| /* |
| * Contributed to the OpenSSL Project by the American Registry for |
| * Internet Numbers ("ARIN"). |
| */ |
| /* ==================================================================== |
| * Copyright (c) 2006 The OpenSSL Project. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in |
| * the documentation and/or other materials provided with the |
| * distribution. |
| * |
| * 3. All advertising materials mentioning features or use of this |
| * software must display the following acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)" |
| * |
| * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to |
| * endorse or promote products derived from this software without |
| * prior written permission. For written permission, please contact |
| * licensing@OpenSSL.org. |
| * |
| * 5. Products derived from this software may not be called "OpenSSL" |
| * nor may "OpenSSL" appear in their names without prior written |
| * permission of the OpenSSL Project. |
| * |
| * 6. Redistributions of any form whatsoever must retain the following |
| * acknowledgment: |
| * "This product includes software developed by the OpenSSL Project |
| * for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)" |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY |
| * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR |
| * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * ==================================================================== |
| * |
| * This product includes cryptographic software written by Eric Young |
| * (eay@cryptsoft.com). This product includes software written by Tim |
| * Hudson (tjh@cryptsoft.com). |
| */ |
| |
| /* |
| * Implementation of RFC 3779 section 2.2. |
| */ |
| |
| #include <stdio.h> |
| #include <stdlib.h> |
| |
| #include "cryptlib.h" |
| #include <openssl/conf.h> |
| #include <openssl/asn1.h> |
| #include <openssl/asn1t.h> |
| #include <openssl/buffer.h> |
| #include <openssl/x509v3.h> |
| |
| #ifndef OPENSSL_NO_RFC3779 |
| |
| /* |
| * OpenSSL ASN.1 template translation of RFC 3779 2.2.3. |
| */ |
| |
| ASN1_SEQUENCE(IPAddressRange) = { |
| ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING), |
| ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING) |
| } ASN1_SEQUENCE_END(IPAddressRange) |
| |
| ASN1_CHOICE(IPAddressOrRange) = { |
| ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING), |
| ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange) |
| } ASN1_CHOICE_END(IPAddressOrRange) |
| |
| ASN1_CHOICE(IPAddressChoice) = { |
| ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL), |
| ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange) |
| } ASN1_CHOICE_END(IPAddressChoice) |
| |
| ASN1_SEQUENCE(IPAddressFamily) = { |
| ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING), |
| ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice) |
| } ASN1_SEQUENCE_END(IPAddressFamily) |
| |
| ASN1_ITEM_TEMPLATE(IPAddrBlocks) = |
| ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, |
| IPAddrBlocks, IPAddressFamily) |
| ASN1_ITEM_TEMPLATE_END(IPAddrBlocks) |
| |
| IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange) |
| IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange) |
| IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice) |
| IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily) |
| |
| /* |
| * How much buffer space do we need for a raw address? |
| */ |
| #define ADDR_RAW_BUF_LEN 16 |
| |
| /* |
| * What's the address length associated with this AFI? |
| */ |
| static int length_from_afi(const unsigned afi) |
| { |
| switch (afi) { |
| case IANA_AFI_IPV4: |
| return 4; |
| case IANA_AFI_IPV6: |
| return 16; |
| default: |
| return 0; |
| } |
| } |
| |
| /* |
| * Extract the AFI from an IPAddressFamily. |
| */ |
| unsigned int v3_addr_get_afi(const IPAddressFamily *f) |
| { |
| return ((f != NULL && |
| f->addressFamily != NULL && |
| f->addressFamily->data != NULL) |
| ? ((f->addressFamily->data[0] << 8) | |
| (f->addressFamily->data[1])) |
| : 0); |
| } |
| |
| /* |
| * Expand the bitstring form of an address into a raw byte array. |
| * At the moment this is coded for simplicity, not speed. |
| */ |
| static int addr_expand(unsigned char *addr, |
| const ASN1_BIT_STRING *bs, |
| const int length, |
| const unsigned char fill) |
| { |
| if (bs->length < 0 || bs->length > length) |
| return 0; |
| if (bs->length > 0) { |
| memcpy(addr, bs->data, bs->length); |
| if ((bs->flags & 7) != 0) { |
| unsigned char mask = 0xFF >> (8 - (bs->flags & 7)); |
| if (fill == 0) |
| addr[bs->length - 1] &= ~mask; |
| else |
| addr[bs->length - 1] |= mask; |
| } |
| } |
| memset(addr + bs->length, fill, length - bs->length); |
| return 1; |
| } |
| |
| /* |
| * Extract the prefix length from a bitstring. |
| */ |
| #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7))) |
| |
| /* |
| * i2r handler for one address bitstring. |
| */ |
| static int i2r_address(BIO *out, |
| const unsigned afi, |
| const unsigned char fill, |
| const ASN1_BIT_STRING *bs) |
| { |
| unsigned char addr[ADDR_RAW_BUF_LEN]; |
| int i, n; |
| |
| if (bs->length < 0) |
| return 0; |
| switch (afi) { |
| case IANA_AFI_IPV4: |
| if (!addr_expand(addr, bs, 4, fill)) |
| return 0; |
| BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]); |
| break; |
| case IANA_AFI_IPV6: |
| if (!addr_expand(addr, bs, 16, fill)) |
| return 0; |
| for (n = 16; n > 1 && addr[n-1] == 0x00 && addr[n-2] == 0x00; n -= 2) |
| ; |
| for (i = 0; i < n; i += 2) |
| BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i+1], (i < 14 ? ":" : "")); |
| if (i < 16) |
| BIO_puts(out, ":"); |
| if (i == 0) |
| BIO_puts(out, ":"); |
| break; |
| default: |
| for (i = 0; i < bs->length; i++) |
| BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]); |
| BIO_printf(out, "[%d]", (int) (bs->flags & 7)); |
| break; |
| } |
| return 1; |
| } |
| |
| /* |
| * i2r handler for a sequence of addresses and ranges. |
| */ |
| static int i2r_IPAddressOrRanges(BIO *out, |
| const int indent, |
| const IPAddressOrRanges *aors, |
| const unsigned afi) |
| { |
| int i; |
| for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { |
| const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i); |
| BIO_printf(out, "%*s", indent, ""); |
| switch (aor->type) { |
| case IPAddressOrRange_addressPrefix: |
| if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix)) |
| return 0; |
| BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix)); |
| continue; |
| case IPAddressOrRange_addressRange: |
| if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min)) |
| return 0; |
| BIO_puts(out, "-"); |
| if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max)) |
| return 0; |
| BIO_puts(out, "\n"); |
| continue; |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| * i2r handler for an IPAddrBlocks extension. |
| */ |
| static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, |
| void *ext, |
| BIO *out, |
| int indent) |
| { |
| const IPAddrBlocks *addr = ext; |
| int i; |
| for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
| IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); |
| const unsigned int afi = v3_addr_get_afi(f); |
| switch (afi) { |
| case IANA_AFI_IPV4: |
| BIO_printf(out, "%*sIPv4", indent, ""); |
| break; |
| case IANA_AFI_IPV6: |
| BIO_printf(out, "%*sIPv6", indent, ""); |
| break; |
| default: |
| BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); |
| break; |
| } |
| if (f->addressFamily->length > 2) { |
| switch (f->addressFamily->data[2]) { |
| case 1: |
| BIO_puts(out, " (Unicast)"); |
| break; |
| case 2: |
| BIO_puts(out, " (Multicast)"); |
| break; |
| case 3: |
| BIO_puts(out, " (Unicast/Multicast)"); |
| break; |
| case 4: |
| BIO_puts(out, " (MPLS)"); |
| break; |
| case 64: |
| BIO_puts(out, " (Tunnel)"); |
| break; |
| case 65: |
| BIO_puts(out, " (VPLS)"); |
| break; |
| case 66: |
| BIO_puts(out, " (BGP MDT)"); |
| break; |
| case 128: |
| BIO_puts(out, " (MPLS-labeled VPN)"); |
| break; |
| default: |
| BIO_printf(out, " (Unknown SAFI %u)", |
| (unsigned) f->addressFamily->data[2]); |
| break; |
| } |
| } |
| switch (f->ipAddressChoice->type) { |
| case IPAddressChoice_inherit: |
| BIO_puts(out, ": inherit\n"); |
| break; |
| case IPAddressChoice_addressesOrRanges: |
| BIO_puts(out, ":\n"); |
| if (!i2r_IPAddressOrRanges(out, |
| indent + 2, |
| f->ipAddressChoice->u.addressesOrRanges, |
| afi)) |
| return 0; |
| break; |
| } |
| } |
| return 1; |
| } |
| |
| /* |
| * Sort comparison function for a sequence of IPAddressOrRange |
| * elements. |
| * |
| * There's no sane answer we can give if addr_expand() fails, and an |
| * assertion failure on externally supplied data is seriously uncool, |
| * so we just arbitrarily declare that if given invalid inputs this |
| * function returns -1. If this messes up your preferred sort order |
| * for garbage input, tough noogies. |
| */ |
| static int IPAddressOrRange_cmp(const IPAddressOrRange *a, |
| const IPAddressOrRange *b, |
| const int length) |
| { |
| unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; |
| int prefixlen_a = 0, prefixlen_b = 0; |
| int r; |
| |
| switch (a->type) { |
| case IPAddressOrRange_addressPrefix: |
| if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00)) |
| return -1; |
| prefixlen_a = addr_prefixlen(a->u.addressPrefix); |
| break; |
| case IPAddressOrRange_addressRange: |
| if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00)) |
| return -1; |
| prefixlen_a = length * 8; |
| break; |
| } |
| |
| switch (b->type) { |
| case IPAddressOrRange_addressPrefix: |
| if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00)) |
| return -1; |
| prefixlen_b = addr_prefixlen(b->u.addressPrefix); |
| break; |
| case IPAddressOrRange_addressRange: |
| if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00)) |
| return -1; |
| prefixlen_b = length * 8; |
| break; |
| } |
| |
| if ((r = memcmp(addr_a, addr_b, length)) != 0) |
| return r; |
| else |
| return prefixlen_a - prefixlen_b; |
| } |
| |
| /* |
| * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() |
| * comparision routines are only allowed two arguments. |
| */ |
| static int v4IPAddressOrRange_cmp(const IPAddressOrRange * const *a, |
| const IPAddressOrRange * const *b) |
| { |
| return IPAddressOrRange_cmp(*a, *b, 4); |
| } |
| |
| /* |
| * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() |
| * comparision routines are only allowed two arguments. |
| */ |
| static int v6IPAddressOrRange_cmp(const IPAddressOrRange * const *a, |
| const IPAddressOrRange * const *b) |
| { |
| return IPAddressOrRange_cmp(*a, *b, 16); |
| } |
| |
| /* |
| * Calculate whether a range collapses to a prefix. |
| * See last paragraph of RFC 3779 2.2.3.7. |
| */ |
| static int range_should_be_prefix(const unsigned char *min, |
| const unsigned char *max, |
| const int length) |
| { |
| unsigned char mask; |
| int i, j; |
| |
| OPENSSL_assert(memcmp(min, max, length) <= 0); |
| for (i = 0; i < length && min[i] == max[i]; i++) |
| ; |
| for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) |
| ; |
| if (i < j) |
| return -1; |
| if (i > j) |
| return i * 8; |
| mask = min[i] ^ max[i]; |
| switch (mask) { |
| case 0x01: j = 7; break; |
| case 0x03: j = 6; break; |
| case 0x07: j = 5; break; |
| case 0x0F: j = 4; break; |
| case 0x1F: j = 3; break; |
| case 0x3F: j = 2; break; |
| case 0x7F: j = 1; break; |
| default: return -1; |
| } |
| if ((min[i] & mask) != 0 || (max[i] & mask) != mask) |
| return -1; |
| else |
| return i * 8 + j; |
| } |
| |
| /* |
| * Construct a prefix. |
| */ |
| static int make_addressPrefix(IPAddressOrRange **result, |
| unsigned char *addr, |
| const int prefixlen) |
| { |
| int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8; |
| IPAddressOrRange *aor = IPAddressOrRange_new(); |
| |
| if (aor == NULL) |
| return 0; |
| aor->type = IPAddressOrRange_addressPrefix; |
| if (aor->u.addressPrefix == NULL && |
| (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) |
| goto err; |
| if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen)) |
| goto err; |
| aor->u.addressPrefix->flags &= ~7; |
| aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT; |
| if (bitlen > 0) { |
| aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen); |
| aor->u.addressPrefix->flags |= 8 - bitlen; |
| } |
| |
| *result = aor; |
| return 1; |
| |
| err: |
| IPAddressOrRange_free(aor); |
| return 0; |
| } |
| |
| /* |
| * Construct a range. If it can be expressed as a prefix, |
| * return a prefix instead. Doing this here simplifies |
| * the rest of the code considerably. |
| */ |
| static int make_addressRange(IPAddressOrRange **result, |
| unsigned char *min, |
| unsigned char *max, |
| const int length) |
| { |
| IPAddressOrRange *aor; |
| int i, prefixlen; |
| |
| if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0) |
| return make_addressPrefix(result, min, prefixlen); |
| |
| if ((aor = IPAddressOrRange_new()) == NULL) |
| return 0; |
| aor->type = IPAddressOrRange_addressRange; |
| OPENSSL_assert(aor->u.addressRange == NULL); |
| if ((aor->u.addressRange = IPAddressRange_new()) == NULL) |
| goto err; |
| if (aor->u.addressRange->min == NULL && |
| (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL) |
| goto err; |
| if (aor->u.addressRange->max == NULL && |
| (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL) |
| goto err; |
| |
| for (i = length; i > 0 && min[i - 1] == 0x00; --i) |
| ; |
| if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) |
| goto err; |
| aor->u.addressRange->min->flags &= ~7; |
| aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT; |
| if (i > 0) { |
| unsigned char b = min[i - 1]; |
| int j = 1; |
| while ((b & (0xFFU >> j)) != 0) |
| ++j; |
| aor->u.addressRange->min->flags |= 8 - j; |
| } |
| |
| for (i = length; i > 0 && max[i - 1] == 0xFF; --i) |
| ; |
| if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) |
| goto err; |
| aor->u.addressRange->max->flags &= ~7; |
| aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT; |
| if (i > 0) { |
| unsigned char b = max[i - 1]; |
| int j = 1; |
| while ((b & (0xFFU >> j)) != (0xFFU >> j)) |
| ++j; |
| aor->u.addressRange->max->flags |= 8 - j; |
| } |
| |
| *result = aor; |
| return 1; |
| |
| err: |
| IPAddressOrRange_free(aor); |
| return 0; |
| } |
| |
| /* |
| * Construct a new address family or find an existing one. |
| */ |
| static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr, |
| const unsigned afi, |
| const unsigned *safi) |
| { |
| IPAddressFamily *f; |
| unsigned char key[3]; |
| unsigned keylen; |
| int i; |
| |
| key[0] = (afi >> 8) & 0xFF; |
| key[1] = afi & 0xFF; |
| if (safi != NULL) { |
| key[2] = *safi & 0xFF; |
| keylen = 3; |
| } else { |
| keylen = 2; |
| } |
| |
| for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
| f = sk_IPAddressFamily_value(addr, i); |
| OPENSSL_assert(f->addressFamily->data != NULL); |
| if (f->addressFamily->length == keylen && |
| !memcmp(f->addressFamily->data, key, keylen)) |
| return f; |
| } |
| |
| if ((f = IPAddressFamily_new()) == NULL) |
| goto err; |
| if (f->ipAddressChoice == NULL && |
| (f->ipAddressChoice = IPAddressChoice_new()) == NULL) |
| goto err; |
| if (f->addressFamily == NULL && |
| (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL) |
| goto err; |
| if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen)) |
| goto err; |
| if (!sk_IPAddressFamily_push(addr, f)) |
| goto err; |
| |
| return f; |
| |
| err: |
| IPAddressFamily_free(f); |
| return NULL; |
| } |
| |
| /* |
| * Add an inheritance element. |
| */ |
| int v3_addr_add_inherit(IPAddrBlocks *addr, |
| const unsigned afi, |
| const unsigned *safi) |
| { |
| IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); |
| if (f == NULL || |
| f->ipAddressChoice == NULL || |
| (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && |
| f->ipAddressChoice->u.addressesOrRanges != NULL)) |
| return 0; |
| if (f->ipAddressChoice->type == IPAddressChoice_inherit && |
| f->ipAddressChoice->u.inherit != NULL) |
| return 1; |
| if (f->ipAddressChoice->u.inherit == NULL && |
| (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) |
| return 0; |
| f->ipAddressChoice->type = IPAddressChoice_inherit; |
| return 1; |
| } |
| |
| /* |
| * Construct an IPAddressOrRange sequence, or return an existing one. |
| */ |
| static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr, |
| const unsigned afi, |
| const unsigned *safi) |
| { |
| IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); |
| IPAddressOrRanges *aors = NULL; |
| |
| if (f == NULL || |
| f->ipAddressChoice == NULL || |
| (f->ipAddressChoice->type == IPAddressChoice_inherit && |
| f->ipAddressChoice->u.inherit != NULL)) |
| return NULL; |
| if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) |
| aors = f->ipAddressChoice->u.addressesOrRanges; |
| if (aors != NULL) |
| return aors; |
| if ((aors = sk_IPAddressOrRange_new_null()) == NULL) |
| return NULL; |
| switch (afi) { |
| case IANA_AFI_IPV4: |
| (void) sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp); |
| break; |
| case IANA_AFI_IPV6: |
| (void) sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp); |
| break; |
| } |
| f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; |
| f->ipAddressChoice->u.addressesOrRanges = aors; |
| return aors; |
| } |
| |
| /* |
| * Add a prefix. |
| */ |
| int v3_addr_add_prefix(IPAddrBlocks *addr, |
| const unsigned afi, |
| const unsigned *safi, |
| unsigned char *a, |
| const int prefixlen) |
| { |
| IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); |
| IPAddressOrRange *aor; |
| if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen)) |
| return 0; |
| if (sk_IPAddressOrRange_push(aors, aor)) |
| return 1; |
| IPAddressOrRange_free(aor); |
| return 0; |
| } |
| |
| /* |
| * Add a range. |
| */ |
| int v3_addr_add_range(IPAddrBlocks *addr, |
| const unsigned afi, |
| const unsigned *safi, |
| unsigned char *min, |
| unsigned char *max) |
| { |
| IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); |
| IPAddressOrRange *aor; |
| int length = length_from_afi(afi); |
| if (aors == NULL) |
| return 0; |
| if (!make_addressRange(&aor, min, max, length)) |
| return 0; |
| if (sk_IPAddressOrRange_push(aors, aor)) |
| return 1; |
| IPAddressOrRange_free(aor); |
| return 0; |
| } |
| |
| /* |
| * Extract min and max values from an IPAddressOrRange. |
| */ |
| static int extract_min_max(IPAddressOrRange *aor, |
| unsigned char *min, |
| unsigned char *max, |
| int length) |
| { |
| if (aor == NULL || min == NULL || max == NULL) |
| return 0; |
| switch (aor->type) { |
| case IPAddressOrRange_addressPrefix: |
| return (addr_expand(min, aor->u.addressPrefix, length, 0x00) && |
| addr_expand(max, aor->u.addressPrefix, length, 0xFF)); |
| case IPAddressOrRange_addressRange: |
| return (addr_expand(min, aor->u.addressRange->min, length, 0x00) && |
| addr_expand(max, aor->u.addressRange->max, length, 0xFF)); |
| } |
| return 0; |
| } |
| |
| /* |
| * Public wrapper for extract_min_max(). |
| */ |
| int v3_addr_get_range(IPAddressOrRange *aor, |
| const unsigned afi, |
| unsigned char *min, |
| unsigned char *max, |
| const int length) |
| { |
| int afi_length = length_from_afi(afi); |
| if (aor == NULL || min == NULL || max == NULL || |
| afi_length == 0 || length < afi_length || |
| (aor->type != IPAddressOrRange_addressPrefix && |
| aor->type != IPAddressOrRange_addressRange) || |
| !extract_min_max(aor, min, max, afi_length)) |
| return 0; |
| |
| return afi_length; |
| } |
| |
| /* |
| * Sort comparision function for a sequence of IPAddressFamily. |
| * |
| * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about |
| * the ordering: I can read it as meaning that IPv6 without a SAFI |
| * comes before IPv4 with a SAFI, which seems pretty weird. The |
| * examples in appendix B suggest that the author intended the |
| * null-SAFI rule to apply only within a single AFI, which is what I |
| * would have expected and is what the following code implements. |
| */ |
| static int IPAddressFamily_cmp(const IPAddressFamily * const *a_, |
| const IPAddressFamily * const *b_) |
| { |
| const ASN1_OCTET_STRING *a = (*a_)->addressFamily; |
| const ASN1_OCTET_STRING *b = (*b_)->addressFamily; |
| int len = ((a->length <= b->length) ? a->length : b->length); |
| int cmp = memcmp(a->data, b->data, len); |
| return cmp ? cmp : a->length - b->length; |
| } |
| |
| /* |
| * Check whether an IPAddrBLocks is in canonical form. |
| */ |
| int v3_addr_is_canonical(IPAddrBlocks *addr) |
| { |
| unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; |
| unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; |
| IPAddressOrRanges *aors; |
| int i, j, k; |
| |
| /* |
| * Empty extension is cannonical. |
| */ |
| if (addr == NULL) |
| return 1; |
| |
| /* |
| * Check whether the top-level list is in order. |
| */ |
| for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { |
| const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i); |
| const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1); |
| if (IPAddressFamily_cmp(&a, &b) >= 0) |
| return 0; |
| } |
| |
| /* |
| * Top level's ok, now check each address family. |
| */ |
| for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
| IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); |
| int length = length_from_afi(v3_addr_get_afi(f)); |
| |
| /* |
| * Inheritance is canonical. Anything other than inheritance or |
| * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something. |
| */ |
| if (f == NULL || f->ipAddressChoice == NULL) |
| return 0; |
| switch (f->ipAddressChoice->type) { |
| case IPAddressChoice_inherit: |
| continue; |
| case IPAddressChoice_addressesOrRanges: |
| break; |
| default: |
| return 0; |
| } |
| |
| /* |
| * It's an IPAddressOrRanges sequence, check it. |
| */ |
| aors = f->ipAddressChoice->u.addressesOrRanges; |
| if (sk_IPAddressOrRange_num(aors) == 0) |
| return 0; |
| for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { |
| IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); |
| IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1); |
| |
| if (!extract_min_max(a, a_min, a_max, length) || |
| !extract_min_max(b, b_min, b_max, length)) |
| return 0; |
| |
| /* |
| * Punt misordered list, overlapping start, or inverted range. |
| */ |
| if (memcmp(a_min, b_min, length) >= 0 || |
| memcmp(a_min, a_max, length) > 0 || |
| memcmp(b_min, b_max, length) > 0) |
| return 0; |
| |
| /* |
| * Punt if adjacent or overlapping. Check for adjacency by |
| * subtracting one from b_min first. |
| */ |
| for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) |
| ; |
| if (memcmp(a_max, b_min, length) >= 0) |
| return 0; |
| |
| /* |
| * Check for range that should be expressed as a prefix. |
| */ |
| if (a->type == IPAddressOrRange_addressRange && |
| range_should_be_prefix(a_min, a_max, length) >= 0) |
| return 0; |
| } |
| |
| /* |
| * Check range to see if it's inverted or should be a |
| * prefix. |
| */ |
| j = sk_IPAddressOrRange_num(aors) - 1; |
| { |
| IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); |
| if (a != NULL && a->type == IPAddressOrRange_addressRange) { |
| if (!extract_min_max(a, a_min, a_max, length)) |
| return 0; |
| if (memcmp(a_min, a_max, length) > 0 || |
| range_should_be_prefix(a_min, a_max, length) >= 0) |
| return 0; |
| } |
| } |
| } |
| |
| /* |
| * If we made it through all that, we're happy. |
| */ |
| return 1; |
| } |
| |
| /* |
| * Whack an IPAddressOrRanges into canonical form. |
| */ |
| static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors, |
| const unsigned afi) |
| { |
| int i, j, length = length_from_afi(afi); |
| |
| /* |
| * Sort the IPAddressOrRanges sequence. |
| */ |
| sk_IPAddressOrRange_sort(aors); |
| |
| /* |
| * Clean up representation issues, punt on duplicates or overlaps. |
| */ |
| for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { |
| IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i); |
| IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1); |
| unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; |
| unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; |
| |
| if (!extract_min_max(a, a_min, a_max, length) || |
| !extract_min_max(b, b_min, b_max, length)) |
| return 0; |
| |
| /* |
| * Punt inverted ranges. |
| */ |
| if (memcmp(a_min, a_max, length) > 0 || |
| memcmp(b_min, b_max, length) > 0) |
| return 0; |
| |
| /* |
| * Punt overlaps. |
| */ |
| if (memcmp(a_max, b_min, length) >= 0) |
| return 0; |
| |
| /* |
| * Merge if a and b are adjacent. We check for |
| * adjacency by subtracting one from b_min first. |
| */ |
| for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) |
| ; |
| if (memcmp(a_max, b_min, length) == 0) { |
| IPAddressOrRange *merged; |
| if (!make_addressRange(&merged, a_min, b_max, length)) |
| return 0; |
| (void) sk_IPAddressOrRange_set(aors, i, merged); |
| (void) sk_IPAddressOrRange_delete(aors, i + 1); |
| IPAddressOrRange_free(a); |
| IPAddressOrRange_free(b); |
| --i; |
| continue; |
| } |
| } |
| |
| /* |
| * Check for inverted final range. |
| */ |
| j = sk_IPAddressOrRange_num(aors) - 1; |
| { |
| IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); |
| if (a != NULL && a->type == IPAddressOrRange_addressRange) { |
| unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; |
| extract_min_max(a, a_min, a_max, length); |
| if (memcmp(a_min, a_max, length) > 0) |
| return 0; |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * Whack an IPAddrBlocks extension into canonical form. |
| */ |
| int v3_addr_canonize(IPAddrBlocks *addr) |
| { |
| int i; |
| for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
| IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); |
| if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && |
| !IPAddressOrRanges_canonize(f->ipAddressChoice->u.addressesOrRanges, |
| v3_addr_get_afi(f))) |
| return 0; |
| } |
| (void) sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp); |
| sk_IPAddressFamily_sort(addr); |
| OPENSSL_assert(v3_addr_is_canonical(addr)); |
| return 1; |
| } |
| |
| /* |
| * v2i handler for the IPAddrBlocks extension. |
| */ |
| static void *v2i_IPAddrBlocks(const struct v3_ext_method *method, |
| struct v3_ext_ctx *ctx, |
| STACK_OF(CONF_VALUE) *values) |
| { |
| static const char v4addr_chars[] = "0123456789."; |
| static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; |
| IPAddrBlocks *addr = NULL; |
| char *s = NULL, *t; |
| int i; |
| |
| if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { |
| X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); |
| return NULL; |
| } |
| |
| for (i = 0; i < sk_CONF_VALUE_num(values); i++) { |
| CONF_VALUE *val = sk_CONF_VALUE_value(values, i); |
| unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; |
| unsigned afi, *safi = NULL, safi_; |
| const char *addr_chars; |
| int prefixlen, i1, i2, delim, length; |
| |
| if ( !name_cmp(val->name, "IPv4")) { |
| afi = IANA_AFI_IPV4; |
| } else if (!name_cmp(val->name, "IPv6")) { |
| afi = IANA_AFI_IPV6; |
| } else if (!name_cmp(val->name, "IPv4-SAFI")) { |
| afi = IANA_AFI_IPV4; |
| safi = &safi_; |
| } else if (!name_cmp(val->name, "IPv6-SAFI")) { |
| afi = IANA_AFI_IPV6; |
| safi = &safi_; |
| } else { |
| X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_NAME_ERROR); |
| X509V3_conf_err(val); |
| goto err; |
| } |
| |
| switch (afi) { |
| case IANA_AFI_IPV4: |
| addr_chars = v4addr_chars; |
| break; |
| case IANA_AFI_IPV6: |
| addr_chars = v6addr_chars; |
| break; |
| } |
| |
| length = length_from_afi(afi); |
| |
| /* |
| * Handle SAFI, if any, and BUF_strdup() so we can null-terminate |
| * the other input values. |
| */ |
| if (safi != NULL) { |
| *safi = strtoul(val->value, &t, 0); |
| t += strspn(t, " \t"); |
| if (*safi > 0xFF || *t++ != ':') { |
| X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI); |
| X509V3_conf_err(val); |
| goto err; |
| } |
| t += strspn(t, " \t"); |
| s = BUF_strdup(t); |
| } else { |
| s = BUF_strdup(val->value); |
| } |
| if (s == NULL) { |
| X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| |
| /* |
| * Check for inheritance. Not worth additional complexity to |
| * optimize this (seldom-used) case. |
| */ |
| if (!strcmp(s, "inherit")) { |
| if (!v3_addr_add_inherit(addr, afi, safi)) { |
| X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_INHERITANCE); |
| X509V3_conf_err(val); |
| goto err; |
| } |
| OPENSSL_free(s); |
| s = NULL; |
| continue; |
| } |
| |
| i1 = strspn(s, addr_chars); |
| i2 = i1 + strspn(s + i1, " \t"); |
| delim = s[i2++]; |
| s[i1] = '\0'; |
| |
| if (a2i_ipadd(min, s) != length) { |
| X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); |
| X509V3_conf_err(val); |
| goto err; |
| } |
| |
| switch (delim) { |
| case '/': |
| prefixlen = (int) strtoul(s + i2, &t, 10); |
| if (t == s + i2 || *t != '\0') { |
| X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); |
| X509V3_conf_err(val); |
| goto err; |
| } |
| if (!v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) { |
| X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| break; |
| case '-': |
| i1 = i2 + strspn(s + i2, " \t"); |
| i2 = i1 + strspn(s + i1, addr_chars); |
| if (i1 == i2 || s[i2] != '\0') { |
| X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); |
| X509V3_conf_err(val); |
| goto err; |
| } |
| if (a2i_ipadd(max, s + i1) != length) { |
| X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); |
| X509V3_conf_err(val); |
| goto err; |
| } |
| if (memcmp(min, max, length_from_afi(afi)) > 0) { |
| X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); |
| X509V3_conf_err(val); |
| goto err; |
| } |
| if (!v3_addr_add_range(addr, afi, safi, min, max)) { |
| X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| break; |
| case '\0': |
| if (!v3_addr_add_prefix(addr, afi, safi, min, length * 8)) { |
| X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); |
| goto err; |
| } |
| break; |
| default: |
| X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_EXTENSION_VALUE_ERROR); |
| X509V3_conf_err(val); |
| goto err; |
| } |
| |
| OPENSSL_free(s); |
| s = NULL; |
| } |
| |
| /* |
| * Canonize the result, then we're done. |
| */ |
| if (!v3_addr_canonize(addr)) |
| goto err; |
| return addr; |
| |
| err: |
| OPENSSL_free(s); |
| sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); |
| return NULL; |
| } |
| |
| /* |
| * OpenSSL dispatch |
| */ |
| const X509V3_EXT_METHOD v3_addr = { |
| NID_sbgp_ipAddrBlock, /* nid */ |
| 0, /* flags */ |
| ASN1_ITEM_ref(IPAddrBlocks), /* template */ |
| 0, 0, 0, 0, /* old functions, ignored */ |
| 0, /* i2s */ |
| 0, /* s2i */ |
| 0, /* i2v */ |
| v2i_IPAddrBlocks, /* v2i */ |
| i2r_IPAddrBlocks, /* i2r */ |
| 0, /* r2i */ |
| NULL /* extension-specific data */ |
| }; |
| |
| /* |
| * Figure out whether extension sues inheritance. |
| */ |
| int v3_addr_inherits(IPAddrBlocks *addr) |
| { |
| int i; |
| if (addr == NULL) |
| return 0; |
| for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
| IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); |
| if (f->ipAddressChoice->type == IPAddressChoice_inherit) |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * Figure out whether parent contains child. |
| */ |
| static int addr_contains(IPAddressOrRanges *parent, |
| IPAddressOrRanges *child, |
| int length) |
| { |
| unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN]; |
| unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN]; |
| int p, c; |
| |
| if (child == NULL || parent == child) |
| return 1; |
| if (parent == NULL) |
| return 0; |
| |
| p = 0; |
| for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { |
| if (!extract_min_max(sk_IPAddressOrRange_value(child, c), |
| c_min, c_max, length)) |
| return -1; |
| for (;; p++) { |
| if (p >= sk_IPAddressOrRange_num(parent)) |
| return 0; |
| if (!extract_min_max(sk_IPAddressOrRange_value(parent, p), |
| p_min, p_max, length)) |
| return 0; |
| if (memcmp(p_max, c_max, length) < 0) |
| continue; |
| if (memcmp(p_min, c_min, length) > 0) |
| return 0; |
| break; |
| } |
| } |
| |
| return 1; |
| } |
| |
| /* |
| * Test whether a is a subset of b. |
| */ |
| int v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) |
| { |
| int i; |
| if (a == NULL || a == b) |
| return 1; |
| if (b == NULL || v3_addr_inherits(a) || v3_addr_inherits(b)) |
| return 0; |
| (void) sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp); |
| for (i = 0; i < sk_IPAddressFamily_num(a); i++) { |
| IPAddressFamily *fa = sk_IPAddressFamily_value(a, i); |
| int j = sk_IPAddressFamily_find(b, fa); |
| IPAddressFamily *fb; |
| fb = sk_IPAddressFamily_value(b, j); |
| if (fb == NULL) |
| return 0; |
| if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, |
| fa->ipAddressChoice->u.addressesOrRanges, |
| length_from_afi(v3_addr_get_afi(fb)))) |
| return 0; |
| } |
| return 1; |
| } |
| |
| /* |
| * Validation error handling via callback. |
| */ |
| #define validation_err(_err_) \ |
| do { \ |
| if (ctx != NULL) { \ |
| ctx->error = _err_; \ |
| ctx->error_depth = i; \ |
| ctx->current_cert = x; \ |
| ret = ctx->verify_cb(0, ctx); \ |
| } else { \ |
| ret = 0; \ |
| } \ |
| if (!ret) \ |
| goto done; \ |
| } while (0) |
| |
| /* |
| * Core code for RFC 3779 2.3 path validation. |
| */ |
| static int v3_addr_validate_path_internal(X509_STORE_CTX *ctx, |
| STACK_OF(X509) *chain, |
| IPAddrBlocks *ext) |
| { |
| IPAddrBlocks *child = NULL; |
| int i, j, ret = 1; |
| X509 *x; |
| |
| OPENSSL_assert(chain != NULL && sk_X509_num(chain) > 0); |
| OPENSSL_assert(ctx != NULL || ext != NULL); |
| OPENSSL_assert(ctx == NULL || ctx->verify_cb != NULL); |
| |
| /* |
| * Figure out where to start. If we don't have an extension to |
| * check, we're done. Otherwise, check canonical form and |
| * set up for walking up the chain. |
| */ |
| if (ext != NULL) { |
| i = -1; |
| x = NULL; |
| } else { |
| i = 0; |
| x = sk_X509_value(chain, i); |
| OPENSSL_assert(x != NULL); |
| if ((ext = x->rfc3779_addr) == NULL) |
| goto done; |
| } |
| if (!v3_addr_is_canonical(ext)) |
| validation_err(X509_V_ERR_INVALID_EXTENSION); |
| (void) sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); |
| if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { |
| X509V3err(X509V3_F_V3_ADDR_VALIDATE_PATH_INTERNAL, ERR_R_MALLOC_FAILURE); |
| ret = 0; |
| goto done; |
| } |
| |
| /* |
| * Now walk up the chain. No cert may list resources that its |
| * parent doesn't list. |
| */ |
| for (i++; i < sk_X509_num(chain); i++) { |
| x = sk_X509_value(chain, i); |
| OPENSSL_assert(x != NULL); |
| if (!v3_addr_is_canonical(x->rfc3779_addr)) |
| validation_err(X509_V_ERR_INVALID_EXTENSION); |
| if (x->rfc3779_addr == NULL) { |
| for (j = 0; j < sk_IPAddressFamily_num(child); j++) { |
| IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); |
| if (fc->ipAddressChoice->type != IPAddressChoice_inherit) { |
| validation_err(X509_V_ERR_UNNESTED_RESOURCE); |
| break; |
| } |
| } |
| continue; |
| } |
| (void) sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, IPAddressFamily_cmp); |
| for (j = 0; j < sk_IPAddressFamily_num(child); j++) { |
| IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); |
| int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc); |
| IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, k); |
| if (fp == NULL) { |
| if (fc->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { |
| validation_err(X509_V_ERR_UNNESTED_RESOURCE); |
| break; |
| } |
| continue; |
| } |
| if (fp->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) { |
| if (fc->ipAddressChoice->type == IPAddressChoice_inherit || |
| addr_contains(fp->ipAddressChoice->u.addressesOrRanges, |
| fc->ipAddressChoice->u.addressesOrRanges, |
| length_from_afi(v3_addr_get_afi(fc)))) |
| sk_IPAddressFamily_set(child, j, fp); |
| else |
| validation_err(X509_V_ERR_UNNESTED_RESOURCE); |
| } |
| } |
| } |
| |
| /* |
| * Trust anchor can't inherit. |
| */ |
| OPENSSL_assert(x != NULL); |
| if (x->rfc3779_addr != NULL) { |
| for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { |
| IPAddressFamily *fp = sk_IPAddressFamily_value(x->rfc3779_addr, j); |
| if (fp->ipAddressChoice->type == IPAddressChoice_inherit && |
| sk_IPAddressFamily_find(child, fp) >= 0) |
| validation_err(X509_V_ERR_UNNESTED_RESOURCE); |
| } |
| } |
| |
| done: |
| sk_IPAddressFamily_free(child); |
| return ret; |
| } |
| |
| #undef validation_err |
| |
| /* |
| * RFC 3779 2.3 path validation -- called from X509_verify_cert(). |
| */ |
| int v3_addr_validate_path(X509_STORE_CTX *ctx) |
| { |
| return v3_addr_validate_path_internal(ctx, ctx->chain, NULL); |
| } |
| |
| /* |
| * RFC 3779 2.3 path validation of an extension. |
| * Test whether chain covers extension. |
| */ |
| int v3_addr_validate_resource_set(STACK_OF(X509) *chain, |
| IPAddrBlocks *ext, |
| int allow_inheritance) |
| { |
| if (ext == NULL) |
| return 1; |
| if (chain == NULL || sk_X509_num(chain) == 0) |
| return 0; |
| if (!allow_inheritance && v3_addr_inherits(ext)) |
| return 0; |
| return v3_addr_validate_path_internal(NULL, chain, ext); |
| } |
| |
| #endif /* OPENSSL_NO_RFC3779 */ |