPC::LR8) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) |
| .addReg(SrcReg, |
| getKillRegState(isKill)), |
| FrameIdx)); |
| } else { |
| // FIXME: this spills LR immediately to memory in one step. To do this, |
| // we use X11, which we know cannot be used in the prolog/epilog. This is |
| // a hack. |
| NewMIs.push_back(BuildMI(MF, DL, get(PPC::MFLR8), PPC::X11)); |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STD)) |
| .addReg(PPC::X11, |
| getKillRegState(isKill)), |
| FrameIdx)); |
| } |
| } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFD)) |
| .addReg(SrcReg, |
| getKillRegState(isKill)), |
| FrameIdx)); |
| } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::STFS)) |
| .addReg(SrcReg, |
| getKillRegState(isKill)), |
| FrameIdx)); |
| } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { |
| if ((!DisablePPC32RS && !TM.getSubtargetImpl()->isPPC64()) || |
| (!DisablePPC64RS && TM.getSubtargetImpl()->isPPC64())) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::SPILL_CR)) |
| .addReg(SrcReg, |
| getKillRegState(isKill)), |
| FrameIdx)); |
| return true; |
| } else { |
| // FIXME: We need a scatch reg here. The trouble with using R0 is that |
| // it's possible for the stack frame to be so big the save location is |
| // out of range of immediate offsets, necessitating another register. |
| // We hack this on Darwin by reserving R2. It's probably broken on Linux |
| // at the moment. |
| |
| bool is64Bit = TM.getSubtargetImpl()->isPPC64(); |
| // We need to store the CR in the low 4-bits of the saved value. First, |
| // issue a MFCR to save all of the CRBits. |
| unsigned ScratchReg = TM.getSubtargetImpl()->isDarwinABI() ? |
| (is64Bit ? PPC::X2 : PPC::R2) : |
| (is64Bit ? PPC::X0 : PPC::R0); |
| NewMIs.push_back(BuildMI(MF, DL, get(is64Bit ? PPC::MFCR8pseud : |
| PPC::MFCRpseud), ScratchReg) |
| .addReg(SrcReg, getKillRegState(isKill))); |
| |
| // If the saved register wasn't CR0, shift the bits left so that they are |
| // in CR0's slot. |
| if (SrcReg != PPC::CR0) { |
| unsigned ShiftBits = getPPCRegisterNumbering(SrcReg)*4; |
| // rlwinm scratch, scratch, ShiftBits, 0, 31. |
| NewMIs.push_back(BuildMI(MF, DL, get(is64Bit ? PPC::RLWINM8 : |
| PPC::RLWINM), ScratchReg) |
| .addReg(ScratchReg).addImm(ShiftBits) |
| .addImm(0).addImm(31)); |
| } |
| |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(is64Bit ? |
| PPC::STW8 : PPC::STW)) |
| .addReg(ScratchReg, |
| getKillRegState(isKill)), |
| FrameIdx)); |
| } |
| } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { |
| // FIXME: We use CRi here because there is no mtcrf on a bit. Since the |
| // backend currently only uses CR1EQ as an individual bit, this should |
| // not cause any bug. If we need other uses of CR bits, the following |
| // code may be invalid. |
| unsigned Reg = 0; |
| if (SrcReg == PPC::CR0LT || SrcReg == PPC::CR0GT || |
| SrcReg == PPC::CR0EQ || SrcReg == PPC::CR0UN) |
| Reg = PPC::CR0; |
| else if (SrcReg == PPC::CR1LT || SrcReg == PPC::CR1GT || |
| SrcReg == PPC::CR1EQ || SrcReg == PPC::CR1UN) |
| Reg = PPC::CR1; |
| else if (SrcReg == PPC::CR2LT || SrcReg == PPC::CR2GT || |
| SrcReg == PPC::CR2EQ || SrcReg == PPC::CR2UN) |
| Reg = PPC::CR2; |
| else if (SrcReg == PPC::CR3LT || SrcReg == PPC::CR3GT || |
| SrcReg == PPC::CR3EQ || SrcReg == PPC::CR3UN) |
| Reg = PPC::CR3; |
| else if (SrcReg == PPC::CR4LT || SrcReg == PPC::CR4GT || |
| SrcReg == PPC::CR4EQ || SrcReg == PPC::CR4UN) |
| Reg = PPC::CR4; |
| else if (SrcReg == PPC::CR5LT || SrcReg == PPC::CR5GT || |
| SrcReg == PPC::CR5EQ || SrcReg == PPC::CR5UN) |
| Reg = PPC::CR5; |
| else if (SrcReg == PPC::CR6LT || SrcReg == PPC::CR6GT || |
| SrcReg == PPC::CR6EQ || SrcReg == PPC::CR6UN) |
| Reg = PPC::CR6; |
| else if (SrcReg == PPC::CR7LT || SrcReg == PPC::CR7GT || |
| SrcReg == PPC::CR7EQ || SrcReg == PPC::CR7UN) |
| Reg = PPC::CR7; |
| |
| return StoreRegToStackSlot(MF, Reg, isKill, FrameIdx, |
| &PPC::CRRCRegClass, NewMIs); |
| |
| } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { |
| // We don't have indexed addressing for vector loads. Emit: |
| // R0 = ADDI FI# |
| // STVX VAL, 0, R0 |
| // |
| // FIXME: We use R0 here, because it isn't available for RA. |
| bool Is64Bit = TM.getSubtargetImpl()->isPPC64(); |
| unsigned Instr = Is64Bit ? PPC::ADDI8 : PPC::ADDI; |
| unsigned GPR0 = Is64Bit ? PPC::X0 : PPC::R0; |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Instr), GPR0), |
| FrameIdx, 0, 0)); |
| NewMIs.push_back(BuildMI(MF, DL, get(PPC::STVX)) |
| .addReg(SrcReg, getKillRegState(isKill)) |
| .addReg(GPR0) |
| .addReg(GPR0)); |
| } else { |
| llvm_unreachable("Unknown regclass!"); |
| } |
| |
| return false; |
| } |
| |
| void |
| PPCInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned SrcReg, bool isKill, int FrameIdx, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| MachineFunction &MF = *MBB.getParent(); |
| SmallVector<MachineInstr*, 4> NewMIs; |
| |
| if (StoreRegToStackSlot(MF, SrcReg, isKill, FrameIdx, RC, NewMIs)) { |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| FuncInfo->setSpillsCR(); |
| } |
| |
| for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) |
| MBB.insert(MI, NewMIs[i]); |
| |
| const MachineFrameInfo &MFI = *MF.getFrameInfo(); |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), |
| MachineMemOperand::MOStore, |
| MFI.getObjectSize(FrameIdx), |
| MFI.getObjectAlignment(FrameIdx)); |
| NewMIs.back()->addMemOperand(MF, MMO); |
| } |
| |
| bool |
| PPCInstrInfo::LoadRegFromStackSlot(MachineFunction &MF, DebugLoc DL, |
| unsigned DestReg, int FrameIdx, |
| const TargetRegisterClass *RC, |
| SmallVectorImpl<MachineInstr*> &NewMIs)const{ |
| if (PPC::GPRCRegClass.hasSubClassEq(RC)) { |
| if (DestReg != PPC::LR) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), |
| DestReg), FrameIdx)); |
| } else { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), |
| PPC::R11), FrameIdx)); |
| NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR)).addReg(PPC::R11)); |
| } |
| } else if (PPC::G8RCRegClass.hasSubClassEq(RC)) { |
| if (DestReg != PPC::LR8) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), DestReg), |
| FrameIdx)); |
| } else { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LD), |
| PPC::X11), FrameIdx)); |
| NewMIs.push_back(BuildMI(MF, DL, get(PPC::MTLR8)).addReg(PPC::X11)); |
| } |
| } else if (PPC::F8RCRegClass.hasSubClassEq(RC)) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFD), DestReg), |
| FrameIdx)); |
| } else if (PPC::F4RCRegClass.hasSubClassEq(RC)) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LFS), DestReg), |
| FrameIdx)); |
| } else if (PPC::CRRCRegClass.hasSubClassEq(RC)) { |
| if ((!DisablePPC32RS && !TM.getSubtargetImpl()->isPPC64()) || |
| (!DisablePPC64RS && TM.getSubtargetImpl()->isPPC64())) { |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, |
| get(PPC::RESTORE_CR), DestReg) |
| , FrameIdx)); |
| return true; |
| } else { |
| // FIXME: We need a scatch reg here. The trouble with using R0 is that |
| // it's possible for the stack frame to be so big the save location is |
| // out of range of immediate offsets, necessitating another register. |
| // We hack this on Darwin by reserving R2. It's probably broken on Linux |
| // at the moment. |
| unsigned ScratchReg = TM.getSubtargetImpl()->isDarwinABI() ? |
| PPC::R2 : PPC::R0; |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(PPC::LWZ), |
| ScratchReg), FrameIdx)); |
| |
| // If the reloaded register isn't CR0, shift the bits right so that they are |
| // in the right CR's slot. |
| if (DestReg != PPC::CR0) { |
| unsigned ShiftBits = getPPCRegisterNumbering(DestReg)*4; |
| // rlwinm r11, r11, 32-ShiftBits, 0, 31. |
| NewMIs.push_back(BuildMI(MF, DL, get(PPC::RLWINM), ScratchReg) |
| .addReg(ScratchReg).addImm(32-ShiftBits).addImm(0) |
| .addImm(31)); |
| } |
| |
| NewMIs.push_back(BuildMI(MF, DL, get(TM.getSubtargetImpl()->isPPC64() ? |
| PPC::MTCRF8 : PPC::MTCRF), DestReg) |
| .addReg(ScratchReg)); |
| } |
| } else if (PPC::CRBITRCRegClass.hasSubClassEq(RC)) { |
| |
| unsigned Reg = 0; |
| if (DestReg == PPC::CR0LT || DestReg == PPC::CR0GT || |
| DestReg == PPC::CR0EQ || DestReg == PPC::CR0UN) |
| Reg = PPC::CR0; |
| else if (DestReg == PPC::CR1LT || DestReg == PPC::CR1GT || |
| DestReg == PPC::CR1EQ || DestReg == PPC::CR1UN) |
| Reg = PPC::CR1; |
| else if (DestReg == PPC::CR2LT || DestReg == PPC::CR2GT || |
| DestReg == PPC::CR2EQ || DestReg == PPC::CR2UN) |
| Reg = PPC::CR2; |
| else if (DestReg == PPC::CR3LT || DestReg == PPC::CR3GT || |
| DestReg == PPC::CR3EQ || DestReg == PPC::CR3UN) |
| Reg = PPC::CR3; |
| else if (DestReg == PPC::CR4LT || DestReg == PPC::CR4GT || |
| DestReg == PPC::CR4EQ || DestReg == PPC::CR4UN) |
| Reg = PPC::CR4; |
| else if (DestReg == PPC::CR5LT || DestReg == PPC::CR5GT || |
| DestReg == PPC::CR5EQ || DestReg == PPC::CR5UN) |
| Reg = PPC::CR5; |
| else if (DestReg == PPC::CR6LT || DestReg == PPC::CR6GT || |
| DestReg == PPC::CR6EQ || DestReg == PPC::CR6UN) |
| Reg = PPC::CR6; |
| else if (DestReg == PPC::CR7LT || DestReg == PPC::CR7GT || |
| DestReg == PPC::CR7EQ || DestReg == PPC::CR7UN) |
| Reg = PPC::CR7; |
| |
| return LoadRegFromStackSlot(MF, DL, Reg, FrameIdx, |
| &PPC::CRRCRegClass, NewMIs); |
| |
| } else if (PPC::VRRCRegClass.hasSubClassEq(RC)) { |
| // We don't have indexed addressing for vector loads. Emit: |
| // R0 = ADDI FI# |
| // Dest = LVX 0, R0 |
| // |
| // FIXME: We use R0 here, because it isn't available for RA. |
| bool Is64Bit = TM.getSubtargetImpl()->isPPC64(); |
| unsigned Instr = Is64Bit ? PPC::ADDI8 : PPC::ADDI; |
| unsigned GPR0 = Is64Bit ? PPC::X0 : PPC::R0; |
| NewMIs.push_back(addFrameReference(BuildMI(MF, DL, get(Instr), GPR0), |
| FrameIdx, 0, 0)); |
| NewMIs.push_back(BuildMI(MF, DL, get(PPC::LVX),DestReg).addReg(GPR0) |
| .addReg(GPR0)); |
| } else { |
| llvm_unreachable("Unknown regclass!"); |
| } |
| |
| return false; |
| } |
| |
| void |
| PPCInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator MI, |
| unsigned DestReg, int FrameIdx, |
| const TargetRegisterClass *RC, |
| const TargetRegisterInfo *TRI) const { |
| MachineFunction &MF = *MBB.getParent(); |
| SmallVector<MachineInstr*, 4> NewMIs; |
| DebugLoc DL; |
| if (MI != MBB.end()) DL = MI->getDebugLoc(); |
| if (LoadRegFromStackSlot(MF, DL, DestReg, FrameIdx, RC, NewMIs)) { |
| PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>(); |
| FuncInfo->setSpillsCR(); |
| } |
| for (unsigned i = 0, e = NewMIs.size(); i != e; ++i) |
| MBB.insert(MI, NewMIs[i]); |
| |
| const MachineFrameInfo &MFI = *MF.getFrameInfo(); |
| MachineMemOperand *MMO = |
| MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx), |
| MachineMemOperand::MOLoad, |
| MFI.getObjectSize(FrameIdx), |
| MFI.getObjectAlignment(FrameIdx)); |
| NewMIs.back()->addMemOperand(MF, MMO); |
| } |
| |
| MachineInstr* |
| PPCInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF, |
| int FrameIx, uint64_t Offset, |
| const MDNode *MDPtr, |
| DebugLoc DL) const { |
| MachineInstrBuilder MIB = BuildMI(MF, DL, get(PPC::DBG_VALUE)); |
| addFrameReference(MIB, FrameIx, 0, false).addImm(Offset).addMetadata(MDPtr); |
| return &*MIB; |
| } |
| |
| bool PPCInstrInfo:: |
| ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const { |
| assert(Cond.size() == 2 && "Invalid PPC branch opcode!"); |
| if (Cond[1].getReg() == PPC::CTR8 || Cond[1].getReg() == PPC::CTR) |
| Cond[0].setImm(Cond[0].getImm() == 0 ? 1 : 0); |
| else |
| // Leave the CR# the same, but invert the condition. |
| Cond[0].setImm(PPC::InvertPredicate((PPC::Predicate)Cond[0].getImm())); |
| return false; |
| } |
| |
| /// GetInstSize - Return the number of bytes of code the specified |
| /// instruction may be. This returns the maximum number of bytes. |
| /// |
| unsigned PPCInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const { |
| switch (MI->getOpcode()) { |
| case PPC::INLINEASM: { // Inline Asm: Variable size. |
| const MachineFunction *MF = MI->getParent()->getParent(); |
| const char *AsmStr = MI->getOperand(0).getSymbolName(); |
| return getInlineAsmLength(AsmStr, *MF->getTarget().getMCAsmInfo()); |
| } |
| case PPC::PROLOG_LABEL: |
| case PPC::EH_LABEL: |
| case PPC::GC_LABEL: |
| case PPC::DBG_VALUE: |
| return 0; |
| case PPC::BL8_NOP_ELF: |
| case PPC::BLA8_NOP_ELF: |
| return 8; |
| default: |
| return 4; // PowerPC instructions are all 4 bytes |
| } |
| } |