| //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This tablegen backend emits a target specifier matcher for converting parsed |
| // assembly operands in the MCInst structures. |
| // |
| // The input to the target specific matcher is a list of literal tokens and |
| // operands. The target specific parser should generally eliminate any syntax |
| // which is not relevant for matching; for example, comma tokens should have |
| // already been consumed and eliminated by the parser. Most instructions will |
| // end up with a single literal token (the instruction name) and some number of |
| // operands. |
| // |
| // Some example inputs, for X86: |
| // 'addl' (immediate ...) (register ...) |
| // 'add' (immediate ...) (memory ...) |
| // 'call' '*' %epc |
| // |
| // The assembly matcher is responsible for converting this input into a precise |
| // machine instruction (i.e., an instruction with a well defined encoding). This |
| // mapping has several properties which complicate matching: |
| // |
| // - It may be ambiguous; many architectures can legally encode particular |
| // variants of an instruction in different ways (for example, using a smaller |
| // encoding for small immediates). Such ambiguities should never be |
| // arbitrarily resolved by the assembler, the assembler is always responsible |
| // for choosing the "best" available instruction. |
| // |
| // - It may depend on the subtarget or the assembler context. Instructions |
| // which are invalid for the current mode, but otherwise unambiguous (e.g., |
| // an SSE instruction in a file being assembled for i486) should be accepted |
| // and rejected by the assembler front end. However, if the proper encoding |
| // for an instruction is dependent on the assembler context then the matcher |
| // is responsible for selecting the correct machine instruction for the |
| // current mode. |
| // |
| // The core matching algorithm attempts to exploit the regularity in most |
| // instruction sets to quickly determine the set of possibly matching |
| // instructions, and the simplify the generated code. Additionally, this helps |
| // to ensure that the ambiguities are intentionally resolved by the user. |
| // |
| // The matching is divided into two distinct phases: |
| // |
| // 1. Classification: Each operand is mapped to the unique set which (a) |
| // contains it, and (b) is the largest such subset for which a single |
| // instruction could match all members. |
| // |
| // For register classes, we can generate these subgroups automatically. For |
| // arbitrary operands, we expect the user to define the classes and their |
| // relations to one another (for example, 8-bit signed immediates as a |
| // subset of 32-bit immediates). |
| // |
| // By partitioning the operands in this way, we guarantee that for any |
| // tuple of classes, any single instruction must match either all or none |
| // of the sets of operands which could classify to that tuple. |
| // |
| // In addition, the subset relation amongst classes induces a partial order |
| // on such tuples, which we use to resolve ambiguities. |
| // |
| // 2. The input can now be treated as a tuple of classes (static tokens are |
| // simple singleton sets). Each such tuple should generally map to a single |
| // instruction (we currently ignore cases where this isn't true, whee!!!), |
| // which we can emit a simple matcher for. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "AsmMatcherEmitter.h" |
| #include "CodeGenTarget.h" |
| #include "Record.h" |
| #include "StringMatcher.h" |
| #include "llvm/ADT/OwningPtr.h" |
| #include "llvm/ADT/PointerUnion.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallVector.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/StringExtras.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include <map> |
| #include <set> |
| using namespace llvm; |
| |
| static cl::opt<std::string> |
| MatchPrefix("match-prefix", cl::init(""), |
| cl::desc("Only match instructions with the given prefix")); |
| |
| |
| namespace { |
| class AsmMatcherInfo; |
| struct SubtargetFeatureInfo; |
| |
| /// ClassInfo - Helper class for storing the information about a particular |
| /// class of operands which can be matched. |
| struct ClassInfo { |
| enum ClassInfoKind { |
| /// Invalid kind, for use as a sentinel value. |
| Invalid = 0, |
| |
| /// The class for a particular token. |
| Token, |
| |
| /// The (first) register class, subsequent register classes are |
| /// RegisterClass0+1, and so on. |
| RegisterClass0, |
| |
| /// The (first) user defined class, subsequent user defined classes are |
| /// UserClass0+1, and so on. |
| UserClass0 = 1<<16 |
| }; |
| |
| /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + |
| /// N) for the Nth user defined class. |
| unsigned Kind; |
| |
| /// SuperClasses - The super classes of this class. Note that for simplicities |
| /// sake user operands only record their immediate super class, while register |
| /// operands include all superclasses. |
| std::vector<ClassInfo*> SuperClasses; |
| |
| /// Name - The full class name, suitable for use in an enum. |
| std::string Name; |
| |
| /// ClassName - The unadorned generic name for this class (e.g., Token). |
| std::string ClassName; |
| |
| /// ValueName - The name of the value this class represents; for a token this |
| /// is the literal token string, for an operand it is the TableGen class (or |
| /// empty if this is a derived class). |
| std::string ValueName; |
| |
| /// PredicateMethod - The name of the operand method to test whether the |
| /// operand matches this class; this is not valid for Token or register kinds. |
| std::string PredicateMethod; |
| |
| /// RenderMethod - The name of the operand method to add this operand to an |
| /// MCInst; this is not valid for Token or register kinds. |
| std::string RenderMethod; |
| |
| /// For register classes, the records for all the registers in this class. |
| std::set<Record*> Registers; |
| |
| public: |
| /// isRegisterClass() - Check if this is a register class. |
| bool isRegisterClass() const { |
| return Kind >= RegisterClass0 && Kind < UserClass0; |
| } |
| |
| /// isUserClass() - Check if this is a user defined class. |
| bool isUserClass() const { |
| return Kind >= UserClass0; |
| } |
| |
| /// isRelatedTo - Check whether this class is "related" to \arg RHS. Classes |
| /// are related if they are in the same class hierarchy. |
| bool isRelatedTo(const ClassInfo &RHS) const { |
| // Tokens are only related to tokens. |
| if (Kind == Token || RHS.Kind == Token) |
| return Kind == Token && RHS.Kind == Token; |
| |
| // Registers classes are only related to registers classes, and only if |
| // their intersection is non-empty. |
| if (isRegisterClass() || RHS.isRegisterClass()) { |
| if (!isRegisterClass() || !RHS.isRegisterClass()) |
| return false; |
| |
| std::set<Record*> Tmp; |
| std::insert_iterator< std::set<Record*> > II(Tmp, Tmp.begin()); |
| std::set_intersection(Registers.begin(), Registers.end(), |
| RHS.Registers.begin(), RHS.Registers.end(), |
| II); |
| |
| return !Tmp.empty(); |
| } |
| |
| // Otherwise we have two users operands; they are related if they are in the |
| // same class hierarchy. |
| // |
| // FIXME: This is an oversimplification, they should only be related if they |
| // intersect, however we don't have that information. |
| assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); |
| const ClassInfo *Root = this; |
| while (!Root->SuperClasses.empty()) |
| Root = Root->SuperClasses.front(); |
| |
| const ClassInfo *RHSRoot = &RHS; |
| while (!RHSRoot->SuperClasses.empty()) |
| RHSRoot = RHSRoot->SuperClasses.front(); |
| |
| return Root == RHSRoot; |
| } |
| |
| /// isSubsetOf - Test whether this class is a subset of \arg RHS; |
| bool isSubsetOf(const ClassInfo &RHS) const { |
| // This is a subset of RHS if it is the same class... |
| if (this == &RHS) |
| return true; |
| |
| // ... or if any of its super classes are a subset of RHS. |
| for (std::vector<ClassInfo*>::const_iterator it = SuperClasses.begin(), |
| ie = SuperClasses.end(); it != ie; ++it) |
| if ((*it)->isSubsetOf(RHS)) |
| return true; |
| |
| return false; |
| } |
| |
| /// operator< - Compare two classes. |
| bool operator<(const ClassInfo &RHS) const { |
| if (this == &RHS) |
| return false; |
| |
| // Unrelated classes can be ordered by kind. |
| if (!isRelatedTo(RHS)) |
| return Kind < RHS.Kind; |
| |
| switch (Kind) { |
| case Invalid: |
| assert(0 && "Invalid kind!"); |
| case Token: |
| // Tokens are comparable by value. |
| // |
| // FIXME: Compare by enum value. |
| return ValueName < RHS.ValueName; |
| |
| default: |
| // This class preceeds the RHS if it is a proper subset of the RHS. |
| if (isSubsetOf(RHS)) |
| return true; |
| if (RHS.isSubsetOf(*this)) |
| return false; |
| |
| // Otherwise, order by name to ensure we have a total ordering. |
| return ValueName < RHS.ValueName; |
| } |
| } |
| }; |
| |
| /// MatchableInfo - Helper class for storing the necessary information for an |
| /// instruction or alias which is capable of being matched. |
| struct MatchableInfo { |
| struct AsmOperand { |
| /// Token - This is the token that the operand came from. |
| StringRef Token; |
| |
| /// The unique class instance this operand should match. |
| ClassInfo *Class; |
| |
| /// The operand name this is, if anything. |
| StringRef SrcOpName; |
| |
| explicit AsmOperand(StringRef T) : Token(T), Class(0) {} |
| }; |
| |
| /// ResOperand - This represents a single operand in the result instruction |
| /// generated by the match. In cases (like addressing modes) where a single |
| /// assembler operand expands to multiple MCOperands, this represents the |
| /// single assembler operand, not the MCOperand. |
| struct ResOperand { |
| enum { |
| /// RenderAsmOperand - This represents an operand result that is |
| /// generated by calling the render method on the assembly operand. The |
| /// corresponding AsmOperand is specified by AsmOperandNum. |
| RenderAsmOperand, |
| |
| /// TiedOperand - This represents a result operand that is a duplicate of |
| /// a previous result operand. |
| TiedOperand, |
| |
| /// ImmOperand - This represents an immediate value that is dumped into |
| /// the operand. |
| ImmOperand, |
| |
| /// RegOperand - This represents a fixed register that is dumped in. |
| RegOperand |
| } Kind; |
| |
| union { |
| /// This is the operand # in the AsmOperands list that this should be |
| /// copied from. |
| unsigned AsmOperandNum; |
| |
| /// TiedOperandNum - This is the (earlier) result operand that should be |
| /// copied from. |
| unsigned TiedOperandNum; |
| |
| /// ImmVal - This is the immediate value added to the instruction. |
| int64_t ImmVal; |
| |
| /// Register - This is the register record. |
| Record *Register; |
| }; |
| |
| /// OpInfo - This is the information about the instruction operand that is |
| /// being populated. |
| const CGIOperandList::OperandInfo *OpInfo; |
| |
| static ResOperand getRenderedOp(unsigned AsmOpNum, |
| const CGIOperandList::OperandInfo *Op) { |
| ResOperand X; |
| X.Kind = RenderAsmOperand; |
| X.AsmOperandNum = AsmOpNum; |
| X.OpInfo = Op; |
| return X; |
| } |
| |
| static ResOperand getTiedOp(unsigned TiedOperandNum, |
| const CGIOperandList::OperandInfo *Op) { |
| ResOperand X; |
| X.Kind = TiedOperand; |
| X.TiedOperandNum = TiedOperandNum; |
| X.OpInfo = Op; |
| return X; |
| } |
| |
| static ResOperand getImmOp(int64_t Val, |
| const CGIOperandList::OperandInfo *Op) { |
| ResOperand X; |
| X.Kind = ImmOperand; |
| X.ImmVal = Val; |
| X.OpInfo = Op; |
| return X; |
| } |
| |
| static ResOperand getRegOp(Record *Reg, |
| const CGIOperandList::OperandInfo *Op) { |
| ResOperand X; |
| X.Kind = RegOperand; |
| X.Register = Reg; |
| X.OpInfo = Op; |
| return X; |
| } |
| |
| }; |
| |
| /// TheDef - This is the definition of the instruction or InstAlias that this |
| /// matchable came from. |
| Record *const TheDef; |
| |
| /// DefRec - This is the definition that it came from. |
| PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; |
| |
| const CodeGenInstruction *getResultInst() const { |
| if (DefRec.is<const CodeGenInstruction*>()) |
| return DefRec.get<const CodeGenInstruction*>(); |
| return DefRec.get<const CodeGenInstAlias*>()->ResultInst; |
| } |
| |
| /// ResOperands - This is the operand list that should be built for the result |
| /// MCInst. |
| std::vector<ResOperand> ResOperands; |
| |
| /// AsmString - The assembly string for this instruction (with variants |
| /// removed), e.g. "movsx $src, $dst". |
| std::string AsmString; |
| |
| /// Mnemonic - This is the first token of the matched instruction, its |
| /// mnemonic. |
| StringRef Mnemonic; |
| |
| /// AsmOperands - The textual operands that this instruction matches, |
| /// annotated with a class and where in the OperandList they were defined. |
| /// This directly corresponds to the tokenized AsmString after the mnemonic is |
| /// removed. |
| SmallVector<AsmOperand, 4> AsmOperands; |
| |
| /// Predicates - The required subtarget features to match this instruction. |
| SmallVector<SubtargetFeatureInfo*, 4> RequiredFeatures; |
| |
| /// ConversionFnKind - The enum value which is passed to the generated |
| /// ConvertToMCInst to convert parsed operands into an MCInst for this |
| /// function. |
| std::string ConversionFnKind; |
| |
| MatchableInfo(const CodeGenInstruction &CGI) |
| : TheDef(CGI.TheDef), DefRec(&CGI), AsmString(CGI.AsmString) { |
| } |
| |
| MatchableInfo(const CodeGenInstAlias *Alias) |
| : TheDef(Alias->TheDef), DefRec(Alias), AsmString(Alias->AsmString) { |
| } |
| |
| void Initialize(const AsmMatcherInfo &Info, |
| SmallPtrSet<Record*, 16> &SingletonRegisters); |
| |
| /// Validate - Return true if this matchable is a valid thing to match against |
| /// and perform a bunch of validity checking. |
| bool Validate(StringRef CommentDelimiter, bool Hack) const; |
| |
| /// getSingletonRegisterForAsmOperand - If the specified token is a singleton |
| /// register, return the Record for it, otherwise return null. |
| Record *getSingletonRegisterForAsmOperand(unsigned i, |
| const AsmMatcherInfo &Info) const; |
| |
| int FindAsmOperandNamed(StringRef N) const { |
| for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) |
| if (N == AsmOperands[i].SrcOpName) |
| return i; |
| return -1; |
| } |
| |
| void BuildInstructionResultOperands(); |
| void BuildAliasResultOperands(); |
| |
| /// operator< - Compare two matchables. |
| bool operator<(const MatchableInfo &RHS) const { |
| // The primary comparator is the instruction mnemonic. |
| if (Mnemonic != RHS.Mnemonic) |
| return Mnemonic < RHS.Mnemonic; |
| |
| if (AsmOperands.size() != RHS.AsmOperands.size()) |
| return AsmOperands.size() < RHS.AsmOperands.size(); |
| |
| // Compare lexicographically by operand. The matcher validates that other |
| // orderings wouldn't be ambiguous using \see CouldMatchAmiguouslyWith(). |
| for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { |
| if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) |
| return true; |
| if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) |
| return false; |
| } |
| |
| return false; |
| } |
| |
| /// CouldMatchAmiguouslyWith - Check whether this matchable could |
| /// ambiguously match the same set of operands as \arg RHS (without being a |
| /// strictly superior match). |
| bool CouldMatchAmiguouslyWith(const MatchableInfo &RHS) { |
| // The primary comparator is the instruction mnemonic. |
| if (Mnemonic != RHS.Mnemonic) |
| return false; |
| |
| // The number of operands is unambiguous. |
| if (AsmOperands.size() != RHS.AsmOperands.size()) |
| return false; |
| |
| // Otherwise, make sure the ordering of the two instructions is unambiguous |
| // by checking that either (a) a token or operand kind discriminates them, |
| // or (b) the ordering among equivalent kinds is consistent. |
| |
| // Tokens and operand kinds are unambiguous (assuming a correct target |
| // specific parser). |
| for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) |
| if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || |
| AsmOperands[i].Class->Kind == ClassInfo::Token) |
| if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || |
| *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) |
| return false; |
| |
| // Otherwise, this operand could commute if all operands are equivalent, or |
| // there is a pair of operands that compare less than and a pair that |
| // compare greater than. |
| bool HasLT = false, HasGT = false; |
| for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { |
| if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) |
| HasLT = true; |
| if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) |
| HasGT = true; |
| } |
| |
| return !(HasLT ^ HasGT); |
| } |
| |
| void dump(); |
| |
| private: |
| void TokenizeAsmString(const AsmMatcherInfo &Info); |
| }; |
| |
| /// SubtargetFeatureInfo - Helper class for storing information on a subtarget |
| /// feature which participates in instruction matching. |
| struct SubtargetFeatureInfo { |
| /// \brief The predicate record for this feature. |
| Record *TheDef; |
| |
| /// \brief An unique index assigned to represent this feature. |
| unsigned Index; |
| |
| SubtargetFeatureInfo(Record *D, unsigned Idx) : TheDef(D), Index(Idx) {} |
| |
| /// \brief The name of the enumerated constant identifying this feature. |
| std::string getEnumName() const { |
| return "Feature_" + TheDef->getName(); |
| } |
| }; |
| |
| class AsmMatcherInfo { |
| public: |
| /// Tracked Records |
| RecordKeeper &Records; |
| |
| /// The tablegen AsmParser record. |
| Record *AsmParser; |
| |
| /// Target - The target information. |
| CodeGenTarget &Target; |
| |
| /// The AsmParser "RegisterPrefix" value. |
| std::string RegisterPrefix; |
| |
| /// The classes which are needed for matching. |
| std::vector<ClassInfo*> Classes; |
| |
| /// The information on the matchables to match. |
| std::vector<MatchableInfo*> Matchables; |
| |
| /// Map of Register records to their class information. |
| std::map<Record*, ClassInfo*> RegisterClasses; |
| |
| /// Map of Predicate records to their subtarget information. |
| std::map<Record*, SubtargetFeatureInfo*> SubtargetFeatures; |
| |
| private: |
| /// Map of token to class information which has already been constructed. |
| std::map<std::string, ClassInfo*> TokenClasses; |
| |
| /// Map of RegisterClass records to their class information. |
| std::map<Record*, ClassInfo*> RegisterClassClasses; |
| |
| /// Map of AsmOperandClass records to their class information. |
| std::map<Record*, ClassInfo*> AsmOperandClasses; |
| |
| private: |
| /// getTokenClass - Lookup or create the class for the given token. |
| ClassInfo *getTokenClass(StringRef Token); |
| |
| /// getOperandClass - Lookup or create the class for the given operand. |
| ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI); |
| |
| /// BuildRegisterClasses - Build the ClassInfo* instances for register |
| /// classes. |
| void BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters); |
| |
| /// BuildOperandClasses - Build the ClassInfo* instances for user defined |
| /// operand classes. |
| void BuildOperandClasses(); |
| |
| void BuildInstructionOperandReference(MatchableInfo *II, |
| StringRef OpName, |
| MatchableInfo::AsmOperand &Op); |
| void BuildAliasOperandReference(MatchableInfo *II, |
| StringRef OpName, |
| MatchableInfo::AsmOperand &Op); |
| |
| public: |
| AsmMatcherInfo(Record *AsmParser, |
| CodeGenTarget &Target, |
| RecordKeeper &Records); |
| |
| /// BuildInfo - Construct the various tables used during matching. |
| void BuildInfo(); |
| |
| /// getSubtargetFeature - Lookup or create the subtarget feature info for the |
| /// given operand. |
| SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { |
| assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); |
| std::map<Record*, SubtargetFeatureInfo*>::const_iterator I = |
| SubtargetFeatures.find(Def); |
| return I == SubtargetFeatures.end() ? 0 : I->second; |
| } |
| |
| RecordKeeper &getRecords() const { |
| return Records; |
| } |
| }; |
| |
| } |
| |
| void MatchableInfo::dump() { |
| errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; |
| |
| for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { |
| AsmOperand &Op = AsmOperands[i]; |
| errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; |
| errs() << '\"' << Op.Token << "\"\n"; |
| } |
| } |
| |
| void MatchableInfo::Initialize(const AsmMatcherInfo &Info, |
| SmallPtrSet<Record*, 16> &SingletonRegisters) { |
| // TODO: Eventually support asmparser for Variant != 0. |
| AsmString = CodeGenInstruction::FlattenAsmStringVariants(AsmString, 0); |
| |
| TokenizeAsmString(Info); |
| |
| // Compute the require features. |
| std::vector<Record*> Predicates =TheDef->getValueAsListOfDefs("Predicates"); |
| for (unsigned i = 0, e = Predicates.size(); i != e; ++i) |
| if (SubtargetFeatureInfo *Feature = |
| Info.getSubtargetFeature(Predicates[i])) |
| RequiredFeatures.push_back(Feature); |
| |
| // Collect singleton registers, if used. |
| for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { |
| if (Record *Reg = getSingletonRegisterForAsmOperand(i, Info)) |
| SingletonRegisters.insert(Reg); |
| } |
| } |
| |
| /// TokenizeAsmString - Tokenize a simplified assembly string. |
| void MatchableInfo::TokenizeAsmString(const AsmMatcherInfo &Info) { |
| StringRef String = AsmString; |
| unsigned Prev = 0; |
| bool InTok = true; |
| for (unsigned i = 0, e = String.size(); i != e; ++i) { |
| switch (String[i]) { |
| case '[': |
| case ']': |
| case '*': |
| case '!': |
| case ' ': |
| case '\t': |
| case ',': |
| if (InTok) { |
| AsmOperands.push_back(AsmOperand(String.slice(Prev, i))); |
| InTok = false; |
| } |
| if (!isspace(String[i]) && String[i] != ',') |
| AsmOperands.push_back(AsmOperand(String.substr(i, 1))); |
| Prev = i + 1; |
| break; |
| |
| case '\\': |
| if (InTok) { |
| AsmOperands.push_back(AsmOperand(String.slice(Prev, i))); |
| InTok = false; |
| } |
| ++i; |
| assert(i != String.size() && "Invalid quoted character"); |
| AsmOperands.push_back(AsmOperand(String.substr(i, 1))); |
| Prev = i + 1; |
| break; |
| |
| case '$': { |
| if (InTok) { |
| AsmOperands.push_back(AsmOperand(String.slice(Prev, i))); |
| InTok = false; |
| } |
| |
| // If this isn't "${", treat like a normal token. |
| if (i + 1 == String.size() || String[i + 1] != '{') { |
| Prev = i; |
| break; |
| } |
| |
| StringRef::iterator End = std::find(String.begin() + i, String.end(),'}'); |
| assert(End != String.end() && "Missing brace in operand reference!"); |
| size_t EndPos = End - String.begin(); |
| AsmOperands.push_back(AsmOperand(String.slice(i, EndPos+1))); |
| Prev = EndPos + 1; |
| i = EndPos; |
| break; |
| } |
| |
| case '.': |
| if (InTok) |
| AsmOperands.push_back(AsmOperand(String.slice(Prev, i))); |
| Prev = i; |
| InTok = true; |
| break; |
| |
| default: |
| InTok = true; |
| } |
| } |
| if (InTok && Prev != String.size()) |
| AsmOperands.push_back(AsmOperand(String.substr(Prev))); |
| |
| // The first token of the instruction is the mnemonic, which must be a |
| // simple string, not a $foo variable or a singleton register. |
| assert(!AsmOperands.empty() && "Instruction has no tokens?"); |
| Mnemonic = AsmOperands[0].Token; |
| if (Mnemonic[0] == '$' || getSingletonRegisterForAsmOperand(0, Info)) |
| throw TGError(TheDef->getLoc(), |
| "Invalid instruction mnemonic '" + Mnemonic.str() + "'!"); |
| |
| // Remove the first operand, it is tracked in the mnemonic field. |
| AsmOperands.erase(AsmOperands.begin()); |
| } |
| |
| |
| |
| bool MatchableInfo::Validate(StringRef CommentDelimiter, bool Hack) const { |
| // Reject matchables with no .s string. |
| if (AsmString.empty()) |
| throw TGError(TheDef->getLoc(), "instruction with empty asm string"); |
| |
| // Reject any matchables with a newline in them, they should be marked |
| // isCodeGenOnly if they are pseudo instructions. |
| if (AsmString.find('\n') != std::string::npos) |
| throw TGError(TheDef->getLoc(), |
| "multiline instruction is not valid for the asmparser, " |
| "mark it isCodeGenOnly"); |
| |
| // Remove comments from the asm string. We know that the asmstring only |
| // has one line. |
| if (!CommentDelimiter.empty() && |
| StringRef(AsmString).find(CommentDelimiter) != StringRef::npos) |
| throw TGError(TheDef->getLoc(), |
| "asmstring for instruction has comment character in it, " |
| "mark it isCodeGenOnly"); |
| |
| // Reject matchables with operand modifiers, these aren't something we can |
| /// handle, the target should be refactored to use operands instead of |
| /// modifiers. |
| // |
| // Also, check for instructions which reference the operand multiple times; |
| // this implies a constraint we would not honor. |
| std::set<std::string> OperandNames; |
| for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { |
| StringRef Tok = AsmOperands[i].Token; |
| if (Tok[0] == '$' && Tok.find(':') != StringRef::npos) |
| throw TGError(TheDef->getLoc(), |
| "matchable with operand modifier '" + Tok.str() + |
| "' not supported by asm matcher. Mark isCodeGenOnly!"); |
| |
| // Verify that any operand is only mentioned once. |
| // We reject aliases and ignore instructions for now. |
| if (Tok[0] == '$' && !OperandNames.insert(Tok).second) { |
| if (!Hack) |
| throw TGError(TheDef->getLoc(), |
| "ERROR: matchable with tied operand '" + Tok.str() + |
| "' can never be matched!"); |
| // FIXME: Should reject these. The ARM backend hits this with $lane in a |
| // bunch of instructions. It is unclear what the right answer is. |
| DEBUG({ |
| errs() << "warning: '" << TheDef->getName() << "': " |
| << "ignoring instruction with tied operand '" |
| << Tok.str() << "'\n"; |
| }); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| |
| /// getSingletonRegisterForAsmOperand - If the specified token is a singleton |
| /// register, return the register name, otherwise return a null StringRef. |
| Record *MatchableInfo:: |
| getSingletonRegisterForAsmOperand(unsigned i, const AsmMatcherInfo &Info) const{ |
| StringRef Tok = AsmOperands[i].Token; |
| if (!Tok.startswith(Info.RegisterPrefix)) |
| return 0; |
| |
| StringRef RegName = Tok.substr(Info.RegisterPrefix.size()); |
| if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) |
| return Reg->TheDef; |
| |
| // If there is no register prefix (i.e. "%" in "%eax"), then this may |
| // be some random non-register token, just ignore it. |
| if (Info.RegisterPrefix.empty()) |
| return 0; |
| |
| // Otherwise, we have something invalid prefixed with the register prefix, |
| // such as %foo. |
| std::string Err = "unable to find register for '" + RegName.str() + |
| "' (which matches register prefix)"; |
| throw TGError(TheDef->getLoc(), Err); |
| } |
| |
| |
| static std::string getEnumNameForToken(StringRef Str) { |
| std::string Res; |
| |
| for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { |
| switch (*it) { |
| case '*': Res += "_STAR_"; break; |
| case '%': Res += "_PCT_"; break; |
| case ':': Res += "_COLON_"; break; |
| case '!': Res += "_EXCLAIM_"; break; |
| default: |
| if (isalnum(*it)) |
| Res += *it; |
| else |
| Res += "_" + utostr((unsigned) *it) + "_"; |
| } |
| } |
| |
| return Res; |
| } |
| |
| ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { |
| ClassInfo *&Entry = TokenClasses[Token]; |
| |
| if (!Entry) { |
| Entry = new ClassInfo(); |
| Entry->Kind = ClassInfo::Token; |
| Entry->ClassName = "Token"; |
| Entry->Name = "MCK_" + getEnumNameForToken(Token); |
| Entry->ValueName = Token; |
| Entry->PredicateMethod = "<invalid>"; |
| Entry->RenderMethod = "<invalid>"; |
| Classes.push_back(Entry); |
| } |
| |
| return Entry; |
| } |
| |
| ClassInfo * |
| AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI) { |
| if (OI.Rec->isSubClassOf("RegisterClass")) { |
| if (ClassInfo *CI = RegisterClassClasses[OI.Rec]) |
| return CI; |
| throw TGError(OI.Rec->getLoc(), "register class has no class info!"); |
| } |
| |
| assert(OI.Rec->isSubClassOf("Operand") && "Unexpected operand!"); |
| Record *MatchClass = OI.Rec->getValueAsDef("ParserMatchClass"); |
| if (ClassInfo *CI = AsmOperandClasses[MatchClass]) |
| return CI; |
| |
| throw TGError(OI.Rec->getLoc(), "operand has no match class!"); |
| } |
| |
| void AsmMatcherInfo:: |
| BuildRegisterClasses(SmallPtrSet<Record*, 16> &SingletonRegisters) { |
| const std::vector<CodeGenRegister> &Registers = Target.getRegisters(); |
| const std::vector<CodeGenRegisterClass> &RegClassList = |
| Target.getRegisterClasses(); |
| |
| // The register sets used for matching. |
| std::set< std::set<Record*> > RegisterSets; |
| |
| // Gather the defined sets. |
| for (std::vector<CodeGenRegisterClass>::const_iterator it = |
| RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) |
| RegisterSets.insert(std::set<Record*>(it->Elements.begin(), |
| it->Elements.end())); |
| |
| // Add any required singleton sets. |
| for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(), |
| ie = SingletonRegisters.end(); it != ie; ++it) { |
| Record *Rec = *it; |
| RegisterSets.insert(std::set<Record*>(&Rec, &Rec + 1)); |
| } |
| |
| // Introduce derived sets where necessary (when a register does not determine |
| // a unique register set class), and build the mapping of registers to the set |
| // they should classify to. |
| std::map<Record*, std::set<Record*> > RegisterMap; |
| for (std::vector<CodeGenRegister>::const_iterator it = Registers.begin(), |
| ie = Registers.end(); it != ie; ++it) { |
| const CodeGenRegister &CGR = *it; |
| // Compute the intersection of all sets containing this register. |
| std::set<Record*> ContainingSet; |
| |
| for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(), |
| ie = RegisterSets.end(); it != ie; ++it) { |
| if (!it->count(CGR.TheDef)) |
| continue; |
| |
| if (ContainingSet.empty()) { |
| ContainingSet = *it; |
| continue; |
| } |
| |
| std::set<Record*> Tmp; |
| std::swap(Tmp, ContainingSet); |
| std::insert_iterator< std::set<Record*> > II(ContainingSet, |
| ContainingSet.begin()); |
| std::set_intersection(Tmp.begin(), Tmp.end(), it->begin(), it->end(), II); |
| } |
| |
| if (!ContainingSet.empty()) { |
| RegisterSets.insert(ContainingSet); |
| RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); |
| } |
| } |
| |
| // Construct the register classes. |
| std::map<std::set<Record*>, ClassInfo*> RegisterSetClasses; |
| unsigned Index = 0; |
| for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(), |
| ie = RegisterSets.end(); it != ie; ++it, ++Index) { |
| ClassInfo *CI = new ClassInfo(); |
| CI->Kind = ClassInfo::RegisterClass0 + Index; |
| CI->ClassName = "Reg" + utostr(Index); |
| CI->Name = "MCK_Reg" + utostr(Index); |
| CI->ValueName = ""; |
| CI->PredicateMethod = ""; // unused |
| CI->RenderMethod = "addRegOperands"; |
| CI->Registers = *it; |
| Classes.push_back(CI); |
| RegisterSetClasses.insert(std::make_pair(*it, CI)); |
| } |
| |
| // Find the superclasses; we could compute only the subgroup lattice edges, |
| // but there isn't really a point. |
| for (std::set< std::set<Record*> >::iterator it = RegisterSets.begin(), |
| ie = RegisterSets.end(); it != ie; ++it) { |
| ClassInfo *CI = RegisterSetClasses[*it]; |
| for (std::set< std::set<Record*> >::iterator it2 = RegisterSets.begin(), |
| ie2 = RegisterSets.end(); it2 != ie2; ++it2) |
| if (*it != *it2 && |
| std::includes(it2->begin(), it2->end(), it->begin(), it->end())) |
| CI->SuperClasses.push_back(RegisterSetClasses[*it2]); |
| } |
| |
| // Name the register classes which correspond to a user defined RegisterClass. |
| for (std::vector<CodeGenRegisterClass>::const_iterator |
| it = RegClassList.begin(), ie = RegClassList.end(); it != ie; ++it) { |
| ClassInfo *CI = RegisterSetClasses[std::set<Record*>(it->Elements.begin(), |
| it->Elements.end())]; |
| if (CI->ValueName.empty()) { |
| CI->ClassName = it->getName(); |
| CI->Name = "MCK_" + it->getName(); |
| CI->ValueName = it->getName(); |
| } else |
| CI->ValueName = CI->ValueName + "," + it->getName(); |
| |
| RegisterClassClasses.insert(std::make_pair(it->TheDef, CI)); |
| } |
| |
| // Populate the map for individual registers. |
| for (std::map<Record*, std::set<Record*> >::iterator it = RegisterMap.begin(), |
| ie = RegisterMap.end(); it != ie; ++it) |
| RegisterClasses[it->first] = RegisterSetClasses[it->second]; |
| |
| // Name the register classes which correspond to singleton registers. |
| for (SmallPtrSet<Record*, 16>::iterator it = SingletonRegisters.begin(), |
| ie = SingletonRegisters.end(); it != ie; ++it) { |
| Record *Rec = *it; |
| ClassInfo *CI = RegisterClasses[Rec]; |
| assert(CI && "Missing singleton register class info!"); |
| |
| if (CI->ValueName.empty()) { |
| CI->ClassName = Rec->getName(); |
| CI->Name = "MCK_" + Rec->getName(); |
| CI->ValueName = Rec->getName(); |
| } else |
| CI->ValueName = CI->ValueName + "," + Rec->getName(); |
| } |
| } |
| |
| void AsmMatcherInfo::BuildOperandClasses() { |
| std::vector<Record*> AsmOperands = |
| Records.getAllDerivedDefinitions("AsmOperandClass"); |
| |
| // Pre-populate AsmOperandClasses map. |
| for (std::vector<Record*>::iterator it = AsmOperands.begin(), |
| ie = AsmOperands.end(); it != ie; ++it) |
| AsmOperandClasses[*it] = new ClassInfo(); |
| |
| unsigned Index = 0; |
| for (std::vector<Record*>::iterator it = AsmOperands.begin(), |
| ie = AsmOperands.end(); it != ie; ++it, ++Index) { |
| ClassInfo *CI = AsmOperandClasses[*it]; |
| CI->Kind = ClassInfo::UserClass0 + Index; |
| |
| ListInit *Supers = (*it)->getValueAsListInit("SuperClasses"); |
| for (unsigned i = 0, e = Supers->getSize(); i != e; ++i) { |
| DefInit *DI = dynamic_cast<DefInit*>(Supers->getElement(i)); |
| if (!DI) { |
| PrintError((*it)->getLoc(), "Invalid super class reference!"); |
| continue; |
| } |
| |
| ClassInfo *SC = AsmOperandClasses[DI->getDef()]; |
| if (!SC) |
| PrintError((*it)->getLoc(), "Invalid super class reference!"); |
| else |
| CI->SuperClasses.push_back(SC); |
| } |
| CI->ClassName = (*it)->getValueAsString("Name"); |
| CI->Name = "MCK_" + CI->ClassName; |
| CI->ValueName = (*it)->getName(); |
| |
| // Get or construct the predicate method name. |
| Init *PMName = (*it)->getValueInit("PredicateMethod"); |
| if (StringInit *SI = dynamic_cast<StringInit*>(PMName)) { |
| CI->PredicateMethod = SI->getValue(); |
| } else { |
| assert(dynamic_cast<UnsetInit*>(PMName) && |
| "Unexpected PredicateMethod field!"); |
| CI->PredicateMethod = "is" + CI->ClassName; |
| } |
| |
| // Get or construct the render method name. |
| Init *RMName = (*it)->getValueInit("RenderMethod"); |
| if (StringInit *SI = dynamic_cast<StringInit*>(RMName)) { |
| CI->RenderMethod = SI->getValue(); |
| } else { |
| assert(dynamic_cast<UnsetInit*>(RMName) && |
| "Unexpected RenderMethod field!"); |
| CI->RenderMethod = "add" + CI->ClassName + "Operands"; |
| } |
| |
| AsmOperandClasses[*it] = CI; |
| Classes.push_back(CI); |
| } |
| } |
| |
| AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, |
| CodeGenTarget &target, |
| RecordKeeper &records) |
| : Records(records), AsmParser(asmParser), Target(target), |
| RegisterPrefix(AsmParser->getValueAsString("RegisterPrefix")) { |
| } |
| |
| |
| void AsmMatcherInfo::BuildInfo() { |
| // Build information about all of the AssemblerPredicates. |
| std::vector<Record*> AllPredicates = |
| Records.getAllDerivedDefinitions("Predicate"); |
| for (unsigned i = 0, e = AllPredicates.size(); i != e; ++i) { |
| Record *Pred = AllPredicates[i]; |
| // Ignore predicates that are not intended for the assembler. |
| if (!Pred->getValueAsBit("AssemblerMatcherPredicate")) |
| continue; |
| |
| if (Pred->getName().empty()) |
| throw TGError(Pred->getLoc(), "Predicate has no name!"); |
| |
| unsigned FeatureNo = SubtargetFeatures.size(); |
| SubtargetFeatures[Pred] = new SubtargetFeatureInfo(Pred, FeatureNo); |
| assert(FeatureNo < 32 && "Too many subtarget features!"); |
| } |
| |
| StringRef CommentDelimiter = AsmParser->getValueAsString("CommentDelimiter"); |
| |
| // Parse the instructions; we need to do this first so that we can gather the |
| // singleton register classes. |
| SmallPtrSet<Record*, 16> SingletonRegisters; |
| for (CodeGenTarget::inst_iterator I = Target.inst_begin(), |
| E = Target.inst_end(); I != E; ++I) { |
| const CodeGenInstruction &CGI = **I; |
| |
| // If the tblgen -match-prefix option is specified (for tblgen hackers), |
| // filter the set of instructions we consider. |
| if (!StringRef(CGI.TheDef->getName()).startswith(MatchPrefix)) |
| continue; |
| |
| // Ignore "codegen only" instructions. |
| if (CGI.TheDef->getValueAsBit("isCodeGenOnly")) |
| continue; |
| |
| // Validate the operand list to ensure we can handle this instruction. |
| for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { |
| const CGIOperandList::OperandInfo &OI = CGI.Operands[i]; |
| |
| // Validate tied operands. |
| if (OI.getTiedRegister() != -1) { |
| // If we have a tied operand that consists of multiple MCOperands, reject |
| // it. We reject aliases and ignore instructions for now. |
| if (OI.MINumOperands != 1) { |
| // FIXME: Should reject these. The ARM backend hits this with $lane |
| // in a bunch of instructions. It is unclear what the right answer is. |
| DEBUG({ |
| errs() << "warning: '" << CGI.TheDef->getName() << "': " |
| << "ignoring instruction with multi-operand tied operand '" |
| << OI.Name << "'\n"; |
| }); |
| continue; |
| } |
| } |
| } |
| |
| OwningPtr<MatchableInfo> II(new MatchableInfo(CGI)); |
| |
| II->Initialize(*this, SingletonRegisters); |
| |
| // Ignore instructions which shouldn't be matched and diagnose invalid |
| // instruction definitions with an error. |
| if (!II->Validate(CommentDelimiter, true)) |
| continue; |
| |
| // Ignore "Int_*" and "*_Int" instructions, which are internal aliases. |
| // |
| // FIXME: This is a total hack. |
| if (StringRef(II->TheDef->getName()).startswith("Int_") || |
| StringRef(II->TheDef->getName()).endswith("_Int")) |
| continue; |
| |
| Matchables.push_back(II.take()); |
| } |
| |
| // Parse all of the InstAlias definitions and stick them in the list of |
| // matchables. |
| std::vector<Record*> AllInstAliases = |
| Records.getAllDerivedDefinitions("InstAlias"); |
| for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) { |
| CodeGenInstAlias *Alias = new CodeGenInstAlias(AllInstAliases[i], Target); |
| |
| OwningPtr<MatchableInfo> II(new MatchableInfo(Alias)); |
| |
| II->Initialize(*this, SingletonRegisters); |
| |
| // Validate the alias definitions. |
| II->Validate(CommentDelimiter, false); |
| |
| Matchables.push_back(II.take()); |
| } |
| |
| // Build info for the register classes. |
| BuildRegisterClasses(SingletonRegisters); |
| |
| // Build info for the user defined assembly operand classes. |
| BuildOperandClasses(); |
| |
| // Build the information about matchables, now that we have fully formed |
| // classes. |
| for (std::vector<MatchableInfo*>::iterator it = Matchables.begin(), |
| ie = Matchables.end(); it != ie; ++it) { |
| MatchableInfo *II = *it; |
| |
| // Parse the tokens after the mnemonic. |
| for (unsigned i = 0, e = II->AsmOperands.size(); i != e; ++i) { |
| MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; |
| StringRef Token = Op.Token; |
| |
| // Check for singleton registers. |
| if (Record *RegRecord = II->getSingletonRegisterForAsmOperand(i, *this)) { |
| Op.Class = RegisterClasses[RegRecord]; |
| assert(Op.Class && Op.Class->Registers.size() == 1 && |
| "Unexpected class for singleton register"); |
| continue; |
| } |
| |
| // Check for simple tokens. |
| if (Token[0] != '$') { |
| Op.Class = getTokenClass(Token); |
| continue; |
| } |
| |
| if (Token.size() > 1 && isdigit(Token[1])) { |
| Op.Class = getTokenClass(Token); |
| continue; |
| } |
| |
| // Otherwise this is an operand reference. |
| StringRef OperandName; |
| if (Token[1] == '{') |
| OperandName = Token.substr(2, Token.size() - 3); |
| else |
| OperandName = Token.substr(1); |
| |
| if (II->DefRec.is<const CodeGenInstruction*>()) |
| BuildInstructionOperandReference(II, OperandName, Op); |
| else |
| BuildAliasOperandReference(II, OperandName, Op); |
| } |
| |
| if (II->DefRec.is<const CodeGenInstruction*>()) |
| II->BuildInstructionResultOperands(); |
| else |
| II->BuildAliasResultOperands(); |
| } |
| |
| // Reorder classes so that classes preceed super classes. |
| std::sort(Classes.begin(), Classes.end(), less_ptr<ClassInfo>()); |
| } |
| |
| /// BuildInstructionOperandReference - The specified operand is a reference to a |
| /// named operand such as $src. Resolve the Class and OperandInfo pointers. |
| void AsmMatcherInfo:: |
| BuildInstructionOperandReference(MatchableInfo *II, |
| StringRef OperandName, |
| MatchableInfo::AsmOperand &Op) { |
| const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); |
| const CGIOperandList &Operands = CGI.Operands; |
| |
| // Map this token to an operand. |
| unsigned Idx; |
| if (!Operands.hasOperandNamed(OperandName, Idx)) |
| throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" + |
| OperandName.str() + "'"); |
| |
| // Set up the operand class. |
| Op.Class = getOperandClass(Operands[Idx]); |
| |
| // If the named operand is tied, canonicalize it to the untied operand. |
| // For example, something like: |
| // (outs GPR:$dst), (ins GPR:$src) |
| // with an asmstring of |
| // "inc $src" |
| // we want to canonicalize to: |
| // "inc $dst" |
| // so that we know how to provide the $dst operand when filling in the result. |
| int OITied = Operands[Idx].getTiedRegister(); |
| if (OITied != -1) { |
| // The tied operand index is an MIOperand index, find the operand that |
| // contains it. |
| for (unsigned i = 0, e = Operands.size(); i != e; ++i) { |
| if (Operands[i].MIOperandNo == unsigned(OITied)) { |
| OperandName = Operands[i].Name; |
| break; |
| } |
| } |
| } |
| |
| Op.SrcOpName = OperandName; |
| } |
| |
| /// BuildAliasOperandReference - When parsing an operand reference out of the |
| /// matching string (e.g. "movsx $src, $dst"), determine what the class of the |
| /// operand reference is by looking it up in the result pattern definition. |
| void AsmMatcherInfo::BuildAliasOperandReference(MatchableInfo *II, |
| StringRef OperandName, |
| MatchableInfo::AsmOperand &Op) { |
| const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); |
| |
| // Set up the operand class. |
| for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) |
| if (CGA.ResultOperands[i].isRecord() && |
| CGA.ResultOperands[i].getName() == OperandName) { |
| // It's safe to go with the first one we find, because CodeGenInstAlias |
| // validates that all operands with the same name have the same record. |
| unsigned ResultIdx =CGA.getResultInstOperandIndexForResultOperandIndex(i); |
| Op.Class = getOperandClass(CGA.ResultInst->Operands[ResultIdx]); |
| Op.SrcOpName = OperandName; |
| return; |
| } |
| |
| throw TGError(II->TheDef->getLoc(), "error: unable to find operand: '" + |
| OperandName.str() + "'"); |
| } |
| |
| void MatchableInfo::BuildInstructionResultOperands() { |
| const CodeGenInstruction *ResultInst = getResultInst(); |
| |
| // Loop over all operands of the result instruction, determining how to |
| // populate them. |
| for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { |
| const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i]; |
| |
| // If this is a tied operand, just copy from the previously handled operand. |
| int TiedOp = OpInfo.getTiedRegister(); |
| if (TiedOp != -1) { |
| ResOperands.push_back(ResOperand::getTiedOp(TiedOp, &OpInfo)); |
| continue; |
| } |
| |
| // Find out what operand from the asmparser that this MCInst operand comes |
| // from. |
| int SrcOperand = FindAsmOperandNamed(OpInfo.Name); |
| |
| if (!OpInfo.Name.empty() && SrcOperand != -1) { |
| ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, &OpInfo)); |
| continue; |
| } |
| |
| throw TGError(TheDef->getLoc(), "Instruction '" + |
| TheDef->getName() + "' has operand '" + OpInfo.Name + |
| "' that doesn't appear in asm string!"); |
| } |
| } |
| |
| void MatchableInfo::BuildAliasResultOperands() { |
| const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); |
| const CodeGenInstruction *ResultInst = getResultInst(); |
| |
| // Loop over all operands of the result instruction, determining how to |
| // populate them. |
| unsigned AliasOpNo = 0; |
| for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { |
| const CGIOperandList::OperandInfo &OpInfo = ResultInst->Operands[i]; |
| |
| // If this is a tied operand, just copy from the previously handled operand. |
| int TiedOp = OpInfo.getTiedRegister(); |
| if (TiedOp != -1) { |
| ResOperands.push_back(ResOperand::getTiedOp(TiedOp, &OpInfo)); |
| continue; |
| } |
| |
| // Find out what operand from the asmparser that this MCInst operand comes |
| // from. |
| switch (CGA.ResultOperands[AliasOpNo].Kind) { |
| case CodeGenInstAlias::ResultOperand::K_Record: { |
| StringRef Name = CGA.ResultOperands[AliasOpNo++].getName(); |
| int SrcOperand = FindAsmOperandNamed(Name); |
| if (SrcOperand != -1) { |
| ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, &OpInfo)); |
| continue; |
| } |
| |
| throw TGError(TheDef->getLoc(), "Instruction '" + |
| TheDef->getName() + "' has operand '" + OpInfo.Name + |
| "' that doesn't appear in asm string!"); |
| } |
| case CodeGenInstAlias::ResultOperand::K_Imm: { |
| int64_t ImmVal = CGA.ResultOperands[AliasOpNo++].getImm(); |
| ResOperands.push_back(ResOperand::getImmOp(ImmVal, &OpInfo)); |
| continue; |
| } |
| |
| case CodeGenInstAlias::ResultOperand::K_Reg: { |
| Record *Reg = CGA.ResultOperands[AliasOpNo++].getRegister(); |
| ResOperands.push_back(ResOperand::getRegOp(Reg, &OpInfo)); |
| continue; |
| } |
| } |
| } |
| } |
| |
| static void EmitConvertToMCInst(CodeGenTarget &Target, |
| std::vector<MatchableInfo*> &Infos, |
| raw_ostream &OS) { |
| // Write the convert function to a separate stream, so we can drop it after |
| // the enum. |
| std::string ConvertFnBody; |
| raw_string_ostream CvtOS(ConvertFnBody); |
| |
| // Function we have already generated. |
| std::set<std::string> GeneratedFns; |
| |
| // Start the unified conversion function. |
| CvtOS << "static void ConvertToMCInst(ConversionKind Kind, MCInst &Inst, " |
| << "unsigned Opcode,\n" |
| << " const SmallVectorImpl<MCParsedAsmOperand*" |
| << "> &Operands) {\n"; |
| CvtOS << " Inst.setOpcode(Opcode);\n"; |
| CvtOS << " switch (Kind) {\n"; |
| CvtOS << " default:\n"; |
| |
| // Start the enum, which we will generate inline. |
| |
| OS << "// Unified function for converting operands to MCInst instances.\n\n"; |
| OS << "enum ConversionKind {\n"; |
| |
| // TargetOperandClass - This is the target's operand class, like X86Operand. |
| std::string TargetOperandClass = Target.getName() + "Operand"; |
| |
| for (std::vector<MatchableInfo*>::const_iterator it = Infos.begin(), |
| ie = Infos.end(); it != ie; ++it) { |
| MatchableInfo &II = **it; |
| |
| // Build the conversion function signature. |
| std::string Signature = "Convert"; |
| std::string CaseBody; |
| raw_string_ostream CaseOS(CaseBody); |
| |
| // Compute the convert enum and the case body. |
| for (unsigned i = 0, e = II.ResOperands.size(); i != e; ++i) { |
| const MatchableInfo::ResOperand &OpInfo = II.ResOperands[i]; |
| |
| // Generate code to populate each result operand. |
| switch (OpInfo.Kind) { |
| case MatchableInfo::ResOperand::RenderAsmOperand: { |
| // This comes from something we parsed. |
| MatchableInfo::AsmOperand &Op = II.AsmOperands[OpInfo.AsmOperandNum]; |
| |
| // Registers are always converted the same, don't duplicate the |
| // conversion function based on them. |
| Signature += "__"; |
| if (Op.Class->isRegisterClass()) |
| Signature += "Reg"; |
| else |
| Signature += Op.Class->ClassName; |
| Signature += utostr(OpInfo.OpInfo->MINumOperands); |
| Signature += "_" + itostr(OpInfo.AsmOperandNum); |
| |
| CaseOS << " ((" << TargetOperandClass << "*)Operands[" |
| << (OpInfo.AsmOperandNum+1) << "])->" << Op.Class->RenderMethod |
| << "(Inst, " << OpInfo.OpInfo->MINumOperands << ");\n"; |
| break; |
| } |
| |
| case MatchableInfo::ResOperand::TiedOperand: { |
| // If this operand is tied to a previous one, just copy the MCInst |
| // operand from the earlier one.We can only tie single MCOperand values. |
| //assert(OpInfo.OpInfo->MINumOperands == 1 && "Not a singular MCOperand"); |
| unsigned TiedOp = OpInfo.TiedOperandNum; |
| assert(i > TiedOp && "Tied operand preceeds its target!"); |
| CaseOS << " Inst.addOperand(Inst.getOperand(" << TiedOp << "));\n"; |
| Signature += "__Tie" + utostr(TiedOp); |
| break; |
| } |
| case MatchableInfo::ResOperand::ImmOperand: { |
| int64_t Val = OpInfo.ImmVal; |
| CaseOS << " Inst.addOperand(MCOperand::CreateImm(" << Val << "));\n"; |
| Signature += "__imm" + itostr(Val); |
| break; |
| } |
| case MatchableInfo::ResOperand::RegOperand: { |
| if (OpInfo.Register == 0) { |
| CaseOS << " Inst.addOperand(MCOperand::CreateReg(0));\n"; |
| Signature += "__reg0"; |
| } else { |
| std::string N = getQualifiedName(OpInfo.Register); |
| CaseOS << " Inst.addOperand(MCOperand::CreateReg(" << N << "));\n"; |
| Signature += "__reg" + OpInfo.Register->getName(); |
| } |
| } |
| } |
| } |
| |
| II.ConversionFnKind = Signature; |
| |
| // Check if we have already generated this signature. |
| if (!GeneratedFns.insert(Signature).second) |
| continue; |
| |
| // If not, emit it now. Add to the enum list. |
| OS << " " << Signature << ",\n"; |
| |
| CvtOS << " case " << Signature << ":\n"; |
| CvtOS << CaseOS.str(); |
| CvtOS << " return;\n"; |
| } |
| |
| // Finish the convert function. |
| |
| CvtOS << " }\n"; |
| CvtOS << "}\n\n"; |
| |
| // Finish the enum, and drop the convert function after it. |
| |
| OS << " NumConversionVariants\n"; |
| OS << "};\n\n"; |
| |
| OS << CvtOS.str(); |
| } |
| |
| /// EmitMatchClassEnumeration - Emit the enumeration for match class kinds. |
| static void EmitMatchClassEnumeration(CodeGenTarget &Target, |
| std::vector<ClassInfo*> &Infos, |
| raw_ostream &OS) { |
| OS << "namespace {\n\n"; |
| |
| OS << "/// MatchClassKind - The kinds of classes which participate in\n" |
| << "/// instruction matching.\n"; |
| OS << "enum MatchClassKind {\n"; |
| OS << " InvalidMatchClass = 0,\n"; |
| for (std::vector<ClassInfo*>::iterator it = Infos.begin(), |
| ie = Infos.end(); it != ie; ++it) { |
| ClassInfo &CI = **it; |
| OS << " " << CI.Name << ", // "; |
| if (CI.Kind == ClassInfo::Token) { |
| OS << "'" << CI.ValueName << "'\n"; |
| } else if (CI.isRegisterClass()) { |
| if (!CI.ValueName.empty()) |
| OS << "register class '" << CI.ValueName << "'\n"; |
| else |
| OS << "derived register class\n"; |
| } else { |
| OS << "user defined class '" << CI.ValueName << "'\n"; |
| } |
| } |
| OS << " NumMatchClassKinds\n"; |
| OS << "};\n\n"; |
| |
| OS << "}\n\n"; |
| } |
| |
| /// EmitClassifyOperand - Emit the function to classify an operand. |
| static void EmitClassifyOperand(AsmMatcherInfo &Info, |
| raw_ostream &OS) { |
| OS << "static MatchClassKind ClassifyOperand(MCParsedAsmOperand *GOp) {\n" |
| << " " << Info.Target.getName() << "Operand &Operand = *(" |
| << Info.Target.getName() << "Operand*)GOp;\n"; |
| |
| // Classify tokens. |
| OS << " if (Operand.isToken())\n"; |
| OS << " return MatchTokenString(Operand.getToken());\n\n"; |
| |
| // Classify registers. |
| // |
| // FIXME: Don't hardcode isReg, getReg. |
| OS << " if (Operand.isReg()) {\n"; |
| OS << " switch (Operand.getReg()) {\n"; |
| OS << " default: return InvalidMatchClass;\n"; |
| for (std::map<Record*, ClassInfo*>::iterator |
| it = Info.RegisterClasses.begin(), ie = Info.RegisterClasses.end(); |
| it != ie; ++it) |
| OS << " case " << Info.Target.getName() << "::" |
| << it->first->getName() << ": return " << it->second->Name << ";\n"; |
| OS << " }\n"; |
| OS << " }\n\n"; |
| |
| // Classify user defined operands. |
| for (std::vector<ClassInfo*>::iterator it = Info.Classes.begin(), |
| ie = Info.Classes.end(); it != ie; ++it) { |
| ClassInfo &CI = **it; |
| |
| if (!CI.isUserClass()) |
| continue; |
| |
| OS << " // '" << CI.ClassName << "' class"; |
| if (!CI.SuperClasses.empty()) { |
| OS << ", subclass of "; |
| for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) { |
| if (i) OS << ", "; |
| OS << "'" << CI.SuperClasses[i]->ClassName << "'"; |
| assert(CI < *CI.SuperClasses[i] && "Invalid class relation!"); |
| } |
| } |
| OS << "\n"; |
| |
| OS << " if (Operand." << CI.PredicateMethod << "()) {\n"; |
| |
| // Validate subclass relationships. |
| if (!CI.SuperClasses.empty()) { |
| for (unsigned i = 0, e = CI.SuperClasses.size(); i != e; ++i) |
| OS << " assert(Operand." << CI.SuperClasses[i]->PredicateMethod |
| << "() && \"Invalid class relationship!\");\n"; |
| } |
| |
| OS << " return " << CI.Name << ";\n"; |
| OS << " }\n\n"; |
| } |
| OS << " return InvalidMatchClass;\n"; |
| OS << "}\n\n"; |
| } |
| |
| /// EmitIsSubclass - Emit the subclass predicate function. |
| static void EmitIsSubclass(CodeGenTarget &Target, |
| std::vector<ClassInfo*> &Infos, |
| raw_ostream &OS) { |
| OS << "/// IsSubclass - Compute whether \\arg A is a subclass of \\arg B.\n"; |
| OS << "static bool IsSubclass(MatchClassKind A, MatchClassKind B) {\n"; |
| OS << " if (A == B)\n"; |
| OS << " return true;\n\n"; |
| |
| OS << " switch (A) {\n"; |
| OS << " default:\n"; |
| OS << " return false;\n"; |
| for (std::vector<ClassInfo*>::iterator it = Infos.begin(), |
| ie = Infos.end(); it != ie; ++it) { |
| ClassInfo &A = **it; |
| |
| if (A.Kind != ClassInfo::Token) { |
| std::vector<StringRef> SuperClasses; |
| for (std::vector<ClassInfo*>::iterator it = Infos.begin(), |
| ie = Infos.end(); it != ie; ++it) { |
| ClassInfo &B = **it; |
| |
| if (&A != &B && A.isSubsetOf(B)) |
| SuperClasses.push_back(B.Name); |
| } |
| |
| if (SuperClasses.empty()) |
| continue; |
| |
| OS << "\n case " << A.Name << ":\n"; |
| |
| if (SuperClasses.size() == 1) { |
| OS << " return B == " << SuperClasses.back() << ";\n"; |
| continue; |
| } |
| |
| OS << " switch (B) {\n"; |
| OS << " default: return false;\n"; |
| for (unsigned i = 0, e = SuperClasses.size(); i != e; ++i) |
| OS << " case " << SuperClasses[i] << ": return true;\n"; |
| OS << " }\n"; |
| } |
| } |
| OS << " }\n"; |
| OS << "}\n\n"; |
| } |
| |
| |
| |
| /// EmitMatchTokenString - Emit the function to match a token string to the |
| /// appropriate match class value. |
| static void EmitMatchTokenString(CodeGenTarget &Target, |
| std::vector<ClassInfo*> &Infos, |
| raw_ostream &OS) { |
| // Construct the match list. |
| std::vector<StringMatcher::StringPair> Matches; |
| for (std::vector<ClassInfo*>::iterator it = Infos.begin(), |
| ie = Infos.end(); it != ie; ++it) { |
| ClassInfo &CI = **it; |
| |
| if (CI.Kind == ClassInfo::Token) |
| Matches.push_back(StringMatcher::StringPair(CI.ValueName, |
| "return " + CI.Name + ";")); |
| } |
| |
| OS << "static MatchClassKind MatchTokenString(StringRef Name) {\n"; |
| |
| StringMatcher("Name", Matches, OS).Emit(); |
| |
| OS << " return InvalidMatchClass;\n"; |
| OS << "}\n\n"; |
| } |
| |
| /// EmitMatchRegisterName - Emit the function to match a string to the target |
| /// specific register enum. |
| static void EmitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, |
| raw_ostream &OS) { |
| // Construct the match list. |
| std::vector<StringMatcher::StringPair> Matches; |
| for (unsigned i = 0, e = Target.getRegisters().size(); i != e; ++i) { |
| const CodeGenRegister &Reg = Target.getRegisters()[i]; |
| if (Reg.TheDef->getValueAsString("AsmName").empty()) |
| continue; |
| |
| Matches.push_back(StringMatcher::StringPair( |
| Reg.TheDef->getValueAsString("AsmName"), |
| "return " + utostr(i + 1) + ";")); |
| } |
| |
| OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; |
| |
| StringMatcher("Name", Matches, OS).Emit(); |
| |
| OS << " return 0;\n"; |
| OS << "}\n\n"; |
| } |
| |
| /// EmitSubtargetFeatureFlagEnumeration - Emit the subtarget feature flag |
| /// definitions. |
| static void EmitSubtargetFeatureFlagEnumeration(AsmMatcherInfo &Info, |
| raw_ostream &OS) { |
| OS << "// Flags for subtarget features that participate in " |
| << "instruction matching.\n"; |
| OS << "enum SubtargetFeatureFlag {\n"; |
| for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator |
| it = Info.SubtargetFeatures.begin(), |
| ie = Info.SubtargetFeatures.end(); it != ie; ++it) { |
| SubtargetFeatureInfo &SFI = *it->second; |
| OS << " " << SFI.getEnumName() << " = (1 << " << SFI.Index << "),\n"; |
| } |
| OS << " Feature_None = 0\n"; |
| OS << "};\n\n"; |
| } |
| |
| /// EmitComputeAvailableFeatures - Emit the function to compute the list of |
| /// available features given a subtarget. |
| static void EmitComputeAvailableFeatures(AsmMatcherInfo &Info, |
| raw_ostream &OS) { |
| std::string ClassName = |
| Info.AsmParser->getValueAsString("AsmParserClassName"); |
| |
| OS << "unsigned " << Info.Target.getName() << ClassName << "::\n" |
| << "ComputeAvailableFeatures(const " << Info.Target.getName() |
| << "Subtarget *Subtarget) const {\n"; |
| OS << " unsigned Features = 0;\n"; |
| for (std::map<Record*, SubtargetFeatureInfo*>::const_iterator |
| it = Info.SubtargetFeatures.begin(), |
| ie = Info.SubtargetFeatures.end(); it != ie; ++it) { |
| SubtargetFeatureInfo &SFI = *it->second; |
| OS << " if (" << SFI.TheDef->getValueAsString("CondString") |
| << ")\n"; |
| OS << " Features |= " << SFI.getEnumName() << ";\n"; |
| } |
| OS << " return Features;\n"; |
| OS << "}\n\n"; |
| } |
| |
| static std::string GetAliasRequiredFeatures(Record *R, |
| const AsmMatcherInfo &Info) { |
| std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); |
| std::string Result; |
| unsigned NumFeatures = 0; |
| for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { |
| SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); |
| |
| if (F == 0) |
| throw TGError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + |
| "' is not marked as an AssemblerPredicate!"); |
| |
| if (NumFeatures) |
| Result += '|'; |
| |
| Result += F->getEnumName(); |
| ++NumFeatures; |
| } |
| |
| if (NumFeatures > 1) |
| Result = '(' + Result + ')'; |
| return Result; |
| } |
| |
| /// EmitMnemonicAliases - If the target has any MnemonicAlias<> definitions, |
| /// emit a function for them and return true, otherwise return false. |
| static bool EmitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info) { |
| std::vector<Record*> Aliases = |
| Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); |
| if (Aliases.empty()) return false; |
| |
| OS << "static void ApplyMnemonicAliases(StringRef &Mnemonic, " |
| "unsigned Features) {\n"; |
| |
| // Keep track of all the aliases from a mnemonic. Use an std::map so that the |
| // iteration order of the map is stable. |
| std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; |
| |
| for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { |
| Record *R = Aliases[i]; |
| AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R); |
| } |
| |
| // Process each alias a "from" mnemonic at a time, building the code executed |
| // by the string remapper. |
| std::vector<StringMatcher::StringPair> Cases; |
| for (std::map<std::string, std::vector<Record*> >::iterator |
| I = AliasesFromMnemonic.begin(), E = AliasesFromMnemonic.end(); |
| I != E; ++I) { |
| const std::vector<Record*> &ToVec = I->second; |
| |
| // Loop through each alias and emit code that handles each case. If there |
| // are two instructions without predicates, emit an error. If there is one, |
| // emit it last. |
| std::string MatchCode; |
| int AliasWithNoPredicate = -1; |
| |
| for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { |
| Record *R = ToVec[i]; |
| std::string FeatureMask = GetAliasRequiredFeatures(R, Info); |
| |
| // If this unconditionally matches, remember it for later and diagnose |
| // duplicates. |
| if (FeatureMask.empty()) { |
| if (AliasWithNoPredicate != -1) { |
| // We can't have two aliases from the same mnemonic with no predicate. |
| PrintError(ToVec[AliasWithNoPredicate]->getLoc(), |
| "two MnemonicAliases with the same 'from' mnemonic!"); |
| throw TGError(R->getLoc(), "this is the other MnemonicAlias."); |
| } |
| |
| AliasWithNoPredicate = i; |
| continue; |
| } |
| |
| if (!MatchCode.empty()) |
| MatchCode += "else "; |
| MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n"; |
| MatchCode += " Mnemonic = \"" +R->getValueAsString("ToMnemonic")+"\";\n"; |
| } |
| |
| if (AliasWithNoPredicate != -1) { |
| Record *R = ToVec[AliasWithNoPredicate]; |
| if (!MatchCode.empty()) |
| MatchCode += "else\n "; |
| MatchCode += "Mnemonic = \"" + R->getValueAsString("ToMnemonic")+"\";\n"; |
| } |
| |
| MatchCode += "return;"; |
| |
| Cases.push_back(std::make_pair(I->first, MatchCode)); |
| } |
| |
| |
| StringMatcher("Mnemonic", Cases, OS).Emit(); |
| OS << "}\n"; |
| |
| return true; |
| } |
| |
| void AsmMatcherEmitter::run(raw_ostream &OS) { |
| CodeGenTarget Target(Records); |
| Record *AsmParser = Target.getAsmParser(); |
| std::string ClassName = AsmParser->getValueAsString("AsmParserClassName"); |
| |
| // Compute the information on the instructions to match. |
| AsmMatcherInfo Info(AsmParser, Target, Records); |
| Info.BuildInfo(); |
| |
| // Sort the instruction table using the partial order on classes. We use |
| // stable_sort to ensure that ambiguous instructions are still |
| // deterministically ordered. |
| std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(), |
| less_ptr<MatchableInfo>()); |
| |
| DEBUG_WITH_TYPE("instruction_info", { |
| for (std::vector<MatchableInfo*>::iterator |
| it = Info.Matchables.begin(), ie = Info.Matchables.end(); |
| it != ie; ++it) |
| (*it)->dump(); |
| }); |
| |
| // Check for ambiguous matchables. |
| DEBUG_WITH_TYPE("ambiguous_instrs", { |
| unsigned NumAmbiguous = 0; |
| for (unsigned i = 0, e = Info.Matchables.size(); i != e; ++i) { |
| for (unsigned j = i + 1; j != e; ++j) { |
| MatchableInfo &A = *Info.Matchables[i]; |
| MatchableInfo &B = *Info.Matchables[j]; |
| |
| if (A.CouldMatchAmiguouslyWith(B)) { |
| errs() << "warning: ambiguous matchables:\n"; |
| A.dump(); |
| errs() << "\nis incomparable with:\n"; |
| B.dump(); |
| errs() << "\n\n"; |
| ++NumAmbiguous; |
| } |
| } |
| } |
| if (NumAmbiguous) |
| errs() << "warning: " << NumAmbiguous |
| << " ambiguous matchables!\n"; |
| }); |
| |
| // Write the output. |
| |
| EmitSourceFileHeader("Assembly Matcher Source Fragment", OS); |
| |
| // Information for the class declaration. |
| OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; |
| OS << "#undef GET_ASSEMBLER_HEADER\n"; |
| OS << " // This should be included into the middle of the declaration of \n"; |
| OS << " // your subclasses implementation of TargetAsmParser.\n"; |
| OS << " unsigned ComputeAvailableFeatures(const " << |
| Target.getName() << "Subtarget *Subtarget) const;\n"; |
| OS << " enum MatchResultTy {\n"; |
| OS << " Match_Success, Match_MnemonicFail, Match_InvalidOperand,\n"; |
| OS << " Match_MissingFeature\n"; |
| OS << " };\n"; |
| OS << " MatchResultTy MatchInstructionImpl(\n"; |
| OS << " const SmallVectorImpl<MCParsedAsmOperand*> &Operands,\n"; |
| OS << " MCInst &Inst, unsigned &ErrorInfo);\n\n"; |
| OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; |
| |
| OS << "\n#ifdef GET_REGISTER_MATCHER\n"; |
| OS << "#undef GET_REGISTER_MATCHER\n\n"; |
| |
| // Emit the subtarget feature enumeration. |
| EmitSubtargetFeatureFlagEnumeration(Info, OS); |
| |
| // Emit the function to match a register name to number. |
| EmitMatchRegisterName(Target, AsmParser, OS); |
| |
| OS << "#endif // GET_REGISTER_MATCHER\n\n"; |
| |
| |
| OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; |
| OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; |
| |
| // Generate the function that remaps for mnemonic aliases. |
| bool HasMnemonicAliases = EmitMnemonicAliases(OS, Info); |
| |
| // Generate the unified function to convert operands into an MCInst. |
| EmitConvertToMCInst(Target, Info.Matchables, OS); |
| |
| // Emit the enumeration for classes which participate in matching. |
| EmitMatchClassEnumeration(Target, Info.Classes, OS); |
| |
| // Emit the routine to match token strings to their match class. |
| EmitMatchTokenString(Target, Info.Classes, OS); |
| |
| // Emit the routine to classify an operand. |
| EmitClassifyOperand(Info, OS); |
| |
| // Emit the subclass predicate routine. |
| EmitIsSubclass(Target, Info.Classes, OS); |
| |
| // Emit the available features compute function. |
| EmitComputeAvailableFeatures(Info, OS); |
| |
| |
| size_t MaxNumOperands = 0; |
| for (std::vector<MatchableInfo*>::const_iterator it = |
| Info.Matchables.begin(), ie = Info.Matchables.end(); |
| it != ie; ++it) |
| MaxNumOperands = std::max(MaxNumOperands, (*it)->AsmOperands.size()); |
| |
| |
| // Emit the static match table; unused classes get initalized to 0 which is |
| // guaranteed to be InvalidMatchClass. |
| // |
| // FIXME: We can reduce the size of this table very easily. First, we change |
| // it so that store the kinds in separate bit-fields for each index, which |
| // only needs to be the max width used for classes at that index (we also need |
| // to reject based on this during classification). If we then make sure to |
| // order the match kinds appropriately (putting mnemonics last), then we |
| // should only end up using a few bits for each class, especially the ones |
| // following the mnemonic. |
| OS << "namespace {\n"; |
| OS << " struct MatchEntry {\n"; |
| OS << " unsigned Opcode;\n"; |
| OS << " const char *Mnemonic;\n"; |
| OS << " ConversionKind ConvertFn;\n"; |
| OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n"; |
| OS << " unsigned RequiredFeatures;\n"; |
| OS << " };\n\n"; |
| |
| OS << "// Predicate for searching for an opcode.\n"; |
| OS << " struct LessOpcode {\n"; |
| OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; |
| OS << " return StringRef(LHS.Mnemonic) < RHS;\n"; |
| OS << " }\n"; |
| OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; |
| OS << " return LHS < StringRef(RHS.Mnemonic);\n"; |
| OS << " }\n"; |
| OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; |
| OS << " return StringRef(LHS.Mnemonic) < StringRef(RHS.Mnemonic);\n"; |
| OS << " }\n"; |
| OS << " };\n"; |
| |
| OS << "} // end anonymous namespace.\n\n"; |
| |
| OS << "static const MatchEntry MatchTable[" |
| << Info.Matchables.size() << "] = {\n"; |
| |
| for (std::vector<MatchableInfo*>::const_iterator it = |
| Info.Matchables.begin(), ie = Info.Matchables.end(); |
| it != ie; ++it) { |
| MatchableInfo &II = **it; |
| |
| |
| OS << " { " << Target.getName() << "::" |
| << II.getResultInst()->TheDef->getName() << ", \"" << II.Mnemonic << "\"" |
| << ", " << II.ConversionFnKind << ", { "; |
| for (unsigned i = 0, e = II.AsmOperands.size(); i != e; ++i) { |
| MatchableInfo::AsmOperand &Op = II.AsmOperands[i]; |
| |
| if (i) OS << ", "; |
| OS << Op.Class->Name; |
| } |
| OS << " }, "; |
| |
| // Write the required features mask. |
| if (!II.RequiredFeatures.empty()) { |
| for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) { |
| if (i) OS << "|"; |
| OS << II.RequiredFeatures[i]->getEnumName(); |
| } |
| } else |
| OS << "0"; |
| |
| OS << "},\n"; |
| } |
| |
| OS << "};\n\n"; |
| |
| // Finally, build the match function. |
| OS << Target.getName() << ClassName << "::MatchResultTy " |
| << Target.getName() << ClassName << "::\n" |
| << "MatchInstructionImpl(const SmallVectorImpl<MCParsedAsmOperand*>" |
| << " &Operands,\n"; |
| OS << " MCInst &Inst, unsigned &ErrorInfo) {\n"; |
| |
| // Emit code to get the available features. |
| OS << " // Get the current feature set.\n"; |
| OS << " unsigned AvailableFeatures = getAvailableFeatures();\n\n"; |
| |
| OS << " // Get the instruction mnemonic, which is the first token.\n"; |
| OS << " StringRef Mnemonic = ((" << Target.getName() |
| << "Operand*)Operands[0])->getToken();\n\n"; |
| |
| if (HasMnemonicAliases) { |
| OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; |
| OS << " ApplyMnemonicAliases(Mnemonic, AvailableFeatures);\n\n"; |
| } |
| |
| // Emit code to compute the class list for this operand vector. |
| OS << " // Eliminate obvious mismatches.\n"; |
| OS << " if (Operands.size() > " << (MaxNumOperands+1) << ") {\n"; |
| OS << " ErrorInfo = " << (MaxNumOperands+1) << ";\n"; |
| OS << " return Match_InvalidOperand;\n"; |
| OS << " }\n\n"; |
| |
| OS << " // Compute the class list for this operand vector.\n"; |
| OS << " MatchClassKind Classes[" << MaxNumOperands << "];\n"; |
| OS << " for (unsigned i = 1, e = Operands.size(); i != e; ++i) {\n"; |
| OS << " Classes[i-1] = ClassifyOperand(Operands[i]);\n\n"; |
| |
| OS << " // Check for invalid operands before matching.\n"; |
| OS << " if (Classes[i-1] == InvalidMatchClass) {\n"; |
| OS << " ErrorInfo = i;\n"; |
| OS << " return Match_InvalidOperand;\n"; |
| OS << " }\n"; |
| OS << " }\n\n"; |
| |
| OS << " // Mark unused classes.\n"; |
| OS << " for (unsigned i = Operands.size()-1, e = " << MaxNumOperands << "; " |
| << "i != e; ++i)\n"; |
| OS << " Classes[i] = InvalidMatchClass;\n\n"; |
| |
| OS << " // Some state to try to produce better error messages.\n"; |
| OS << " bool HadMatchOtherThanFeatures = false;\n\n"; |
| OS << " // Set ErrorInfo to the operand that mismatches if it is \n"; |
| OS << " // wrong for all instances of the instruction.\n"; |
| OS << " ErrorInfo = ~0U;\n"; |
| |
| // Emit code to search the table. |
| OS << " // Search the table.\n"; |
| OS << " std::pair<const MatchEntry*, const MatchEntry*> MnemonicRange =\n"; |
| OS << " std::equal_range(MatchTable, MatchTable+" |
| << Info.Matchables.size() << ", Mnemonic, LessOpcode());\n\n"; |
| |
| OS << " // Return a more specific error code if no mnemonics match.\n"; |
| OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; |
| OS << " return Match_MnemonicFail;\n\n"; |
| |
| OS << " for (const MatchEntry *it = MnemonicRange.first, " |
| << "*ie = MnemonicRange.second;\n"; |
| OS << " it != ie; ++it) {\n"; |
| |
| OS << " // equal_range guarantees that instruction mnemonic matches.\n"; |
| OS << " assert(Mnemonic == it->Mnemonic);\n"; |
| |
| // Emit check that the subclasses match. |
| OS << " bool OperandsValid = true;\n"; |
| OS << " for (unsigned i = 0; i != " << MaxNumOperands << "; ++i) {\n"; |
| OS << " if (IsSubclass(Classes[i], it->Classes[i]))\n"; |
| OS << " continue;\n"; |
| OS << " // If this operand is broken for all of the instances of this\n"; |
| OS << " // mnemonic, keep track of it so we can report loc info.\n"; |
| OS << " if (it == MnemonicRange.first || ErrorInfo == i+1)\n"; |
| OS << " ErrorInfo = i+1;\n"; |
| OS << " else\n"; |
| OS << " ErrorInfo = ~0U;"; |
| OS << " // Otherwise, just reject this instance of the mnemonic.\n"; |
| OS << " OperandsValid = false;\n"; |
| OS << " break;\n"; |
| OS << " }\n\n"; |
| |
| OS << " if (!OperandsValid) continue;\n"; |
| |
| // Emit check that the required features are available. |
| OS << " if ((AvailableFeatures & it->RequiredFeatures) " |
| << "!= it->RequiredFeatures) {\n"; |
| OS << " HadMatchOtherThanFeatures = true;\n"; |
| OS << " continue;\n"; |
| OS << " }\n"; |
| |
| OS << "\n"; |
| OS << " ConvertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; |
| |
| // Call the post-processing function, if used. |
| std::string InsnCleanupFn = |
| AsmParser->getValueAsString("AsmParserInstCleanup"); |
| if (!InsnCleanupFn.empty()) |
| OS << " " << InsnCleanupFn << "(Inst);\n"; |
| |
| OS << " return Match_Success;\n"; |
| OS << " }\n\n"; |
| |
| OS << " // Okay, we had no match. Try to return a useful error code.\n"; |
| OS << " if (HadMatchOtherThanFeatures) return Match_MissingFeature;\n"; |
| OS << " return Match_InvalidOperand;\n"; |
| OS << "}\n\n"; |
| |
| OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; |
| } |