| //===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This pass performs several transformations to transform natural loops into a |
| // simpler form, which makes subsequent analyses and transformations simpler and |
| // more effective. |
| // |
| // Loop pre-header insertion guarantees that there is a single, non-critical |
| // entry edge from outside of the loop to the loop header. This simplifies a |
| // number of analyses and transformations, such as LICM. |
| // |
| // Loop exit-block insertion guarantees that all exit blocks from the loop |
| // (blocks which are outside of the loop that have predecessors inside of the |
| // loop) only have predecessors from inside of the loop (and are thus dominated |
| // by the loop header). This simplifies transformations such as store-sinking |
| // that are built into LICM. |
| // |
| // This pass also guarantees that loops will have exactly one backedge. |
| // |
| // Indirectbr instructions introduce several complications. If the loop |
| // contains or is entered by an indirectbr instruction, it may not be possible |
| // to transform the loop and make these guarantees. Client code should check |
| // that these conditions are true before relying on them. |
| // |
| // Note that the simplifycfg pass will clean up blocks which are split out but |
| // end up being unnecessary, so usage of this pass should not pessimize |
| // generated code. |
| // |
| // This pass obviously modifies the CFG, but updates loop information and |
| // dominator information. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "loop-simplify" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/SetOperations.h" |
| #include "llvm/ADT/SetVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/DependenceAnalysis.h" |
| #include "llvm/Analysis/Dominators.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/LoopPass.h" |
| #include "llvm/Analysis/ScalarEvolution.h" |
| #include "llvm/Constants.h" |
| #include "llvm/Function.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/IntrinsicInst.h" |
| #include "llvm/LLVMContext.h" |
| #include "llvm/Support/CFG.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Type.h" |
| using namespace llvm; |
| |
| STATISTIC(NumInserted, "Number of pre-header or exit blocks inserted"); |
| STATISTIC(NumNested , "Number of nested loops split out"); |
| |
| namespace { |
| struct LoopSimplify : public LoopPass { |
| static char ID; // Pass identification, replacement for typeid |
| LoopSimplify() : LoopPass(ID) { |
| initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| // AA - If we have an alias analysis object to update, this is it, otherwise |
| // this is null. |
| AliasAnalysis *AA; |
| LoopInfo *LI; |
| DominatorTree *DT; |
| ScalarEvolution *SE; |
| Loop *L; |
| virtual bool runOnLoop(Loop *L, LPPassManager &LPM); |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| // We need loop information to identify the loops... |
| AU.addRequired<DominatorTree>(); |
| AU.addPreserved<DominatorTree>(); |
| |
| AU.addRequired<LoopInfo>(); |
| AU.addPreserved<LoopInfo>(); |
| |
| AU.addPreserved<AliasAnalysis>(); |
| AU.addPreserved<ScalarEvolution>(); |
| AU.addPreserved<DependenceAnalysis>(); |
| AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. |
| } |
| |
| /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. |
| void verifyAnalysis() const; |
| |
| private: |
| bool ProcessLoop(Loop *L, LPPassManager &LPM); |
| BasicBlock *RewriteLoopExitBlock(Loop *L, BasicBlock *Exit); |
| BasicBlock *InsertPreheaderForLoop(Loop *L); |
| Loop *SeparateNestedLoop(Loop *L, LPPassManager &LPM, |
| BasicBlock *Preheader); |
| BasicBlock *InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader); |
| void PlaceSplitBlockCarefully(BasicBlock *NewBB, |
| SmallVectorImpl<BasicBlock*> &SplitPreds, |
| Loop *L); |
| }; |
| } |
| |
| char LoopSimplify::ID = 0; |
| INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", |
| "Canonicalize natural loops", true, false) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTree) |
| INITIALIZE_PASS_DEPENDENCY(LoopInfo) |
| INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", |
| "Canonicalize natural loops", true, false) |
| |
| // Publicly exposed interface to pass... |
| char &llvm::LoopSimplifyID = LoopSimplify::ID; |
| Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } |
| |
| /// runOnLoop - Run down all loops in the CFG (recursively, but we could do |
| /// it in any convenient order) inserting preheaders... |
| /// |
| bool LoopSimplify::runOnLoop(Loop *l, LPPassManager &LPM) { |
| L = l; |
| bool Changed = false; |
| LI = &getAnalysis<LoopInfo>(); |
| AA = getAnalysisIfAvailable<AliasAnalysis>(); |
| DT = &getAnalysis<DominatorTree>(); |
| SE = getAnalysisIfAvailable<ScalarEvolution>(); |
| |
| Changed |= ProcessLoop(L, LPM); |
| |
| return Changed; |
| } |
| |
| /// ProcessLoop - Walk the loop structure in depth first order, ensuring that |
| /// all loops have preheaders. |
| /// |
| bool LoopSimplify::ProcessLoop(Loop *L, LPPassManager &LPM) { |
| bool Changed = false; |
| ReprocessLoop: |
| |
| // Check to see that no blocks (other than the header) in this loop have |
| // predecessors that are not in the loop. This is not valid for natural |
| // loops, but can occur if the blocks are unreachable. Since they are |
| // unreachable we can just shamelessly delete those CFG edges! |
| for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); |
| BB != E; ++BB) { |
| if (*BB == L->getHeader()) continue; |
| |
| SmallPtrSet<BasicBlock*, 4> BadPreds; |
| for (pred_iterator PI = pred_begin(*BB), |
| PE = pred_end(*BB); PI != PE; ++PI) { |
| BasicBlock *P = *PI; |
| if (!L->contains(P)) |
| BadPreds.insert(P); |
| } |
| |
| // Delete each unique out-of-loop (and thus dead) predecessor. |
| for (SmallPtrSet<BasicBlock*, 4>::iterator I = BadPreds.begin(), |
| E = BadPreds.end(); I != E; ++I) { |
| |
| DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " |
| << (*I)->getName() << "\n"); |
| |
| // Inform each successor of each dead pred. |
| for (succ_iterator SI = succ_begin(*I), SE = succ_end(*I); SI != SE; ++SI) |
| (*SI)->removePredecessor(*I); |
| // Zap the dead pred's terminator and replace it with unreachable. |
| TerminatorInst *TI = (*I)->getTerminator(); |
| TI->replaceAllUsesWith(UndefValue::get(TI->getType())); |
| (*I)->getTerminator()->eraseFromParent(); |
| new UnreachableInst((*I)->getContext(), *I); |
| Changed = true; |
| } |
| } |
| |
| // If there are exiting blocks with branches on undef, resolve the undef in |
| // the direction which will exit the loop. This will help simplify loop |
| // trip count computations. |
| SmallVector<BasicBlock*, 8> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| for (SmallVectorImpl<BasicBlock *>::iterator I = ExitingBlocks.begin(), |
| E = ExitingBlocks.end(); I != E; ++I) |
| if (BranchInst *BI = dyn_cast<BranchInst>((*I)->getTerminator())) |
| if (BI->isConditional()) { |
| if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { |
| |
| DEBUG(dbgs() << "LoopSimplify: Resolving \"br i1 undef\" to exit in " |
| << (*I)->getName() << "\n"); |
| |
| BI->setCondition(ConstantInt::get(Cond->getType(), |
| !L->contains(BI->getSuccessor(0)))); |
| |
| // This may make the loop analyzable, force SCEV recomputation. |
| if (SE) |
| SE->forgetLoop(L); |
| |
| Changed = true; |
| } |
| } |
| |
| // Does the loop already have a preheader? If so, don't insert one. |
| BasicBlock *Preheader = L->getLoopPreheader(); |
| if (!Preheader) { |
| Preheader = InsertPreheaderForLoop(L); |
| if (Preheader) { |
| ++NumInserted; |
| Changed = true; |
| } |
| } |
| |
| // Next, check to make sure that all exit nodes of the loop only have |
| // predecessors that are inside of the loop. This check guarantees that the |
| // loop preheader/header will dominate the exit blocks. If the exit block has |
| // predecessors from outside of the loop, split the edge now. |
| SmallVector<BasicBlock*, 8> ExitBlocks; |
| L->getExitBlocks(ExitBlocks); |
| |
| SmallSetVector<BasicBlock *, 8> ExitBlockSet(ExitBlocks.begin(), |
| ExitBlocks.end()); |
| for (SmallSetVector<BasicBlock *, 8>::iterator I = ExitBlockSet.begin(), |
| E = ExitBlockSet.end(); I != E; ++I) { |
| BasicBlock *ExitBlock = *I; |
| for (pred_iterator PI = pred_begin(ExitBlock), PE = pred_end(ExitBlock); |
| PI != PE; ++PI) |
| // Must be exactly this loop: no subloops, parent loops, or non-loop preds |
| // allowed. |
| if (!L->contains(*PI)) { |
| if (RewriteLoopExitBlock(L, ExitBlock)) { |
| ++NumInserted; |
| Changed = true; |
| } |
| break; |
| } |
| } |
| |
| // If the header has more than two predecessors at this point (from the |
| // preheader and from multiple backedges), we must adjust the loop. |
| BasicBlock *LoopLatch = L->getLoopLatch(); |
| if (!LoopLatch) { |
| // If this is really a nested loop, rip it out into a child loop. Don't do |
| // this for loops with a giant number of backedges, just factor them into a |
| // common backedge instead. |
| if (L->getNumBackEdges() < 8) { |
| if (SeparateNestedLoop(L, LPM, Preheader)) { |
| ++NumNested; |
| // This is a big restructuring change, reprocess the whole loop. |
| Changed = true; |
| // GCC doesn't tail recursion eliminate this. |
| goto ReprocessLoop; |
| } |
| } |
| |
| // If we either couldn't, or didn't want to, identify nesting of the loops, |
| // insert a new block that all backedges target, then make it jump to the |
| // loop header. |
| LoopLatch = InsertUniqueBackedgeBlock(L, Preheader); |
| if (LoopLatch) { |
| ++NumInserted; |
| Changed = true; |
| } |
| } |
| |
| // Scan over the PHI nodes in the loop header. Since they now have only two |
| // incoming values (the loop is canonicalized), we may have simplified the PHI |
| // down to 'X = phi [X, Y]', which should be replaced with 'Y'. |
| PHINode *PN; |
| for (BasicBlock::iterator I = L->getHeader()->begin(); |
| (PN = dyn_cast<PHINode>(I++)); ) |
| if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) { |
| if (AA) AA->deleteValue(PN); |
| if (SE) SE->forgetValue(PN); |
| PN->replaceAllUsesWith(V); |
| PN->eraseFromParent(); |
| } |
| |
| // If this loop has multiple exits and the exits all go to the same |
| // block, attempt to merge the exits. This helps several passes, such |
| // as LoopRotation, which do not support loops with multiple exits. |
| // SimplifyCFG also does this (and this code uses the same utility |
| // function), however this code is loop-aware, where SimplifyCFG is |
| // not. That gives it the advantage of being able to hoist |
| // loop-invariant instructions out of the way to open up more |
| // opportunities, and the disadvantage of having the responsibility |
| // to preserve dominator information. |
| bool UniqueExit = true; |
| if (!ExitBlocks.empty()) |
| for (unsigned i = 1, e = ExitBlocks.size(); i != e; ++i) |
| if (ExitBlocks[i] != ExitBlocks[0]) { |
| UniqueExit = false; |
| break; |
| } |
| if (UniqueExit) { |
| for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { |
| BasicBlock *ExitingBlock = ExitingBlocks[i]; |
| if (!ExitingBlock->getSinglePredecessor()) continue; |
| BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); |
| if (!BI || !BI->isConditional()) continue; |
| CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); |
| if (!CI || CI->getParent() != ExitingBlock) continue; |
| |
| // Attempt to hoist out all instructions except for the |
| // comparison and the branch. |
| bool AllInvariant = true; |
| for (BasicBlock::iterator I = ExitingBlock->begin(); &*I != BI; ) { |
| Instruction *Inst = I++; |
| // Skip debug info intrinsics. |
| if (isa<DbgInfoIntrinsic>(Inst)) |
| continue; |
| if (Inst == CI) |
| continue; |
| if (!L->makeLoopInvariant(Inst, Changed, |
| Preheader ? Preheader->getTerminator() : 0)) { |
| AllInvariant = false; |
| break; |
| } |
| } |
| if (!AllInvariant) continue; |
| |
| // The block has now been cleared of all instructions except for |
| // a comparison and a conditional branch. SimplifyCFG may be able |
| // to fold it now. |
| if (!FoldBranchToCommonDest(BI)) continue; |
| |
| // Success. The block is now dead, so remove it from the loop, |
| // update the dominator tree and delete it. |
| DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " |
| << ExitingBlock->getName() << "\n"); |
| |
| // If any reachable control flow within this loop has changed, notify |
| // ScalarEvolution. Currently assume the parent loop doesn't change |
| // (spliting edges doesn't count). If blocks, CFG edges, or other values |
| // in the parent loop change, then we need call to forgetLoop() for the |
| // parent instead. |
| if (SE) |
| SE->forgetLoop(L); |
| |
| assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); |
| Changed = true; |
| LI->removeBlock(ExitingBlock); |
| |
| DomTreeNode *Node = DT->getNode(ExitingBlock); |
| const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = |
| Node->getChildren(); |
| while (!Children.empty()) { |
| DomTreeNode *Child = Children.front(); |
| DT->changeImmediateDominator(Child, Node->getIDom()); |
| } |
| DT->eraseNode(ExitingBlock); |
| |
| BI->getSuccessor(0)->removePredecessor(ExitingBlock); |
| BI->getSuccessor(1)->removePredecessor(ExitingBlock); |
| ExitingBlock->eraseFromParent(); |
| } |
| } |
| |
| return Changed; |
| } |
| |
| /// InsertPreheaderForLoop - Once we discover that a loop doesn't have a |
| /// preheader, this method is called to insert one. This method has two phases: |
| /// preheader insertion and analysis updating. |
| /// |
| BasicBlock *LoopSimplify::InsertPreheaderForLoop(Loop *L) { |
| BasicBlock *Header = L->getHeader(); |
| |
| // Compute the set of predecessors of the loop that are not in the loop. |
| SmallVector<BasicBlock*, 8> OutsideBlocks; |
| for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); |
| PI != PE; ++PI) { |
| BasicBlock *P = *PI; |
| if (!L->contains(P)) { // Coming in from outside the loop? |
| // If the loop is branched to from an indirect branch, we won't |
| // be able to fully transform the loop, because it prohibits |
| // edge splitting. |
| if (isa<IndirectBrInst>(P->getTerminator())) return 0; |
| |
| // Keep track of it. |
| OutsideBlocks.push_back(P); |
| } |
| } |
| |
| // Split out the loop pre-header. |
| BasicBlock *PreheaderBB; |
| if (!Header->isLandingPad()) { |
| PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", |
| this); |
| } else { |
| SmallVector<BasicBlock*, 2> NewBBs; |
| SplitLandingPadPredecessors(Header, OutsideBlocks, ".preheader", |
| ".split-lp", this, NewBBs); |
| PreheaderBB = NewBBs[0]; |
| } |
| |
| PreheaderBB->getTerminator()->setDebugLoc( |
| Header->getFirstNonPHI()->getDebugLoc()); |
| DEBUG(dbgs() << "LoopSimplify: Creating pre-header " |
| << PreheaderBB->getName() << "\n"); |
| |
| // Make sure that NewBB is put someplace intelligent, which doesn't mess up |
| // code layout too horribly. |
| PlaceSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); |
| |
| return PreheaderBB; |
| } |
| |
| /// RewriteLoopExitBlock - Ensure that the loop preheader dominates all exit |
| /// blocks. This method is used to split exit blocks that have predecessors |
| /// outside of the loop. |
| BasicBlock *LoopSimplify::RewriteLoopExitBlock(Loop *L, BasicBlock *Exit) { |
| SmallVector<BasicBlock*, 8> LoopBlocks; |
| for (pred_iterator I = pred_begin(Exit), E = pred_end(Exit); I != E; ++I) { |
| BasicBlock *P = *I; |
| if (L->contains(P)) { |
| // Don't do this if the loop is exited via an indirect branch. |
| if (isa<IndirectBrInst>(P->getTerminator())) return 0; |
| |
| LoopBlocks.push_back(P); |
| } |
| } |
| |
| assert(!LoopBlocks.empty() && "No edges coming in from outside the loop?"); |
| BasicBlock *NewExitBB = 0; |
| |
| if (Exit->isLandingPad()) { |
| SmallVector<BasicBlock*, 2> NewBBs; |
| SplitLandingPadPredecessors(Exit, ArrayRef<BasicBlock*>(&LoopBlocks[0], |
| LoopBlocks.size()), |
| ".loopexit", ".nonloopexit", |
| this, NewBBs); |
| NewExitBB = NewBBs[0]; |
| } else { |
| NewExitBB = SplitBlockPredecessors(Exit, LoopBlocks, ".loopexit", this); |
| } |
| |
| DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block " |
| << NewExitBB->getName() << "\n"); |
| return NewExitBB; |
| } |
| |
| /// AddBlockAndPredsToSet - Add the specified block, and all of its |
| /// predecessors, to the specified set, if it's not already in there. Stop |
| /// predecessor traversal when we reach StopBlock. |
| static void AddBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, |
| std::set<BasicBlock*> &Blocks) { |
| std::vector<BasicBlock *> WorkList; |
| WorkList.push_back(InputBB); |
| do { |
| BasicBlock *BB = WorkList.back(); WorkList.pop_back(); |
| if (Blocks.insert(BB).second && BB != StopBlock) |
| // If BB is not already processed and it is not a stop block then |
| // insert its predecessor in the work list |
| for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { |
| BasicBlock *WBB = *I; |
| WorkList.push_back(WBB); |
| } |
| } while(!WorkList.empty()); |
| } |
| |
| /// FindPHIToPartitionLoops - The first part of loop-nestification is to find a |
| /// PHI node that tells us how to partition the loops. |
| static PHINode *FindPHIToPartitionLoops(Loop *L, DominatorTree *DT, |
| AliasAnalysis *AA, LoopInfo *LI) { |
| for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { |
| PHINode *PN = cast<PHINode>(I); |
| ++I; |
| if (Value *V = SimplifyInstruction(PN, 0, 0, DT)) { |
| // This is a degenerate PHI already, don't modify it! |
| PN->replaceAllUsesWith(V); |
| if (AA) AA->deleteValue(PN); |
| PN->eraseFromParent(); |
| continue; |
| } |
| |
| // Scan this PHI node looking for a use of the PHI node by itself. |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
| if (PN->getIncomingValue(i) == PN && |
| L->contains(PN->getIncomingBlock(i))) |
| // We found something tasty to remove. |
| return PN; |
| } |
| return 0; |
| } |
| |
| // PlaceSplitBlockCarefully - If the block isn't already, move the new block to |
| // right after some 'outside block' block. This prevents the preheader from |
| // being placed inside the loop body, e.g. when the loop hasn't been rotated. |
| void LoopSimplify::PlaceSplitBlockCarefully(BasicBlock *NewBB, |
| SmallVectorImpl<BasicBlock*> &SplitPreds, |
| Loop *L) { |
| // Check to see if NewBB is already well placed. |
| Function::iterator BBI = NewBB; --BBI; |
| for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { |
| if (&*BBI == SplitPreds[i]) |
| return; |
| } |
| |
| // If it isn't already after an outside block, move it after one. This is |
| // always good as it makes the uncond branch from the outside block into a |
| // fall-through. |
| |
| // Figure out *which* outside block to put this after. Prefer an outside |
| // block that neighbors a BB actually in the loop. |
| BasicBlock *FoundBB = 0; |
| for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { |
| Function::iterator BBI = SplitPreds[i]; |
| if (++BBI != NewBB->getParent()->end() && |
| L->contains(BBI)) { |
| FoundBB = SplitPreds[i]; |
| break; |
| } |
| } |
| |
| // If our heuristic for a *good* bb to place this after doesn't find |
| // anything, just pick something. It's likely better than leaving it within |
| // the loop. |
| if (!FoundBB) |
| FoundBB = SplitPreds[0]; |
| NewBB->moveAfter(FoundBB); |
| } |
| |
| |
| /// SeparateNestedLoop - If this loop has multiple backedges, try to pull one of |
| /// them out into a nested loop. This is important for code that looks like |
| /// this: |
| /// |
| /// Loop: |
| /// ... |
| /// br cond, Loop, Next |
| /// ... |
| /// br cond2, Loop, Out |
| /// |
| /// To identify this common case, we look at the PHI nodes in the header of the |
| /// loop. PHI nodes with unchanging values on one backedge correspond to values |
| /// that change in the "outer" loop, but not in the "inner" loop. |
| /// |
| /// If we are able to separate out a loop, return the new outer loop that was |
| /// created. |
| /// |
| Loop *LoopSimplify::SeparateNestedLoop(Loop *L, LPPassManager &LPM, |
| BasicBlock *Preheader) { |
| // Don't try to separate loops without a preheader. |
| if (!Preheader) |
| return 0; |
| |
| // The header is not a landing pad; preheader insertion should ensure this. |
| assert(!L->getHeader()->isLandingPad() && |
| "Can't insert backedge to landing pad"); |
| |
| PHINode *PN = FindPHIToPartitionLoops(L, DT, AA, LI); |
| if (PN == 0) return 0; // No known way to partition. |
| |
| // Pull out all predecessors that have varying values in the loop. This |
| // handles the case when a PHI node has multiple instances of itself as |
| // arguments. |
| SmallVector<BasicBlock*, 8> OuterLoopPreds; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| if (PN->getIncomingValue(i) != PN || |
| !L->contains(PN->getIncomingBlock(i))) { |
| // We can't split indirectbr edges. |
| if (isa<IndirectBrInst>(PN->getIncomingBlock(i)->getTerminator())) |
| return 0; |
| OuterLoopPreds.push_back(PN->getIncomingBlock(i)); |
| } |
| } |
| DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); |
| |
| // If ScalarEvolution is around and knows anything about values in |
| // this loop, tell it to forget them, because we're about to |
| // substantially change it. |
| if (SE) |
| SE->forgetLoop(L); |
| |
| BasicBlock *Header = L->getHeader(); |
| BasicBlock *NewBB = |
| SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", this); |
| |
| // Make sure that NewBB is put someplace intelligent, which doesn't mess up |
| // code layout too horribly. |
| PlaceSplitBlockCarefully(NewBB, OuterLoopPreds, L); |
| |
| // Create the new outer loop. |
| Loop *NewOuter = new Loop(); |
| |
| // Change the parent loop to use the outer loop as its child now. |
| if (Loop *Parent = L->getParentLoop()) |
| Parent->replaceChildLoopWith(L, NewOuter); |
| else |
| LI->changeTopLevelLoop(L, NewOuter); |
| |
| // L is now a subloop of our outer loop. |
| NewOuter->addChildLoop(L); |
| |
| // Add the new loop to the pass manager queue. |
| LPM.insertLoopIntoQueue(NewOuter); |
| |
| for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); |
| I != E; ++I) |
| NewOuter->addBlockEntry(*I); |
| |
| // Now reset the header in L, which had been moved by |
| // SplitBlockPredecessors for the outer loop. |
| L->moveToHeader(Header); |
| |
| // Determine which blocks should stay in L and which should be moved out to |
| // the Outer loop now. |
| std::set<BasicBlock*> BlocksInL; |
| for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { |
| BasicBlock *P = *PI; |
| if (DT->dominates(Header, P)) |
| AddBlockAndPredsToSet(P, Header, BlocksInL); |
| } |
| |
| // Scan all of the loop children of L, moving them to OuterLoop if they are |
| // not part of the inner loop. |
| const std::vector<Loop*> &SubLoops = L->getSubLoops(); |
| for (size_t I = 0; I != SubLoops.size(); ) |
| if (BlocksInL.count(SubLoops[I]->getHeader())) |
| ++I; // Loop remains in L |
| else |
| NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); |
| |
| // Now that we know which blocks are in L and which need to be moved to |
| // OuterLoop, move any blocks that need it. |
| for (unsigned i = 0; i != L->getBlocks().size(); ++i) { |
| BasicBlock *BB = L->getBlocks()[i]; |
| if (!BlocksInL.count(BB)) { |
| // Move this block to the parent, updating the exit blocks sets |
| L->removeBlockFromLoop(BB); |
| if ((*LI)[BB] == L) |
| LI->changeLoopFor(BB, NewOuter); |
| --i; |
| } |
| } |
| |
| return NewOuter; |
| } |
| |
| |
| |
| /// InsertUniqueBackedgeBlock - This method is called when the specified loop |
| /// has more than one backedge in it. If this occurs, revector all of these |
| /// backedges to target a new basic block and have that block branch to the loop |
| /// header. This ensures that loops have exactly one backedge. |
| /// |
| BasicBlock * |
| LoopSimplify::InsertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader) { |
| assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); |
| |
| // Get information about the loop |
| BasicBlock *Header = L->getHeader(); |
| Function *F = Header->getParent(); |
| |
| // Unique backedge insertion currently depends on having a preheader. |
| if (!Preheader) |
| return 0; |
| |
| // The header is not a landing pad; preheader insertion should ensure this. |
| assert(!Header->isLandingPad() && "Can't insert backedge to landing pad"); |
| |
| // Figure out which basic blocks contain back-edges to the loop header. |
| std::vector<BasicBlock*> BackedgeBlocks; |
| for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ |
| BasicBlock *P = *I; |
| |
| // Indirectbr edges cannot be split, so we must fail if we find one. |
| if (isa<IndirectBrInst>(P->getTerminator())) |
| return 0; |
| |
| if (P != Preheader) BackedgeBlocks.push_back(P); |
| } |
| |
| // Create and insert the new backedge block... |
| BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), |
| Header->getName()+".backedge", F); |
| BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); |
| |
| DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " |
| << BEBlock->getName() << "\n"); |
| |
| // Move the new backedge block to right after the last backedge block. |
| Function::iterator InsertPos = BackedgeBlocks.back(); ++InsertPos; |
| F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); |
| |
| // Now that the block has been inserted into the function, create PHI nodes in |
| // the backedge block which correspond to any PHI nodes in the header block. |
| for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { |
| PHINode *PN = cast<PHINode>(I); |
| PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), |
| PN->getName()+".be", BETerminator); |
| if (AA) AA->copyValue(PN, NewPN); |
| |
| // Loop over the PHI node, moving all entries except the one for the |
| // preheader over to the new PHI node. |
| unsigned PreheaderIdx = ~0U; |
| bool HasUniqueIncomingValue = true; |
| Value *UniqueValue = 0; |
| for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
| BasicBlock *IBB = PN->getIncomingBlock(i); |
| Value *IV = PN->getIncomingValue(i); |
| if (IBB == Preheader) { |
| PreheaderIdx = i; |
| } else { |
| NewPN->addIncoming(IV, IBB); |
| if (HasUniqueIncomingValue) { |
| if (UniqueValue == 0) |
| UniqueValue = IV; |
| else if (UniqueValue != IV) |
| HasUniqueIncomingValue = false; |
| } |
| } |
| } |
| |
| // Delete all of the incoming values from the old PN except the preheader's |
| assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); |
| if (PreheaderIdx != 0) { |
| PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); |
| PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); |
| } |
| // Nuke all entries except the zero'th. |
| for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) |
| PN->removeIncomingValue(e-i, false); |
| |
| // Finally, add the newly constructed PHI node as the entry for the BEBlock. |
| PN->addIncoming(NewPN, BEBlock); |
| |
| // As an optimization, if all incoming values in the new PhiNode (which is a |
| // subset of the incoming values of the old PHI node) have the same value, |
| // eliminate the PHI Node. |
| if (HasUniqueIncomingValue) { |
| NewPN->replaceAllUsesWith(UniqueValue); |
| if (AA) AA->deleteValue(NewPN); |
| BEBlock->getInstList().erase(NewPN); |
| } |
| } |
| |
| // Now that all of the PHI nodes have been inserted and adjusted, modify the |
| // backedge blocks to just to the BEBlock instead of the header. |
| for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { |
| TerminatorInst *TI = BackedgeBlocks[i]->getTerminator(); |
| for (unsigned Op = 0, e = TI->getNumSuccessors(); Op != e; ++Op) |
| if (TI->getSuccessor(Op) == Header) |
| TI->setSuccessor(Op, BEBlock); |
| } |
| |
| //===--- Update all analyses which we must preserve now -----------------===// |
| |
| // Update Loop Information - we know that this block is now in the current |
| // loop and all parent loops. |
| L->addBasicBlockToLoop(BEBlock, LI->getBase()); |
| |
| // Update dominator information |
| DT->splitBlock(BEBlock); |
| |
| return BEBlock; |
| } |
| |
| void LoopSimplify::verifyAnalysis() const { |
| // It used to be possible to just assert L->isLoopSimplifyForm(), however |
| // with the introduction of indirectbr, there are now cases where it's |
| // not possible to transform a loop as necessary. We can at least check |
| // that there is an indirectbr near any time there's trouble. |
| |
| // Indirectbr can interfere with preheader and unique backedge insertion. |
| if (!L->getLoopPreheader() || !L->getLoopLatch()) { |
| bool HasIndBrPred = false; |
| for (pred_iterator PI = pred_begin(L->getHeader()), |
| PE = pred_end(L->getHeader()); PI != PE; ++PI) |
| if (isa<IndirectBrInst>((*PI)->getTerminator())) { |
| HasIndBrPred = true; |
| break; |
| } |
| assert(HasIndBrPred && |
| "LoopSimplify has no excuse for missing loop header info!"); |
| (void)HasIndBrPred; |
| } |
| |
| // Indirectbr can interfere with exit block canonicalization. |
| if (!L->hasDedicatedExits()) { |
| bool HasIndBrExiting = false; |
| SmallVector<BasicBlock*, 8> ExitingBlocks; |
| L->getExitingBlocks(ExitingBlocks); |
| for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { |
| if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { |
| HasIndBrExiting = true; |
| break; |
| } |
| } |
| |
| assert(HasIndBrExiting && |
| "LoopSimplify has no excuse for missing exit block info!"); |
| (void)HasIndBrExiting; |
| } |
| } |