| //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the interfaces that Hexagon uses to lower LLVM code |
| // into a selection DAG. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "HexagonISelLowering.h" |
| #include "HexagonMachineFunctionInfo.h" |
| #include "HexagonSubtarget.h" |
| #include "HexagonTargetMachine.h" |
| #include "HexagonTargetObjectFile.h" |
| #include "llvm/CallingConv.h" |
| #include "llvm/CodeGen/CallingConvLower.h" |
| #include "llvm/CodeGen/MachineFrameInfo.h" |
| #include "llvm/CodeGen/MachineFunction.h" |
| #include "llvm/CodeGen/MachineInstrBuilder.h" |
| #include "llvm/CodeGen/MachineJumpTableInfo.h" |
| #include "llvm/CodeGen/MachineRegisterInfo.h" |
| #include "llvm/CodeGen/SelectionDAGISel.h" |
| #include "llvm/CodeGen/ValueTypes.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Function.h" |
| #include "llvm/GlobalAlias.h" |
| #include "llvm/GlobalVariable.h" |
| #include "llvm/InlineAsm.h" |
| #include "llvm/Intrinsics.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/ErrorHandling.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| |
| const unsigned Hexagon_MAX_RET_SIZE = 64; |
| |
| static cl::opt<bool> |
| EmitJumpTables("hexagon-emit-jump-tables", cl::init(true), cl::Hidden, |
| cl::desc("Control jump table emission on Hexagon target")); |
| |
| int NumNamedVarArgParams = -1; |
| |
| // Implement calling convention for Hexagon. |
| static bool |
| CC_Hexagon(unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State); |
| |
| static bool |
| CC_Hexagon32(unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State); |
| |
| static bool |
| CC_Hexagon64(unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State); |
| |
| static bool |
| RetCC_Hexagon(unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State); |
| |
| static bool |
| RetCC_Hexagon32(unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State); |
| |
| static bool |
| RetCC_Hexagon64(unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State); |
| |
| static bool |
| CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State) { |
| |
| // NumNamedVarArgParams can not be zero for a VarArg function. |
| assert ( (NumNamedVarArgParams > 0) && |
| "NumNamedVarArgParams is not bigger than zero."); |
| |
| if ( (int)ValNo < NumNamedVarArgParams ) { |
| // Deal with named arguments. |
| return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); |
| } |
| |
| // Deal with un-named arguments. |
| unsigned ofst; |
| if (ArgFlags.isByVal()) { |
| // If pass-by-value, the size allocated on stack is decided |
| // by ArgFlags.getByValSize(), not by the size of LocVT. |
| assert ((ArgFlags.getByValSize() > 8) && |
| "ByValSize must be bigger than 8 bytes"); |
| ofst = State.AllocateStack(ArgFlags.getByValSize(), 4); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); |
| return false; |
| } |
| if (LocVT == MVT::i32 || LocVT == MVT::f32) { |
| ofst = State.AllocateStack(4, 4); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); |
| return false; |
| } |
| if (LocVT == MVT::i64 || LocVT == MVT::f64) { |
| ofst = State.AllocateStack(8, 8); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); |
| return false; |
| } |
| llvm_unreachable(0); |
| } |
| |
| |
| static bool |
| CC_Hexagon (unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State) { |
| |
| if (ArgFlags.isByVal()) { |
| // Passed on stack. |
| assert ((ArgFlags.getByValSize() > 8) && |
| "ByValSize must be bigger than 8 bytes"); |
| unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 4); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| return false; |
| } |
| |
| if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) { |
| LocVT = MVT::i32; |
| ValVT = MVT::i32; |
| if (ArgFlags.isSExt()) |
| LocInfo = CCValAssign::SExt; |
| else if (ArgFlags.isZExt()) |
| LocInfo = CCValAssign::ZExt; |
| else |
| LocInfo = CCValAssign::AExt; |
| } |
| |
| if (LocVT == MVT::i32 || LocVT == MVT::f32) { |
| if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) |
| return false; |
| } |
| |
| if (LocVT == MVT::i64 || LocVT == MVT::f64) { |
| if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) |
| return false; |
| } |
| |
| return true; // CC didn't match. |
| } |
| |
| |
| static bool CC_Hexagon32(unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State) { |
| |
| static const uint16_t RegList[] = { |
| Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4, |
| Hexagon::R5 |
| }; |
| if (unsigned Reg = State.AllocateReg(RegList, 6)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| |
| unsigned Offset = State.AllocateStack(4, 4); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| return false; |
| } |
| |
| static bool CC_Hexagon64(unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State) { |
| |
| if (unsigned Reg = State.AllocateReg(Hexagon::D0)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| |
| static const uint16_t RegList1[] = { |
| Hexagon::D1, Hexagon::D2 |
| }; |
| static const uint16_t RegList2[] = { |
| Hexagon::R1, Hexagon::R3 |
| }; |
| if (unsigned Reg = State.AllocateReg(RegList1, RegList2, 2)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| |
| unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| return false; |
| } |
| |
| static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State) { |
| |
| |
| if (LocVT == MVT::i1 || |
| LocVT == MVT::i8 || |
| LocVT == MVT::i16) { |
| LocVT = MVT::i32; |
| ValVT = MVT::i32; |
| if (ArgFlags.isSExt()) |
| LocInfo = CCValAssign::SExt; |
| else if (ArgFlags.isZExt()) |
| LocInfo = CCValAssign::ZExt; |
| else |
| LocInfo = CCValAssign::AExt; |
| } |
| |
| if (LocVT == MVT::i32 || LocVT == MVT::f32) { |
| if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) |
| return false; |
| } |
| |
| if (LocVT == MVT::i64 || LocVT == MVT::f64) { |
| if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) |
| return false; |
| } |
| |
| return true; // CC didn't match. |
| } |
| |
| static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State) { |
| |
| if (LocVT == MVT::i32 || LocVT == MVT::f32) { |
| if (unsigned Reg = State.AllocateReg(Hexagon::R0)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| } |
| |
| unsigned Offset = State.AllocateStack(4, 4); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| return false; |
| } |
| |
| static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT, |
| MVT LocVT, CCValAssign::LocInfo LocInfo, |
| ISD::ArgFlagsTy ArgFlags, CCState &State) { |
| if (LocVT == MVT::i64 || LocVT == MVT::f64) { |
| if (unsigned Reg = State.AllocateReg(Hexagon::D0)) { |
| State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); |
| return false; |
| } |
| } |
| |
| unsigned Offset = State.AllocateStack(8, 8); |
| State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); |
| return false; |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) |
| const { |
| return SDValue(); |
| } |
| |
| /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified |
| /// by "Src" to address "Dst" of size "Size". Alignment information is |
| /// specified by the specific parameter attribute. The copy will be passed as |
| /// a byval function parameter. Sometimes what we are copying is the end of a |
| /// larger object, the part that does not fit in registers. |
| static SDValue |
| CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, |
| ISD::ArgFlagsTy Flags, SelectionDAG &DAG, |
| DebugLoc dl) { |
| |
| SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); |
| return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), |
| /*isVolatile=*/false, /*AlwaysInline=*/false, |
| MachinePointerInfo(), MachinePointerInfo()); |
| } |
| |
| |
| // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is |
| // passed by value, the function prototype is modified to return void and |
| // the value is stored in memory pointed by a pointer passed by caller. |
| SDValue |
| HexagonTargetLowering::LowerReturn(SDValue Chain, |
| CallingConv::ID CallConv, bool isVarArg, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| DebugLoc dl, SelectionDAG &DAG) const { |
| |
| // CCValAssign - represent the assignment of the return value to locations. |
| SmallVector<CCValAssign, 16> RVLocs; |
| |
| // CCState - Info about the registers and stack slot. |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs, *DAG.getContext()); |
| |
| // Analyze return values of ISD::RET |
| CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon); |
| |
| // If this is the first return lowered for this function, add the regs to the |
| // liveout set for the function. |
| if (DAG.getMachineFunction().getRegInfo().liveout_empty()) { |
| for (unsigned i = 0; i != RVLocs.size(); ++i) |
| if (RVLocs[i].isRegLoc()) |
| DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg()); |
| } |
| |
| SDValue Flag; |
| // Copy the result values into the output registers. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| CCValAssign &VA = RVLocs[i]; |
| |
| Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); |
| |
| // Guarantee that all emitted copies are stuck together with flags. |
| Flag = Chain.getValue(1); |
| } |
| |
| if (Flag.getNode()) |
| return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, Chain, Flag); |
| |
| return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, Chain); |
| } |
| |
| |
| |
| |
| /// LowerCallResult - Lower the result values of an ISD::CALL into the |
| /// appropriate copies out of appropriate physical registers. This assumes that |
| /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call |
| /// being lowered. Returns a SDNode with the same number of values as the |
| /// ISD::CALL. |
| SDValue |
| HexagonTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, |
| CallingConv::ID CallConv, bool isVarArg, |
| const |
| SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals, |
| const SmallVectorImpl<SDValue> &OutVals, |
| SDValue Callee) const { |
| |
| // Assign locations to each value returned by this call. |
| SmallVector<CCValAssign, 16> RVLocs; |
| |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), RVLocs, *DAG.getContext()); |
| |
| CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon); |
| |
| // Copy all of the result registers out of their specified physreg. |
| for (unsigned i = 0; i != RVLocs.size(); ++i) { |
| Chain = DAG.getCopyFromReg(Chain, dl, |
| RVLocs[i].getLocReg(), |
| RVLocs[i].getValVT(), InFlag).getValue(1); |
| InFlag = Chain.getValue(2); |
| InVals.push_back(Chain.getValue(0)); |
| } |
| |
| return Chain; |
| } |
| |
| /// LowerCall - Functions arguments are copied from virtual regs to |
| /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. |
| SDValue |
| HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, |
| SmallVectorImpl<SDValue> &InVals) const { |
| SelectionDAG &DAG = CLI.DAG; |
| DebugLoc &dl = CLI.DL; |
| SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; |
| SmallVector<SDValue, 32> &OutVals = CLI.OutVals; |
| SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; |
| SDValue Chain = CLI.Chain; |
| SDValue Callee = CLI.Callee; |
| bool &isTailCall = CLI.IsTailCall; |
| CallingConv::ID CallConv = CLI.CallConv; |
| bool isVarArg = CLI.IsVarArg; |
| |
| bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); |
| |
| // Analyze operands of the call, assigning locations to each operand. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ArgLocs, *DAG.getContext()); |
| |
| // Check for varargs. |
| NumNamedVarArgParams = -1; |
| if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee)) |
| { |
| const Function* CalleeFn = NULL; |
| Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, MVT::i32); |
| if ((CalleeFn = dyn_cast<Function>(GA->getGlobal()))) |
| { |
| // If a function has zero args and is a vararg function, that's |
| // disallowed so it must be an undeclared function. Do not assume |
| // varargs if the callee is undefined. |
| if (CalleeFn->isVarArg() && |
| CalleeFn->getFunctionType()->getNumParams() != 0) { |
| NumNamedVarArgParams = CalleeFn->getFunctionType()->getNumParams(); |
| } |
| } |
| } |
| |
| if (NumNamedVarArgParams > 0) |
| CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg); |
| else |
| CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon); |
| |
| |
| if(isTailCall) { |
| bool StructAttrFlag = |
| DAG.getMachineFunction().getFunction()->hasStructRetAttr(); |
| isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, |
| isVarArg, IsStructRet, |
| StructAttrFlag, |
| Outs, OutVals, Ins, DAG); |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i){ |
| CCValAssign &VA = ArgLocs[i]; |
| if (VA.isMemLoc()) { |
| isTailCall = false; |
| break; |
| } |
| } |
| if (isTailCall) { |
| DEBUG(dbgs () << "Eligible for Tail Call\n"); |
| } else { |
| DEBUG(dbgs () << |
| "Argument must be passed on stack. Not eligible for Tail Call\n"); |
| } |
| } |
| // Get a count of how many bytes are to be pushed on the stack. |
| unsigned NumBytes = CCInfo.getNextStackOffset(); |
| SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass; |
| SmallVector<SDValue, 8> MemOpChains; |
| |
| SDValue StackPtr = |
| DAG.getCopyFromReg(Chain, dl, TM.getRegisterInfo()->getStackRegister(), |
| getPointerTy()); |
| |
| // Walk the register/memloc assignments, inserting copies/loads. |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| SDValue Arg = OutVals[i]; |
| ISD::ArgFlagsTy Flags = Outs[i].Flags; |
| |
| // Promote the value if needed. |
| switch (VA.getLocInfo()) { |
| default: |
| // Loc info must be one of Full, SExt, ZExt, or AExt. |
| llvm_unreachable("Unknown loc info!"); |
| case CCValAssign::Full: |
| break; |
| case CCValAssign::SExt: |
| Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::ZExt: |
| Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| case CCValAssign::AExt: |
| Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); |
| break; |
| } |
| |
| if (VA.isMemLoc()) { |
| unsigned LocMemOffset = VA.getLocMemOffset(); |
| SDValue PtrOff = DAG.getConstant(LocMemOffset, StackPtr.getValueType()); |
| PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); |
| |
| if (Flags.isByVal()) { |
| // The argument is a struct passed by value. According to LLVM, "Arg" |
| // is is pointer. |
| MemOpChains.push_back(CreateCopyOfByValArgument(Arg, PtrOff, Chain, |
| Flags, DAG, dl)); |
| } else { |
| // The argument is not passed by value. "Arg" is a buildin type. It is |
| // not a pointer. |
| MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, |
| MachinePointerInfo(),false, false, |
| 0)); |
| } |
| continue; |
| } |
| |
| // Arguments that can be passed on register must be kept at RegsToPass |
| // vector. |
| if (VA.isRegLoc()) { |
| RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); |
| } |
| } |
| |
| // Transform all store nodes into one single node because all store |
| // nodes are independent of each other. |
| if (!MemOpChains.empty()) { |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], |
| MemOpChains.size()); |
| } |
| |
| if (!isTailCall) |
| Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, |
| getPointerTy(), true)); |
| |
| // Build a sequence of copy-to-reg nodes chained together with token |
| // chain and flag operands which copy the outgoing args into registers. |
| // The InFlag in necessary since all emitted instructions must be |
| // stuck together. |
| SDValue InFlag; |
| if (!isTailCall) { |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| } |
| |
| // For tail calls lower the arguments to the 'real' stack slot. |
| if (isTailCall) { |
| // Force all the incoming stack arguments to be loaded from the stack |
| // before any new outgoing arguments are stored to the stack, because the |
| // outgoing stack slots may alias the incoming argument stack slots, and |
| // the alias isn't otherwise explicit. This is slightly more conservative |
| // than necessary, because it means that each store effectively depends |
| // on every argument instead of just those arguments it would clobber. |
| // |
| // Do not flag preceding copytoreg stuff together with the following stuff. |
| InFlag = SDValue(); |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, |
| RegsToPass[i].second, InFlag); |
| InFlag = Chain.getValue(1); |
| } |
| InFlag =SDValue(); |
| } |
| |
| // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every |
| // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol |
| // node so that legalize doesn't hack it. |
| if (flag_aligned_memcpy) { |
| const char *MemcpyName = |
| "__hexagon_memcpy_likely_aligned_min32bytes_mult8bytes"; |
| Callee = |
| DAG.getTargetExternalSymbol(MemcpyName, getPointerTy()); |
| flag_aligned_memcpy = false; |
| } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { |
| Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy()); |
| } else if (ExternalSymbolSDNode *S = |
| dyn_cast<ExternalSymbolSDNode>(Callee)) { |
| Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); |
| } |
| |
| // Returns a chain & a flag for retval copy to use. |
| SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); |
| SmallVector<SDValue, 8> Ops; |
| Ops.push_back(Chain); |
| Ops.push_back(Callee); |
| |
| // Add argument registers to the end of the list so that they are |
| // known live into the call. |
| for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { |
| Ops.push_back(DAG.getRegister(RegsToPass[i].first, |
| RegsToPass[i].second.getValueType())); |
| } |
| |
| if (InFlag.getNode()) { |
| Ops.push_back(InFlag); |
| } |
| |
| if (isTailCall) |
| return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); |
| |
| Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, &Ops[0], Ops.size()); |
| InFlag = Chain.getValue(1); |
| |
| // Create the CALLSEQ_END node. |
| Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), |
| DAG.getIntPtrConstant(0, true), InFlag); |
| InFlag = Chain.getValue(1); |
| |
| // Handle result values, copying them out of physregs into vregs that we |
| // return. |
| return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, |
| InVals, OutVals, Callee); |
| } |
| |
| static bool getIndexedAddressParts(SDNode *Ptr, EVT VT, |
| bool isSEXTLoad, SDValue &Base, |
| SDValue &Offset, bool &isInc, |
| SelectionDAG &DAG) { |
| if (Ptr->getOpcode() != ISD::ADD) |
| return false; |
| |
| if (VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) { |
| isInc = (Ptr->getOpcode() == ISD::ADD); |
| Base = Ptr->getOperand(0); |
| Offset = Ptr->getOperand(1); |
| // Ensure that Offset is a constant. |
| return (isa<ConstantSDNode>(Offset)); |
| } |
| |
| return false; |
| } |
| |
| // TODO: Put this function along with the other isS* functions in |
| // HexagonISelDAGToDAG.cpp into a common file. Or better still, use the |
| // functions defined in HexagonOperands.td. |
| static bool Is_PostInc_S4_Offset(SDNode * S, int ShiftAmount) { |
| ConstantSDNode *N = cast<ConstantSDNode>(S); |
| |
| // immS4 predicate - True if the immediate fits in a 4-bit sign extended. |
| // field. |
| int64_t v = (int64_t)N->getSExtValue(); |
| int64_t m = 0; |
| if (ShiftAmount > 0) { |
| m = v % ShiftAmount; |
| v = v >> ShiftAmount; |
| } |
| return (v <= 7) && (v >= -8) && (m == 0); |
| } |
| |
| /// getPostIndexedAddressParts - returns true by value, base pointer and |
| /// offset pointer and addressing mode by reference if this node can be |
| /// combined with a load / store to form a post-indexed load / store. |
| bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, |
| SDValue &Base, |
| SDValue &Offset, |
| ISD::MemIndexedMode &AM, |
| SelectionDAG &DAG) const |
| { |
| EVT VT; |
| SDValue Ptr; |
| bool isSEXTLoad = false; |
| |
| if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { |
| VT = LD->getMemoryVT(); |
| isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; |
| } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { |
| VT = ST->getMemoryVT(); |
| if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) { |
| return false; |
| } |
| } else { |
| return false; |
| } |
| |
| bool isInc = false; |
| bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, |
| isInc, DAG); |
| // ShiftAmount = number of left-shifted bits in the Hexagon instruction. |
| int ShiftAmount = VT.getSizeInBits() / 16; |
| if (isLegal && Is_PostInc_S4_Offset(Offset.getNode(), ShiftAmount)) { |
| AM = isInc ? ISD::POST_INC : ISD::POST_DEC; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| SDValue HexagonTargetLowering::LowerINLINEASM(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDNode *Node = Op.getNode(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| HexagonMachineFunctionInfo *FuncInfo = |
| MF.getInfo<HexagonMachineFunctionInfo>(); |
| switch (Node->getOpcode()) { |
| case ISD::INLINEASM: { |
| unsigned NumOps = Node->getNumOperands(); |
| if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) |
| --NumOps; // Ignore the flag operand. |
| |
| for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { |
| if (FuncInfo->hasClobberLR()) |
| break; |
| unsigned Flags = |
| cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); |
| unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); |
| ++i; // Skip the ID value. |
| |
| switch (InlineAsm::getKind(Flags)) { |
| default: llvm_unreachable("Bad flags!"); |
| case InlineAsm::Kind_RegDef: |
| case InlineAsm::Kind_RegUse: |
| case InlineAsm::Kind_Imm: |
| case InlineAsm::Kind_Clobber: |
| case InlineAsm::Kind_Mem: { |
| for (; NumVals; --NumVals, ++i) {} |
| break; |
| } |
| case InlineAsm::Kind_RegDefEarlyClobber: { |
| for (; NumVals; --NumVals, ++i) { |
| unsigned Reg = |
| cast<RegisterSDNode>(Node->getOperand(i))->getReg(); |
| |
| // Check it to be lr |
| if (Reg == TM.getRegisterInfo()->getRARegister()) { |
| FuncInfo->setHasClobberLR(true); |
| break; |
| } |
| } |
| break; |
| } |
| } |
| } |
| } |
| } // Node->getOpcode |
| return Op; |
| } |
| |
| |
| // |
| // Taken from the XCore backend. |
| // |
| SDValue HexagonTargetLowering:: |
| LowerBR_JT(SDValue Op, SelectionDAG &DAG) const |
| { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Table = Op.getOperand(1); |
| SDValue Index = Op.getOperand(2); |
| DebugLoc dl = Op.getDebugLoc(); |
| JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); |
| unsigned JTI = JT->getIndex(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); |
| SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32); |
| |
| // Mark all jump table targets as address taken. |
| const std::vector<MachineJumpTableEntry> &JTE = MJTI->getJumpTables(); |
| const std::vector<MachineBasicBlock*> &JTBBs = JTE[JTI].MBBs; |
| for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { |
| MachineBasicBlock *MBB = JTBBs[i]; |
| MBB->setHasAddressTaken(); |
| // This line is needed to set the hasAddressTaken flag on the BasicBlock |
| // object. |
| BlockAddress::get(const_cast<BasicBlock *>(MBB->getBasicBlock())); |
| } |
| |
| SDValue JumpTableBase = DAG.getNode(HexagonISD::WrapperJT, dl, |
| getPointerTy(), TargetJT); |
| SDValue ShiftIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index, |
| DAG.getConstant(2, MVT::i32)); |
| SDValue JTAddress = DAG.getNode(ISD::ADD, dl, MVT::i32, JumpTableBase, |
| ShiftIndex); |
| SDValue LoadTarget = DAG.getLoad(MVT::i32, dl, Chain, JTAddress, |
| MachinePointerInfo(), false, false, false, |
| 0); |
| return DAG.getNode(HexagonISD::BR_JT, dl, MVT::Other, Chain, LoadTarget); |
| } |
| |
| |
| SDValue |
| HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Chain = Op.getOperand(0); |
| SDValue Size = Op.getOperand(1); |
| DebugLoc dl = Op.getDebugLoc(); |
| |
| unsigned SPReg = getStackPointerRegisterToSaveRestore(); |
| |
| // Get a reference to the stack pointer. |
| SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SPReg, MVT::i32); |
| |
| // Subtract the dynamic size from the actual stack size to |
| // obtain the new stack size. |
| SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size); |
| |
| // |
| // For Hexagon, the outgoing memory arguments area should be on top of the |
| // alloca area on the stack i.e., the outgoing memory arguments should be |
| // at a lower address than the alloca area. Move the alloca area down the |
| // stack by adding back the space reserved for outgoing arguments to SP |
| // here. |
| // |
| // We do not know what the size of the outgoing args is at this point. |
| // So, we add a pseudo instruction ADJDYNALLOC that will adjust the |
| // stack pointer. We patch this instruction with the correct, known |
| // offset in emitPrologue(). |
| // |
| // Use a placeholder immediate (zero) for now. This will be patched up |
| // by emitPrologue(). |
| SDValue ArgAdjust = DAG.getNode(HexagonISD::ADJDYNALLOC, dl, |
| MVT::i32, |
| Sub, |
| DAG.getConstant(0, MVT::i32)); |
| |
| // The Sub result contains the new stack start address, so it |
| // must be placed in the stack pointer register. |
| SDValue CopyChain = DAG.getCopyToReg(Chain, dl, |
| TM.getRegisterInfo()->getStackRegister(), |
| Sub); |
| |
| SDValue Ops[2] = { ArgAdjust, CopyChain }; |
| return DAG.getMergeValues(Ops, 2, dl); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerFormalArguments(SDValue Chain, |
| CallingConv::ID CallConv, |
| bool isVarArg, |
| const |
| SmallVectorImpl<ISD::InputArg> &Ins, |
| DebugLoc dl, SelectionDAG &DAG, |
| SmallVectorImpl<SDValue> &InVals) |
| const { |
| |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| MachineRegisterInfo &RegInfo = MF.getRegInfo(); |
| HexagonMachineFunctionInfo *FuncInfo = |
| MF.getInfo<HexagonMachineFunctionInfo>(); |
| |
| |
| // Assign locations to all of the incoming arguments. |
| SmallVector<CCValAssign, 16> ArgLocs; |
| CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), |
| getTargetMachine(), ArgLocs, *DAG.getContext()); |
| |
| CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon); |
| |
| // For LLVM, in the case when returning a struct by value (>8byte), |
| // the first argument is a pointer that points to the location on caller's |
| // stack where the return value will be stored. For Hexagon, the location on |
| // caller's stack is passed only when the struct size is smaller than (and |
| // equal to) 8 bytes. If not, no address will be passed into callee and |
| // callee return the result direclty through R0/R1. |
| |
| SmallVector<SDValue, 4> MemOps; |
| |
| for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { |
| CCValAssign &VA = ArgLocs[i]; |
| ISD::ArgFlagsTy Flags = Ins[i].Flags; |
| unsigned ObjSize; |
| unsigned StackLocation; |
| int FI; |
| |
| if ( (VA.isRegLoc() && !Flags.isByVal()) |
| || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) { |
| // Arguments passed in registers |
| // 1. int, long long, ptr args that get allocated in register. |
| // 2. Large struct that gets an register to put its address in. |
| EVT RegVT = VA.getLocVT(); |
| if (RegVT == MVT::i8 || RegVT == MVT::i16 || |
| RegVT == MVT::i32 || RegVT == MVT::f32) { |
| unsigned VReg = |
| RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass); |
| RegInfo.addLiveIn(VA.getLocReg(), VReg); |
| InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); |
| } else if (RegVT == MVT::i64) { |
| unsigned VReg = |
| RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass); |
| RegInfo.addLiveIn(VA.getLocReg(), VReg); |
| InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); |
| } else { |
| assert (0); |
| } |
| } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) { |
| assert (0 && "ByValSize must be bigger than 8 bytes"); |
| } else { |
| // Sanity check. |
| assert(VA.isMemLoc()); |
| |
| if (Flags.isByVal()) { |
| // If it's a byval parameter, then we need to compute the |
| // "real" size, not the size of the pointer. |
| ObjSize = Flags.getByValSize(); |
| } else { |
| ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3; |
| } |
| |
| StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset(); |
| // Create the frame index object for this incoming parameter... |
| FI = MFI->CreateFixedObject(ObjSize, StackLocation, true); |
| |
| // Create the SelectionDAG nodes cordl, responding to a load |
| // from this parameter. |
| SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); |
| |
| if (Flags.isByVal()) { |
| // If it's a pass-by-value aggregate, then do not dereference the stack |
| // location. Instead, we should generate a reference to the stack |
| // location. |
| InVals.push_back(FIN); |
| } else { |
| InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, |
| MachinePointerInfo(), false, false, |
| false, 0)); |
| } |
| } |
| } |
| |
| if (!MemOps.empty()) |
| Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOps[0], |
| MemOps.size()); |
| |
| if (isVarArg) { |
| // This will point to the next argument passed via stack. |
| int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize, |
| HEXAGON_LRFP_SIZE + |
| CCInfo.getNextStackOffset(), |
| true); |
| FuncInfo->setVarArgsFrameIndex(FrameIndex); |
| } |
| |
| return Chain; |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { |
| // VASTART stores the address of the VarArgsFrameIndex slot into the |
| // memory location argument. |
| MachineFunction &MF = DAG.getMachineFunction(); |
| HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>(); |
| SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32); |
| const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); |
| return DAG.getStore(Op.getOperand(0), Op.getDebugLoc(), Addr, |
| Op.getOperand(1), MachinePointerInfo(SV), false, |
| false, 0); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { |
| SDValue LHS = Op.getOperand(0); |
| SDValue RHS = Op.getOperand(1); |
| SDValue CC = Op.getOperand(4); |
| SDValue TrueVal = Op.getOperand(2); |
| SDValue FalseVal = Op.getOperand(3); |
| DebugLoc dl = Op.getDebugLoc(); |
| SDNode* OpNode = Op.getNode(); |
| EVT SVT = OpNode->getValueType(0); |
| |
| SDValue Cond = DAG.getNode(ISD::SETCC, dl, MVT::i1, LHS, RHS, CC); |
| return DAG.getNode(ISD::SELECT, dl, SVT, Cond, TrueVal, FalseVal); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { |
| EVT ValTy = Op.getValueType(); |
| |
| DebugLoc dl = Op.getDebugLoc(); |
| ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); |
| SDValue Res; |
| if (CP->isMachineConstantPoolEntry()) |
| Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), ValTy, |
| CP->getAlignment()); |
| else |
| Res = DAG.getTargetConstantPool(CP->getConstVal(), ValTy, |
| CP->getAlignment()); |
| return DAG.getNode(HexagonISD::CONST32, dl, ValTy, Res); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { |
| const TargetRegisterInfo *TRI = TM.getRegisterInfo(); |
| MachineFunction &MF = DAG.getMachineFunction(); |
| MachineFrameInfo *MFI = MF.getFrameInfo(); |
| MFI->setReturnAddressIsTaken(true); |
| |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| if (Depth) { |
| SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); |
| SDValue Offset = DAG.getConstant(4, MVT::i32); |
| return DAG.getLoad(VT, dl, DAG.getEntryNode(), |
| DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), |
| MachinePointerInfo(), false, false, false, 0); |
| } |
| |
| // Return LR, which contains the return address. Mark it an implicit live-in. |
| unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32)); |
| return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { |
| const HexagonRegisterInfo *TRI = TM.getRegisterInfo(); |
| MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); |
| MFI->setFrameAddressIsTaken(true); |
| |
| EVT VT = Op.getValueType(); |
| DebugLoc dl = Op.getDebugLoc(); |
| unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); |
| SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, |
| TRI->getFrameRegister(), VT); |
| while (Depth--) |
| FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, |
| MachinePointerInfo(), |
| false, false, false, 0); |
| return FrameAddr; |
| } |
| |
| |
| SDValue HexagonTargetLowering::LowerMEMBARRIER(SDValue Op, |
| SelectionDAG& DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0)); |
| } |
| |
| |
| SDValue HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, |
| SelectionDAG& DAG) const { |
| DebugLoc dl = Op.getDebugLoc(); |
| return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0)); |
| } |
| |
| |
| SDValue HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, |
| SelectionDAG &DAG) const { |
| SDValue Result; |
| const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); |
| int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); |
| DebugLoc dl = Op.getDebugLoc(); |
| Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset); |
| |
| HexagonTargetObjectFile &TLOF = |
| (HexagonTargetObjectFile&)getObjFileLowering(); |
| if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) { |
| return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), Result); |
| } |
| |
| return DAG.getNode(HexagonISD::CONST32, dl, getPointerTy(), Result); |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // TargetLowering Implementation |
| //===----------------------------------------------------------------------===// |
| |
| HexagonTargetLowering::HexagonTargetLowering(HexagonTargetMachine |
| &targetmachine) |
| : TargetLowering(targetmachine, new HexagonTargetObjectFile()), |
| TM(targetmachine) { |
| |
| const HexagonRegisterInfo* QRI = TM.getRegisterInfo(); |
| |
| // Set up the register classes. |
| addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass); |
| addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass); |
| |
| if (QRI->Subtarget.hasV5TOps()) { |
| addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass); |
| addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass); |
| } |
| |
| addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass); |
| |
| computeRegisterProperties(); |
| |
| // Align loop entry |
| setPrefLoopAlignment(4); |
| |
| // Limits for inline expansion of memcpy/memmove |
| maxStoresPerMemcpy = 6; |
| maxStoresPerMemmove = 6; |
| |
| // |
| // Library calls for unsupported operations |
| // |
| |
| setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf"); |
| setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf"); |
| |
| setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti"); |
| setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti"); |
| |
| setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti"); |
| setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti"); |
| |
| setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3"); |
| setOperationAction(ISD::SDIV, MVT::i32, Expand); |
| setLibcallName(RTLIB::SREM_I32, "__hexagon_umodsi3"); |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| |
| setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3"); |
| setOperationAction(ISD::SDIV, MVT::i64, Expand); |
| setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3"); |
| setOperationAction(ISD::SREM, MVT::i64, Expand); |
| |
| setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3"); |
| setOperationAction(ISD::UDIV, MVT::i32, Expand); |
| |
| setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3"); |
| setOperationAction(ISD::UDIV, MVT::i64, Expand); |
| |
| setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3"); |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| |
| setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3"); |
| setOperationAction(ISD::UREM, MVT::i64, Expand); |
| |
| setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3"); |
| setOperationAction(ISD::FDIV, MVT::f32, Expand); |
| |
| setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3"); |
| setOperationAction(ISD::FDIV, MVT::f64, Expand); |
| |
| setOperationAction(ISD::FSQRT, MVT::f32, Expand); |
| setOperationAction(ISD::FSQRT, MVT::f64, Expand); |
| setOperationAction(ISD::FSIN, MVT::f32, Expand); |
| setOperationAction(ISD::FSIN, MVT::f64, Expand); |
| |
| if (QRI->Subtarget.hasV5TOps()) { |
| // Hexagon V5 Support. |
| setOperationAction(ISD::FADD, MVT::f32, Legal); |
| setOperationAction(ISD::FADD, MVT::f64, Legal); |
| setOperationAction(ISD::FP_EXTEND, MVT::f32, Legal); |
| setCondCodeAction(ISD::SETOEQ, MVT::f32, Legal); |
| setCondCodeAction(ISD::SETOEQ, MVT::f64, Legal); |
| setCondCodeAction(ISD::SETUEQ, MVT::f32, Legal); |
| setCondCodeAction(ISD::SETUEQ, MVT::f64, Legal); |
| |
| setCondCodeAction(ISD::SETOGE, MVT::f32, Legal); |
| setCondCodeAction(ISD::SETOGE, MVT::f64, Legal); |
| setCondCodeAction(ISD::SETUGE, MVT::f32, Legal); |
| setCondCodeAction(ISD::SETUGE, MVT::f64, Legal); |
| |
| setCondCodeAction(ISD::SETOGT, MVT::f32, Legal); |
| setCondCodeAction(ISD::SETOGT, MVT::f64, Legal); |
| setCondCodeAction(ISD::SETUGT, MVT::f32, Legal); |
| setCondCodeAction(ISD::SETUGT, MVT::f64, Legal); |
| |
| setCondCodeAction(ISD::SETOLE, MVT::f32, Legal); |
| setCondCodeAction(ISD::SETOLE, MVT::f64, Legal); |
| setCondCodeAction(ISD::SETOLT, MVT::f32, Legal); |
| setCondCodeAction(ISD::SETOLT, MVT::f64, Legal); |
| |
| setOperationAction(ISD::ConstantFP, MVT::f32, Legal); |
| setOperationAction(ISD::ConstantFP, MVT::f64, Legal); |
| |
| setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); |
| |
| setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote); |
| |
| setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); |
| |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); |
| |
| setOperationAction(ISD::FP_TO_UINT, MVT::i64, Legal); |
| setOperationAction(ISD::FP_TO_SINT, MVT::i64, Legal); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i64, Legal); |
| setOperationAction(ISD::SINT_TO_FP, MVT::i64, Legal); |
| |
| setOperationAction(ISD::FABS, MVT::f32, Legal); |
| setOperationAction(ISD::FABS, MVT::f64, Expand); |
| |
| setOperationAction(ISD::FNEG, MVT::f32, Legal); |
| setOperationAction(ISD::FNEG, MVT::f64, Expand); |
| } else { |
| |
| // Expand fp<->uint. |
| setOperationAction(ISD::FP_TO_SINT, MVT::i32, Expand); |
| setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); |
| |
| setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); |
| setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); |
| |
| setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf"); |
| setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf"); |
| |
| setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf"); |
| setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf"); |
| |
| setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf"); |
| setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf"); |
| |
| setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf"); |
| setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf"); |
| |
| setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi"); |
| setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi"); |
| |
| setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi"); |
| setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi"); |
| |
| setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi"); |
| setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi"); |
| |
| setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3"); |
| setOperationAction(ISD::FADD, MVT::f64, Expand); |
| |
| setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3"); |
| setOperationAction(ISD::FADD, MVT::f32, Expand); |
| |
| setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2"); |
| setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand); |
| |
| setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2"); |
| setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); |
| |
| setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2"); |
| setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); |
| |
| setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2"); |
| setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); |
| |
| setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2"); |
| setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); |
| |
| setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2"); |
| setCondCodeAction(ISD::SETOGT, MVT::f32, Expand); |
| |
| setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2"); |
| setCondCodeAction(ISD::SETOGT, MVT::f64, Expand); |
| |
| setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi"); |
| setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand); |
| |
| setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi"); |
| setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand); |
| |
| setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2"); |
| setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); |
| |
| setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2"); |
| setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); |
| |
| setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2"); |
| setCondCodeAction(ISD::SETOLT, MVT::f64, Expand); |
| |
| setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2"); |
| setCondCodeAction(ISD::SETOLT, MVT::f32, Expand); |
| |
| setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3"); |
| setOperationAction(ISD::FMUL, MVT::f64, Expand); |
| |
| setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3"); |
| setOperationAction(ISD::MUL, MVT::f32, Expand); |
| |
| setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2"); |
| setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); |
| |
| setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2"); |
| |
| setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3"); |
| setOperationAction(ISD::SUB, MVT::f64, Expand); |
| |
| setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3"); |
| setOperationAction(ISD::SUB, MVT::f32, Expand); |
| |
| setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2"); |
| setOperationAction(ISD::FP_ROUND, MVT::f64, Expand); |
| |
| setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2"); |
| setCondCodeAction(ISD::SETUO, MVT::f64, Expand); |
| |
| setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2"); |
| setCondCodeAction(ISD::SETO, MVT::f64, Expand); |
| |
| setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2"); |
| setCondCodeAction(ISD::SETO, MVT::f32, Expand); |
| |
| setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2"); |
| setCondCodeAction(ISD::SETUO, MVT::f32, Expand); |
| |
| setOperationAction(ISD::FABS, MVT::f32, Expand); |
| setOperationAction(ISD::FABS, MVT::f64, Expand); |
| setOperationAction(ISD::FNEG, MVT::f32, Expand); |
| setOperationAction(ISD::FNEG, MVT::f64, Expand); |
| } |
| |
| setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3"); |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| |
| setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal); |
| setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal); |
| setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal); |
| setIndexedLoadAction(ISD::POST_INC, MVT::i64, Legal); |
| |
| setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal); |
| setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal); |
| setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal); |
| setIndexedStoreAction(ISD::POST_INC, MVT::i64, Legal); |
| |
| setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); |
| |
| // Turn FP extload into load/fextend. |
| setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); |
| // Hexagon has a i1 sign extending load. |
| setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand); |
| // Turn FP truncstore into trunc + store. |
| setTruncStoreAction(MVT::f64, MVT::f32, Expand); |
| |
| // Custom legalize GlobalAddress nodes into CONST32. |
| setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); |
| setOperationAction(ISD::GlobalAddress, MVT::i8, Custom); |
| // Truncate action? |
| setOperationAction(ISD::TRUNCATE, MVT::i64, Expand); |
| |
| // Hexagon doesn't have sext_inreg, replace them with shl/sra. |
| setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); |
| |
| // Hexagon has no REM or DIVREM operations. |
| setOperationAction(ISD::UREM, MVT::i32, Expand); |
| setOperationAction(ISD::SREM, MVT::i32, Expand); |
| setOperationAction(ISD::SDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i32, Expand); |
| setOperationAction(ISD::SREM, MVT::i64, Expand); |
| setOperationAction(ISD::SDIVREM, MVT::i64, Expand); |
| setOperationAction(ISD::UDIVREM, MVT::i64, Expand); |
| |
| setOperationAction(ISD::BSWAP, MVT::i64, Expand); |
| |
| // Lower SELECT_CC to SETCC and SELECT. |
| setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); |
| setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); |
| |
| if (QRI->Subtarget.hasV5TOps()) { |
| |
| // We need to make the operation type of SELECT node to be Custom, |
| // such that we don't go into the infinite loop of |
| // select -> setcc -> select_cc -> select loop. |
| setOperationAction(ISD::SELECT, MVT::f32, Custom); |
| setOperationAction(ISD::SELECT, MVT::f64, Custom); |
| |
| setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); |
| setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); |
| |
| } else { |
| |
| // Hexagon has no select or setcc: expand to SELECT_CC. |
| setOperationAction(ISD::SELECT, MVT::f32, Expand); |
| setOperationAction(ISD::SELECT, MVT::f64, Expand); |
| |
| // This is a workaround documented in DAGCombiner.cpp:2892 We don't |
| // support SELECT_CC on every type. |
| setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); |
| |
| } |
| |
| setOperationAction(ISD::BR_CC, MVT::Other, Expand); |
| setOperationAction(ISD::BRIND, MVT::Other, Expand); |
| if (EmitJumpTables) { |
| setOperationAction(ISD::BR_JT, MVT::Other, Custom); |
| } else { |
| setOperationAction(ISD::BR_JT, MVT::Other, Expand); |
| } |
| // Increase jump tables cutover to 5, was 4. |
| setMinimumJumpTableEntries(5); |
| |
| setOperationAction(ISD::BR_CC, MVT::i32, Expand); |
| |
| setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom); |
| setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); |
| |
| setOperationAction(ISD::FSIN , MVT::f64, Expand); |
| setOperationAction(ISD::FCOS , MVT::f64, Expand); |
| setOperationAction(ISD::FREM , MVT::f64, Expand); |
| setOperationAction(ISD::FSIN , MVT::f32, Expand); |
| setOperationAction(ISD::FCOS , MVT::f32, Expand); |
| setOperationAction(ISD::FREM , MVT::f32, Expand); |
| setOperationAction(ISD::CTPOP, MVT::i32, Expand); |
| setOperationAction(ISD::CTTZ , MVT::i32, Expand); |
| setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); |
| setOperationAction(ISD::CTLZ , MVT::i32, Expand); |
| setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); |
| setOperationAction(ISD::ROTL , MVT::i32, Expand); |
| setOperationAction(ISD::ROTR , MVT::i32, Expand); |
| setOperationAction(ISD::BSWAP, MVT::i32, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); |
| setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); |
| setOperationAction(ISD::FPOW , MVT::f64, Expand); |
| setOperationAction(ISD::FPOW , MVT::f32, Expand); |
| |
| setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); |
| setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); |
| |
| setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); |
| setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); |
| |
| setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); |
| setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); |
| |
| setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); |
| setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); |
| setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); |
| setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); |
| |
| setOperationAction(ISD::EH_RETURN, MVT::Other, Expand); |
| |
| if (TM.getSubtargetImpl()->isSubtargetV2()) { |
| setExceptionPointerRegister(Hexagon::R20); |
| setExceptionSelectorRegister(Hexagon::R21); |
| } else { |
| setExceptionPointerRegister(Hexagon::R0); |
| setExceptionSelectorRegister(Hexagon::R1); |
| } |
| |
| // VASTART needs to be custom lowered to use the VarArgsFrameIndex. |
| setOperationAction(ISD::VASTART , MVT::Other, Custom); |
| |
| // Use the default implementation. |
| setOperationAction(ISD::VAARG , MVT::Other, Expand); |
| setOperationAction(ISD::VACOPY , MVT::Other, Expand); |
| setOperationAction(ISD::VAEND , MVT::Other, Expand); |
| setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); |
| setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); |
| |
| |
| setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); |
| setOperationAction(ISD::INLINEASM , MVT::Other, Custom); |
| |
| setMinFunctionAlignment(2); |
| |
| // Needed for DYNAMIC_STACKALLOC expansion. |
| unsigned StackRegister = TM.getRegisterInfo()->getStackRegister(); |
| setStackPointerRegisterToSaveRestore(StackRegister); |
| setSchedulingPreference(Sched::VLIW); |
| } |
| |
| |
| const char* |
| HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const { |
| switch (Opcode) { |
| default: return 0; |
| case HexagonISD::CONST32: return "HexagonISD::CONST32"; |
| case HexagonISD::ADJDYNALLOC: return "HexagonISD::ADJDYNALLOC"; |
| case HexagonISD::CMPICC: return "HexagonISD::CMPICC"; |
| case HexagonISD::CMPFCC: return "HexagonISD::CMPFCC"; |
| case HexagonISD::BRICC: return "HexagonISD::BRICC"; |
| case HexagonISD::BRFCC: return "HexagonISD::BRFCC"; |
| case HexagonISD::SELECT_ICC: return "HexagonISD::SELECT_ICC"; |
| case HexagonISD::SELECT_FCC: return "HexagonISD::SELECT_FCC"; |
| case HexagonISD::Hi: return "HexagonISD::Hi"; |
| case HexagonISD::Lo: return "HexagonISD::Lo"; |
| case HexagonISD::FTOI: return "HexagonISD::FTOI"; |
| case HexagonISD::ITOF: return "HexagonISD::ITOF"; |
| case HexagonISD::CALL: return "HexagonISD::CALL"; |
| case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG"; |
| case HexagonISD::BR_JT: return "HexagonISD::BR_JT"; |
| case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN"; |
| } |
| } |
| |
| bool |
| HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { |
| EVT MTy1 = EVT::getEVT(Ty1); |
| EVT MTy2 = EVT::getEVT(Ty2); |
| if (!MTy1.isSimple() || !MTy2.isSimple()) { |
| return false; |
| } |
| return ((MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32)); |
| } |
| |
| bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { |
| if (!VT1.isSimple() || !VT2.isSimple()) { |
| return false; |
| } |
| return ((VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32)); |
| } |
| |
| SDValue |
| HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { |
| switch (Op.getOpcode()) { |
| default: llvm_unreachable("Should not custom lower this!"); |
| case ISD::ConstantPool: return LowerConstantPool(Op, DAG); |
| // Frame & Return address. Currently unimplemented. |
| case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); |
| case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); |
| case ISD::GlobalTLSAddress: |
| llvm_unreachable("TLS not implemented for Hexagon."); |
| case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG); |
| case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); |
| case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG); |
| case ISD::VASTART: return LowerVASTART(Op, DAG); |
| case ISD::BR_JT: return LowerBR_JT(Op, DAG); |
| |
| case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); |
| case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); |
| case ISD::SELECT: return Op; |
| case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); |
| case ISD::INLINEASM: return LowerINLINEASM(Op, DAG); |
| |
| } |
| } |
| |
| |
| |
| //===----------------------------------------------------------------------===// |
| // Hexagon Scheduler Hooks |
| //===----------------------------------------------------------------------===// |
| MachineBasicBlock * |
| HexagonTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, |
| MachineBasicBlock *BB) |
| const { |
| switch (MI->getOpcode()) { |
| case Hexagon::ADJDYNALLOC: { |
| MachineFunction *MF = BB->getParent(); |
| HexagonMachineFunctionInfo *FuncInfo = |
| MF->getInfo<HexagonMachineFunctionInfo>(); |
| FuncInfo->addAllocaAdjustInst(MI); |
| return BB; |
| } |
| default: llvm_unreachable("Unexpected instr type to insert"); |
| } // switch |
| } |
| |
| //===----------------------------------------------------------------------===// |
| // Inline Assembly Support |
| //===----------------------------------------------------------------------===// |
| |
| std::pair<unsigned, const TargetRegisterClass*> |
| HexagonTargetLowering::getRegForInlineAsmConstraint(const |
| std::string &Constraint, |
| EVT VT) const { |
| if (Constraint.size() == 1) { |
| switch (Constraint[0]) { |
| case 'r': // R0-R31 |
| switch (VT.getSimpleVT().SimpleTy) { |
| default: |
| llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type"); |
| case MVT::i32: |
| case MVT::i16: |
| case MVT::i8: |
| case MVT::f32: |
| return std::make_pair(0U, &Hexagon::IntRegsRegClass); |
| case MVT::i64: |
| case MVT::f64: |
| return std::make_pair(0U, &Hexagon::DoubleRegsRegClass); |
| } |
| default: |
| llvm_unreachable("Unknown asm register class"); |
| } |
| } |
| |
| return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); |
| } |
| |
| /// isFPImmLegal - Returns true if the target can instruction select the |
| /// specified FP immediate natively. If false, the legalizer will |
| /// materialize the FP immediate as a load from a constant pool. |
| bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { |
| const HexagonRegisterInfo* QRI = TM.getRegisterInfo(); |
| return QRI->Subtarget.hasV5TOps(); |
| } |
| |
| /// isLegalAddressingMode - Return true if the addressing mode represented by |
| /// AM is legal for this target, for a load/store of the specified type. |
| bool HexagonTargetLowering::isLegalAddressingMode(const AddrMode &AM, |
| Type *Ty) const { |
| // Allows a signed-extended 11-bit immediate field. |
| if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1) { |
| return false; |
| } |
| |
| // No global is ever allowed as a base. |
| if (AM.BaseGV) { |
| return false; |
| } |
| |
| int Scale = AM.Scale; |
| if (Scale < 0) Scale = -Scale; |
| switch (Scale) { |
| case 0: // No scale reg, "r+i", "r", or just "i". |
| break; |
| default: // No scaled addressing mode. |
| return false; |
| } |
| return true; |
| } |
| |
| /// isLegalICmpImmediate - Return true if the specified immediate is legal |
| /// icmp immediate, that is the target has icmp instructions which can compare |
| /// a register against the immediate without having to materialize the |
| /// immediate into a register. |
| bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const { |
| return Imm >= -512 && Imm <= 511; |
| } |
| |
| /// IsEligibleForTailCallOptimization - Check whether the call is eligible |
| /// for tail call optimization. Targets which want to do tail call |
| /// optimization should implement this function. |
| bool HexagonTargetLowering::IsEligibleForTailCallOptimization( |
| SDValue Callee, |
| CallingConv::ID CalleeCC, |
| bool isVarArg, |
| bool isCalleeStructRet, |
| bool isCallerStructRet, |
| const SmallVectorImpl<ISD::OutputArg> &Outs, |
| const SmallVectorImpl<SDValue> &OutVals, |
| const SmallVectorImpl<ISD::InputArg> &Ins, |
| SelectionDAG& DAG) const { |
| const Function *CallerF = DAG.getMachineFunction().getFunction(); |
| CallingConv::ID CallerCC = CallerF->getCallingConv(); |
| bool CCMatch = CallerCC == CalleeCC; |
| |
| // *************************************************************************** |
| // Look for obvious safe cases to perform tail call optimization that do not |
| // require ABI changes. |
| // *************************************************************************** |
| |
| // If this is a tail call via a function pointer, then don't do it! |
| if (!(dyn_cast<GlobalAddressSDNode>(Callee)) |
| && !(dyn_cast<ExternalSymbolSDNode>(Callee))) { |
| return false; |
| } |
| |
| // Do not optimize if the calling conventions do not match. |
| if (!CCMatch) |
| return false; |
| |
| // Do not tail call optimize vararg calls. |
| if (isVarArg) |
| return false; |
| |
| // Also avoid tail call optimization if either caller or callee uses struct |
| // return semantics. |
| if (isCalleeStructRet || isCallerStructRet) |
| return false; |
| |
| // In addition to the cases above, we also disable Tail Call Optimization if |
| // the calling convention code that at least one outgoing argument needs to |
| // go on the stack. We cannot check that here because at this point that |
| // information is not available. |
| return true; |
| } |