| //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass eliminates machine instruction PHI nodes by inserting copy |
| // instructions. This destroys SSA information, but is the desired input for |
| // some register allocators. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "phielim" |
| #include "llvm/CodeGen/Passes.h" |
| #include "PHIEliminationUtils.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/CodeGen/LiveVariables.h" |
| #include "llvm/CodeGen/MachineDominators.h" |
| #include "llvm/CodeGen/MachineInstr.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineLoopInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/Function.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Compiler.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Target/TargetInstrInfo.h" |
| #include "llvm/Target/TargetMachine.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| static cl::opt<bool> |
| DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false), |
| cl::Hidden, cl::desc("Disable critical edge splitting " |
| "during PHI elimination")); |
| |
| namespace { |
| class PHIElimination : public MachineFunctionPass { |
| MachineRegisterInfo *MRI; // Machine register information |
| |
| public: |
| static char ID; // Pass identification, replacement for typeid |
| PHIElimination() : MachineFunctionPass(ID) { |
| initializePHIEliminationPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| virtual bool runOnMachineFunction(MachineFunction &Fn); |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const; |
| |
| private: |
| /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions |
| /// in predecessor basic blocks. |
| /// |
| bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB); |
| void LowerAtomicPHINode(MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator AfterPHIsIt); |
| |
| /// analyzePHINodes - Gather information about the PHI nodes in |
| /// here. In particular, we want to map the number of uses of a virtual |
| /// register which is used in a PHI node. We map that to the BB the |
| /// vreg is coming from. This is used later to determine when the vreg |
| /// is killed in the BB. |
| /// |
| void analyzePHINodes(const MachineFunction& Fn); |
| |
| /// Split critical edges where necessary for good coalescer performance. |
| bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB, |
| LiveVariables &LV, MachineLoopInfo *MLI); |
| |
| typedef std::pair<unsigned, unsigned> BBVRegPair; |
| typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse; |
| |
| VRegPHIUse VRegPHIUseCount; |
| |
| // Defs of PHI sources which are implicit_def. |
| SmallPtrSet<MachineInstr*, 4> ImpDefs; |
| |
| // Map reusable lowered PHI node -> incoming join register. |
| typedef DenseMap<MachineInstr*, unsigned, |
| MachineInstrExpressionTrait> LoweredPHIMap; |
| LoweredPHIMap LoweredPHIs; |
| }; |
| } |
| |
| STATISTIC(NumAtomic, "Number of atomic phis lowered"); |
| STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split"); |
| STATISTIC(NumReused, "Number of reused lowered phis"); |
| |
| char PHIElimination::ID = 0; |
| char& llvm::PHIEliminationID = PHIElimination::ID; |
| |
| INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination", |
| "Eliminate PHI nodes for register allocation", |
| false, false) |
| INITIALIZE_PASS_DEPENDENCY(LiveVariables) |
| INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination", |
| "Eliminate PHI nodes for register allocation", false, false) |
| |
| void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addPreserved<LiveVariables>(); |
| AU.addPreserved<MachineDominatorTree>(); |
| AU.addPreserved<MachineLoopInfo>(); |
| MachineFunctionPass::getAnalysisUsage(AU); |
| } |
| |
| bool PHIElimination::runOnMachineFunction(MachineFunction &MF) { |
| MRI = &MF.getRegInfo(); |
| |
| bool Changed = false; |
| |
| // This pass takes the function out of SSA form. |
| MRI->leaveSSA(); |
| |
| // Split critical edges to help the coalescer |
| if (!DisableEdgeSplitting) { |
| if (LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>()) { |
| MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>(); |
| for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) |
| Changed |= SplitPHIEdges(MF, *I, *LV, MLI); |
| } |
| } |
| |
| // Populate VRegPHIUseCount |
| analyzePHINodes(MF); |
| |
| // Eliminate PHI instructions by inserting copies into predecessor blocks. |
| for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) |
| Changed |= EliminatePHINodes(MF, *I); |
| |
| // Remove dead IMPLICIT_DEF instructions. |
| for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(), |
| E = ImpDefs.end(); I != E; ++I) { |
| MachineInstr *DefMI = *I; |
| unsigned DefReg = DefMI->getOperand(0).getReg(); |
| if (MRI->use_nodbg_empty(DefReg)) |
| DefMI->eraseFromParent(); |
| } |
| |
| // Clean up the lowered PHI instructions. |
| for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end(); |
| I != E; ++I) |
| MF.DeleteMachineInstr(I->first); |
| |
| LoweredPHIs.clear(); |
| ImpDefs.clear(); |
| VRegPHIUseCount.clear(); |
| |
| return Changed; |
| } |
| |
| /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in |
| /// predecessor basic blocks. |
| /// |
| bool PHIElimination::EliminatePHINodes(MachineFunction &MF, |
| MachineBasicBlock &MBB) { |
| if (MBB.empty() || !MBB.front().isPHI()) |
| return false; // Quick exit for basic blocks without PHIs. |
| |
| // Get an iterator to the first instruction after the last PHI node (this may |
| // also be the end of the basic block). |
| MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin()); |
| |
| while (MBB.front().isPHI()) |
| LowerAtomicPHINode(MBB, AfterPHIsIt); |
| |
| return true; |
| } |
| |
| /// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs. |
| /// This includes registers with no defs. |
| static bool isImplicitlyDefined(unsigned VirtReg, |
| const MachineRegisterInfo *MRI) { |
| for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(VirtReg), |
| DE = MRI->def_end(); DI != DE; ++DI) |
| if (!DI->isImplicitDef()) |
| return false; |
| return true; |
| } |
| |
| /// isSourceDefinedByImplicitDef - Return true if all sources of the phi node |
| /// are implicit_def's. |
| static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi, |
| const MachineRegisterInfo *MRI) { |
| for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) |
| if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI)) |
| return false; |
| return true; |
| } |
| |
| |
| /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block, |
| /// under the assumption that it needs to be lowered in a way that supports |
| /// atomic execution of PHIs. This lowering method is always correct all of the |
| /// time. |
| /// |
| void PHIElimination::LowerAtomicPHINode( |
| MachineBasicBlock &MBB, |
| MachineBasicBlock::iterator AfterPHIsIt) { |
| ++NumAtomic; |
| // Unlink the PHI node from the basic block, but don't delete the PHI yet. |
| MachineInstr *MPhi = MBB.remove(MBB.begin()); |
| |
| unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2; |
| unsigned DestReg = MPhi->getOperand(0).getReg(); |
| assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs"); |
| bool isDead = MPhi->getOperand(0).isDead(); |
| |
| // Create a new register for the incoming PHI arguments. |
| MachineFunction &MF = *MBB.getParent(); |
| unsigned IncomingReg = 0; |
| bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI? |
| |
| // Insert a register to register copy at the top of the current block (but |
| // after any remaining phi nodes) which copies the new incoming register |
| // into the phi node destination. |
| const TargetInstrInfo *TII = MF.getTarget().getInstrInfo(); |
| if (isSourceDefinedByImplicitDef(MPhi, MRI)) |
| // If all sources of a PHI node are implicit_def, just emit an |
| // implicit_def instead of a copy. |
| BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), |
| TII->get(TargetOpcode::IMPLICIT_DEF), DestReg); |
| else { |
| // Can we reuse an earlier PHI node? This only happens for critical edges, |
| // typically those created by tail duplication. |
| unsigned &entry = LoweredPHIs[MPhi]; |
| if (entry) { |
| // An identical PHI node was already lowered. Reuse the incoming register. |
| IncomingReg = entry; |
| reusedIncoming = true; |
| ++NumReused; |
| DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi); |
| } else { |
| const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg); |
| entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC); |
| } |
| BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(), |
| TII->get(TargetOpcode::COPY), DestReg) |
| .addReg(IncomingReg); |
| } |
| |
| // Update live variable information if there is any. |
| LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>(); |
| if (LV) { |
| MachineInstr *PHICopy = prior(AfterPHIsIt); |
| |
| if (IncomingReg) { |
| LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg); |
| |
| // Increment use count of the newly created virtual register. |
| LV->setPHIJoin(IncomingReg); |
| |
| // When we are reusing the incoming register, it may already have been |
| // killed in this block. The old kill will also have been inserted at |
| // AfterPHIsIt, so it appears before the current PHICopy. |
| if (reusedIncoming) |
| if (MachineInstr *OldKill = VI.findKill(&MBB)) { |
| DEBUG(dbgs() << "Remove old kill from " << *OldKill); |
| LV->removeVirtualRegisterKilled(IncomingReg, OldKill); |
| DEBUG(MBB.dump()); |
| } |
| |
| // Add information to LiveVariables to know that the incoming value is |
| // killed. Note that because the value is defined in several places (once |
| // each for each incoming block), the "def" block and instruction fields |
| // for the VarInfo is not filled in. |
| LV->addVirtualRegisterKilled(IncomingReg, PHICopy); |
| } |
| |
| // Since we are going to be deleting the PHI node, if it is the last use of |
| // any registers, or if the value itself is dead, we need to move this |
| // information over to the new copy we just inserted. |
| LV->removeVirtualRegistersKilled(MPhi); |
| |
| // If the result is dead, update LV. |
| if (isDead) { |
| LV->addVirtualRegisterDead(DestReg, PHICopy); |
| LV->removeVirtualRegisterDead(DestReg, MPhi); |
| } |
| } |
| |
| // Adjust the VRegPHIUseCount map to account for the removal of this PHI node. |
| for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2) |
| --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(), |
| MPhi->getOperand(i).getReg())]; |
| |
| // Now loop over all of the incoming arguments, changing them to copy into the |
| // IncomingReg register in the corresponding predecessor basic block. |
| SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto; |
| for (int i = NumSrcs - 1; i >= 0; --i) { |
| unsigned SrcReg = MPhi->getOperand(i*2+1).getReg(); |
| unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg(); |
| bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() || |
| isImplicitlyDefined(SrcReg, MRI); |
| assert(TargetRegisterInfo::isVirtualRegister(SrcReg) && |
| "Machine PHI Operands must all be virtual registers!"); |
| |
| // Get the MachineBasicBlock equivalent of the BasicBlock that is the source |
| // path the PHI. |
| MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB(); |
| |
| // Check to make sure we haven't already emitted the copy for this block. |
| // This can happen because PHI nodes may have multiple entries for the same |
| // basic block. |
| if (!MBBsInsertedInto.insert(&opBlock)) |
| continue; // If the copy has already been emitted, we're done. |
| |
| // Find a safe location to insert the copy, this may be the first terminator |
| // in the block (or end()). |
| MachineBasicBlock::iterator InsertPos = |
| findPHICopyInsertPoint(&opBlock, &MBB, SrcReg); |
| |
| // Insert the copy. |
| if (!reusedIncoming && IncomingReg) { |
| if (SrcUndef) { |
| // The source register is undefined, so there is no need for a real |
| // COPY, but we still need to ensure joint dominance by defs. |
| // Insert an IMPLICIT_DEF instruction. |
| BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), |
| TII->get(TargetOpcode::IMPLICIT_DEF), IncomingReg); |
| |
| // Clean up the old implicit-def, if there even was one. |
| if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg)) |
| if (DefMI->isImplicitDef()) |
| ImpDefs.insert(DefMI); |
| } else { |
| BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(), |
| TII->get(TargetOpcode::COPY), IncomingReg) |
| .addReg(SrcReg, 0, SrcSubReg); |
| } |
| } |
| |
| // Now update live variable information if we have it. Otherwise we're done |
| if (SrcUndef || !LV) continue; |
| |
| // We want to be able to insert a kill of the register if this PHI (aka, the |
| // copy we just inserted) is the last use of the source value. Live |
| // variable analysis conservatively handles this by saying that the value is |
| // live until the end of the block the PHI entry lives in. If the value |
| // really is dead at the PHI copy, there will be no successor blocks which |
| // have the value live-in. |
| |
| // Also check to see if this register is in use by another PHI node which |
| // has not yet been eliminated. If so, it will be killed at an appropriate |
| // point later. |
| |
| // Is it used by any PHI instructions in this block? |
| bool ValueIsUsed = VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]; |
| |
| // Okay, if we now know that the value is not live out of the block, we can |
| // add a kill marker in this block saying that it kills the incoming value! |
| if (!ValueIsUsed && !LV->isLiveOut(SrcReg, opBlock)) { |
| // In our final twist, we have to decide which instruction kills the |
| // register. In most cases this is the copy, however, terminator |
| // instructions at the end of the block may also use the value. In this |
| // case, we should mark the last such terminator as being the killing |
| // block, not the copy. |
| MachineBasicBlock::iterator KillInst = opBlock.end(); |
| MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator(); |
| for (MachineBasicBlock::iterator Term = FirstTerm; |
| Term != opBlock.end(); ++Term) { |
| if (Term->readsRegister(SrcReg)) |
| KillInst = Term; |
| } |
| |
| if (KillInst == opBlock.end()) { |
| // No terminator uses the register. |
| |
| if (reusedIncoming || !IncomingReg) { |
| // We may have to rewind a bit if we didn't insert a copy this time. |
| KillInst = FirstTerm; |
| while (KillInst != opBlock.begin()) { |
| --KillInst; |
| if (KillInst->isDebugValue()) |
| continue; |
| if (KillInst->readsRegister(SrcReg)) |
| break; |
| } |
| } else { |
| // We just inserted this copy. |
| KillInst = prior(InsertPos); |
| } |
| } |
| assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction"); |
| |
| // Finally, mark it killed. |
| LV->addVirtualRegisterKilled(SrcReg, KillInst); |
| |
| // This vreg no longer lives all of the way through opBlock. |
| unsigned opBlockNum = opBlock.getNumber(); |
| LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum); |
| } |
| } |
| |
| // Really delete the PHI instruction now, if it is not in the LoweredPHIs map. |
| if (reusedIncoming || !IncomingReg) |
| MF.DeleteMachineInstr(MPhi); |
| } |
| |
| /// analyzePHINodes - Gather information about the PHI nodes in here. In |
| /// particular, we want to map the number of uses of a virtual register which is |
| /// used in a PHI node. We map that to the BB the vreg is coming from. This is |
| /// used later to determine when the vreg is killed in the BB. |
| /// |
| void PHIElimination::analyzePHINodes(const MachineFunction& MF) { |
| for (MachineFunction::const_iterator I = MF.begin(), E = MF.end(); |
| I != E; ++I) |
| for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end(); |
| BBI != BBE && BBI->isPHI(); ++BBI) |
| for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) |
| ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(), |
| BBI->getOperand(i).getReg())]; |
| } |
| |
| bool PHIElimination::SplitPHIEdges(MachineFunction &MF, |
| MachineBasicBlock &MBB, |
| LiveVariables &LV, |
| MachineLoopInfo *MLI) { |
| if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad()) |
| return false; // Quick exit for basic blocks without PHIs. |
| |
| const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0; |
| bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader(); |
| |
| bool Changed = false; |
| for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end(); |
| BBI != BBE && BBI->isPHI(); ++BBI) { |
| for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) { |
| unsigned Reg = BBI->getOperand(i).getReg(); |
| MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB(); |
| // Is there a critical edge from PreMBB to MBB? |
| if (PreMBB->succ_size() == 1) |
| continue; |
| |
| // Avoid splitting backedges of loops. It would introduce small |
| // out-of-line blocks into the loop which is very bad for code placement. |
| if (PreMBB == &MBB) |
| continue; |
| const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0; |
| if (IsLoopHeader && PreLoop == CurLoop) |
| continue; |
| |
| // LV doesn't consider a phi use live-out, so isLiveOut only returns true |
| // when the source register is live-out for some other reason than a phi |
| // use. That means the copy we will insert in PreMBB won't be a kill, and |
| // there is a risk it may not be coalesced away. |
| // |
| // If the copy would be a kill, there is no need to split the edge. |
| if (!LV.isLiveOut(Reg, *PreMBB)) |
| continue; |
| |
| DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#" |
| << PreMBB->getNumber() << " -> BB#" << MBB.getNumber() |
| << ": " << *BBI); |
| |
| // If Reg is not live-in to MBB, it means it must be live-in to some |
| // other PreMBB successor, and we can avoid the interference by splitting |
| // the edge. |
| // |
| // If Reg *is* live-in to MBB, the interference is inevitable and a copy |
| // is likely to be left after coalescing. If we are looking at a loop |
| // exiting edge, split it so we won't insert code in the loop, otherwise |
| // don't bother. |
| bool ShouldSplit = !LV.isLiveIn(Reg, MBB); |
| |
| // Check for a loop exiting edge. |
| if (!ShouldSplit && CurLoop != PreLoop) { |
| DEBUG({ |
| dbgs() << "Split wouldn't help, maybe avoid loop copies?\n"; |
| if (PreLoop) dbgs() << "PreLoop: " << *PreLoop; |
| if (CurLoop) dbgs() << "CurLoop: " << *CurLoop; |
| }); |
| // This edge could be entering a loop, exiting a loop, or it could be |
| // both: Jumping directly form one loop to the header of a sibling |
| // loop. |
| // Split unless this edge is entering CurLoop from an outer loop. |
| ShouldSplit = PreLoop && !PreLoop->contains(CurLoop); |
| } |
| if (!ShouldSplit) |
| continue; |
| if (!PreMBB->SplitCriticalEdge(&MBB, this)) { |
| DEBUG(dbgs() << "Failed to split ciritcal edge.\n"); |
| continue; |
| } |
| Changed = true; |
| ++NumCriticalEdgesSplit; |
| } |
| } |
| return Changed; |
| } |