blob: 2e189f853c0ad1603ed82b9c79445788863839f6 [file] [log] [blame]
/**
* @file xml_utils.cpp
* utility routines for generating XML
*
* @remark Copyright 2006 OProfile authors
* @remark Read the file COPYING
*
* @author Dave Nomura
*/
#include <iostream>
#include <sstream>
#include "xml_utils.h"
#include "format_output.h"
#include "arrange_profiles.h"
#include "op_bfd.h"
#include "cverb.h"
using namespace std;
bool want_xml = false;
size_t nr_classes = 0;
size_t nr_cpus = 0;
size_t nr_events = 0;
sym_iterator symbols_begin;
sym_iterator symbols_end;
// handle on xml_formatter object
format_output::xml_formatter * xml_out;
xml_utils * xml_support;
size_t xml_utils::events_index = 0;
bool xml_utils::has_nonzero_masks = false;
ostringstream xml_options;
namespace {
bool has_separated_cpu_info()
{
return classes.v[0].ptemplate.cpu != "all";
}
string get_event_num(size_t pclass)
{
return classes.v[pclass].ptemplate.event;
}
size_t get_next_event_num_pclass(size_t start)
{
string cur_event = get_event_num(start);
size_t i;
for (i = start;
i < nr_classes && get_event_num(i) == cur_event;
++i) ;
return i;
}
void dump_symbol(string const & prefix, sym_iterator it, bool want_nl = true)
{
if (it == symbols_end)
cverb << vxml << prefix << "END";
else
cverb << vxml << prefix << symbol_names.name((*it)->name);
if (want_nl)
cverb << vxml << endl;
}
void dump_symbols(string const & prefix, sym_iterator b, sym_iterator e)
{
if (b == (sym_iterator)0)
return;
for (sym_iterator it = b; it != e; ++it)
dump_symbol(prefix, it, true);
}
void dump_classes()
{
cverb << vxml << "<!-- classes dump" << endl;
cverb << vxml << classes.event;
cverb << vxml << "classes.size= " << classes.v.size() << endl;
for (size_t i = 0; i < classes.v.size(); ++i) {
cverb << vxml << "--- class " << i << ":" << classes.v[i].name << " ---" << endl;
cverb << vxml << classes.v[i].ptemplate;
}
cverb << vxml << "-->" << endl;
}
bool has_separated_thread_info()
{
return classes.v[0].ptemplate.tid != "all";
}
string get_cpu_num(size_t pclass)
{
return classes.v[pclass].ptemplate.cpu;
}
}; // anonymous namespace
xml_utils::xml_utils(format_output::xml_formatter * xo,
symbol_collection const & s, size_t nc,
extra_images const & extra)
:
has_subclasses(false),
bytes_index(0),
extra_found_images(extra)
{
xml_out = xo;
nr_classes = nc;
symbols_begin = s.begin();
symbols_end = s.end();
multiple_events = get_next_event_num_pclass(0) != nr_classes;
if (has_separated_cpu_info()) {
size_t cpus = 0;
// count number of cpus
for (size_t p = 0; p < nr_classes; ++p) {
size_t cpu = atoi(classes.v[p].ptemplate.cpu.c_str());
if (cpu > cpus) cpus = cpu;
}
// cpus names start with 0
nr_cpus = cpus + 1;
}
}
string xml_utils::get_timer_setup(size_t count)
{
return open_element(TIMER_SETUP, true) +
init_attr(RTC_INTERRUPTS, count) + close_element();
}
string xml_utils::get_event_setup(string event, size_t count,
string unit_mask)
{
ostringstream str;
str << open_element(EVENT_SETUP, true);
str << init_attr(TABLE_ID, events_index++);
str << init_attr(EVENT_NAME, event);
if (unit_mask.size() != 0) str << init_attr(UNIT_MASK, unit_mask);
str << init_attr(SETUP_COUNT, (size_t)count) + close_element();
return str.str();
}
string xml_utils::get_profile_header(string cpu_name, double const speed)
{
ostringstream str;
string cpu_type;
string processor;
string::size_type slash_pos = cpu_name.find("/");
if (slash_pos == string::npos) {
cpu_type = cpu_name;
processor = "";
} else {
cpu_type = cpu_name.substr(0, slash_pos);
processor = cpu_name.substr(slash_pos+1);
}
str << init_attr(CPU_NAME, cpu_type) << endl;
if (processor.size() > 0)
str << init_attr(PROCESSOR, string(processor)) << endl;
if (nr_cpus > 1) str << init_attr(SEPARATED_CPUS, nr_cpus) << endl;
str << init_attr(MHZ, speed) << endl;
return str.str();
}
void xml_utils::set_nr_cpus(size_t cpus)
{
nr_cpus = cpus;
}
void xml_utils::set_nr_events(size_t events)
{
nr_events = events;
}
void xml_utils::set_has_nonzero_masks()
{
has_nonzero_masks = true;
}
void xml_utils::add_option(tag_t tag, string const & value)
{
xml_options << init_attr(tag, value);
}
void xml_utils::add_option(tag_t tag, list<string> const & value)
{
list<string>::const_iterator begin = value.begin();
list<string>::const_iterator end = value.end();
list<string>::const_iterator cit = begin;
ostringstream str;
for (; cit != end; ++cit) {
if (cit != begin)
str << ",";
str << *cit;
}
xml_options << init_attr(tag, str.str());
}
void xml_utils::add_option(tag_t tag, vector<string> const & value)
{
vector<string>::const_iterator begin = value.begin();
vector<string>::const_iterator end = value.end();
vector<string>::const_iterator cit = begin;
ostringstream str;
for (; cit != end; ++cit) {
if (cit != begin)
str << ",";
str << *cit;
}
xml_options << init_attr(tag, str.str());
}
void xml_utils::add_option(tag_t tag, bool value)
{
xml_options << init_attr(tag, (value ? "true" : "false"));
}
void xml_utils::output_xml_header(string const & command_options,
string const & cpu_info, string const & events)
{
// the integer portion indicates the schema version and should change
// both here and in the schema file when major changes are made to
// the schema. changes to opreport, or minor changes to the schema
// can be indicated by changes to the fraction part.
string const schema_version = "3.0";
// This is the XML version, not schema version.
string const xml_header = "<?xml version=\"1.0\" ?>";
cout << xml_header << endl;
cout << open_element(PROFILE, true);
cout << init_attr(SCHEMA_VERSION, schema_version);
cout << cpu_info;
cout << init_attr(TITLE, "opreport " + command_options);
cout << close_element(NONE, true);
cout << open_element(OPTIONS, true) << xml_options.str();
cout << close_element();
cout << open_element(SETUP) << events;
cout << close_element(SETUP) << endl;
}
class subclass_info_t {
public:
string unitmask;
string subclass_name;
};
typedef growable_vector<subclass_info_t> subclass_array_t;
typedef growable_vector<subclass_array_t> event_subclass_t;
typedef growable_vector<event_subclass_t> cpu_subclass_t;
void xml_utils::build_subclasses(ostream & out)
{
size_t subclasses = 0;
string subclass_name;
// when --separate=cpu we will have an event_subclass array for each cpu
cpu_subclass_t cpu_subclasses;
event_subclass_t event_subclasses;
if (nr_cpus <= 1 && nr_events <= 1 && !has_nonzero_masks)
return;
out << open_element(CLASSES);
for (size_t i = 0; i < classes.v.size(); ++i) {
profile_class & pclass = classes.v[i];
size_t event = atoi(pclass.ptemplate.event.c_str());
subclass_array_t * sc_ptr;
// select the right subclass array
if (nr_cpus == 1) {
sc_ptr = &event_subclasses[event];
} else {
size_t cpu = atoi(pclass.ptemplate.cpu.c_str());
sc_ptr = &cpu_subclasses[cpu][event];
}
// search for an existing unitmask
subclass_name = "";
for (size_t j = 0; j < sc_ptr->size(); ++j) {
if ((*sc_ptr)[j].unitmask == pclass.ptemplate.unitmask) {
subclass_name = (*sc_ptr)[j].subclass_name;
break;
}
}
if (subclass_name.size() == 0) {
ostringstream str;
size_t new_index = sc_ptr->size();
// no match found, create a new entry
str << "c" << subclasses++;
subclass_name = str.str();
(*sc_ptr)[new_index].unitmask = pclass.ptemplate.unitmask;
(*sc_ptr)[new_index].subclass_name = subclass_name;
out << open_element(CLASS, true);
out << init_attr(NAME, subclass_name);
if (nr_cpus > 1)
out << init_attr(CPU_NUM, pclass.ptemplate.cpu);
if (nr_events > 1)
out << init_attr(EVENT_NUM, event);
if (has_nonzero_masks)
out << init_attr(EVENT_MASK, pclass.ptemplate.unitmask);
out << close_element();
}
pclass.name = subclass_name;
}
out << close_element(CLASSES);
has_subclasses = true;
}
string
get_counts_string(count_array_t const & counts, size_t begin, size_t end)
{
ostringstream str;
bool got_count = false;
// if no cpu separation then return a simple count, omit zero counts
if (nr_cpus == 1) {
size_t count = counts[begin];
if (count == 0)
return "";
str << count;
return str.str();
}
for (size_t p = begin; p != end; ++p) {
size_t count = counts[p];
if (p != begin) str << ",";
if (count != 0) {
got_count = true;
str << count;
}
}
return got_count ? str.str() : "";
}
void
xml_utils::output_symbol_bytes(ostream & out, symbol_entry const * symb,
size_t sym_id, op_bfd const & abfd)
{
size_t size = symb->size;
scoped_array<unsigned char> contents(new unsigned char[size]);
if (abfd.get_symbol_contents(symb->sym_index, contents.get())) {
string const name = symbol_names.name(symb->name);
out << open_element(BYTES, true) << init_attr(TABLE_ID, sym_id);
out << close_element(NONE, true);
for (size_t i = 0; i < size; ++i) {
char hex_map[] = "0123456789ABCDEF";
char hex[2];
hex[0] = hex_map[(contents[i] >> 4) & 0xf];
hex[1] = hex_map[contents[i] & 0xf];
out << hex[0] << hex[1];
}
out << close_element(BYTES);
}
}
bool
xml_utils::output_summary_data(ostream & out, count_array_t const & summary, size_t pclass)
{
size_t const count = summary[pclass];
if (count == 0)
return false;
out << open_element(COUNT, has_subclasses);
if (has_subclasses) {
out << init_attr(CLASS, classes.v[pclass].name);
out << close_element(NONE, true);
}
out << count;
out << close_element(COUNT);
return true;
}
class module_info {
public:
module_info()
{ lo = hi = 0; name = ""; begin = end = (sym_iterator)0;}
void dump();
void build_module(string const & n, sym_iterator it,
size_t l, size_t h);
string get_name() { return name; }
void set_lo(size_t l) { lo = l; }
void set_hi(size_t h) { hi = h; }
count_array_t const & get_summary() { return summary; }
void set_begin(sym_iterator b);
void set_end(sym_iterator e);
void add_to_summary(count_array_t const & counts);
void output(ostream & out);
bool is_closed(string const & n);
protected:
void output_summary(ostream & out);
void output_symbols(ostream & out, bool is_module);
string name;
sym_iterator begin;
sym_iterator end;
// summary sample data
count_array_t summary;
// range of profile classes approprate for this module
size_t lo;
size_t hi;
};
class thread_info : public module_info {
public:
thread_info() { nr_modules = 0; }
void build_thread(string const & tid, size_t l, size_t h);
bool add_modules(string const & module, sym_iterator it);
void add_module_symbol(string const & n, sym_iterator it);
void summarize();
void set_end(sym_iterator end);
string const get_tid() { return thread_id; }
void output(ostream & out);
void dump();
private:
// indices into the classes array applicable to this process
size_t nr_modules;
string thread_id;
growable_vector<module_info> my_modules;
};
class process_info : public module_info {
public:
process_info() { nr_threads = 0; }
void build_process(string const & pid, size_t l, size_t h);
void add_thread(string const & tid, size_t l, size_t h);
void add_modules(string const & module,
string const & app_name, sym_iterator it);
void summarize();
void set_end(sym_iterator end);
void output(ostream & out);
void dump();
private:
size_t nr_threads;
string process_id;
growable_vector<thread_info> my_threads;
};
class process_root_info {
public:
process_root_info() { nr_processes = 0; }
process_info * add_process(string const & pid, size_t lo, size_t hi);
void add_modules(string const & module, string const & app_name,
sym_iterator it);
void summarize();
void summarize_processes(extra_images const & extra_found_images);
void set_process_end();
void output_process_symbols(ostream & out);
void dump_processes();
private:
size_t nr_processes;
growable_vector<process_info> processes;
};
class binary_info : public module_info {
public:
binary_info() { nr_modules = 0; }
void output(ostream & out);
binary_info * build_binary(string const & n);
void add_module_symbol(string const & module, string const & app,
sym_iterator it);
void close_binary(sym_iterator it);
void dump();
private:
size_t nr_modules;
growable_vector<module_info> my_modules;
};
class binary_root_info {
public:
binary_root_info() { nr_binaries = 0; }
binary_info * add_binary(string const & n, sym_iterator it);
void summarize_binaries(extra_images const & extra_found_images);
void output_binary_symbols(ostream & out);
void dump_binaries();
private:
size_t nr_binaries;
growable_vector<binary_info> binaries;
};
static process_root_info processes_root;
static binary_root_info binaries_root;
void module_info::
build_module(string const & n, sym_iterator it, size_t l, size_t h)
{
name = n;
begin = it;
lo = l;
hi = h;
}
void module_info::add_to_summary(count_array_t const & counts)
{
for (size_t pclass = lo ; pclass <= hi; ++pclass)
summary[pclass] += counts[pclass];
}
void module_info::set_begin(sym_iterator b)
{
if (begin == (sym_iterator)0)
begin = b;
}
void module_info::set_end(sym_iterator e)
{
if (end == (sym_iterator)0)
end = e;
}
bool module_info::is_closed(string const & n)
{
return (name == n) && end != (sym_iterator)0;
}
void module_info::dump()
{
cverb << vxml << " module:class(" << lo << "," << hi << ")=";
cverb << vxml << name << endl;
dump_symbols(" ", begin, end);
}
void module_info::output(ostream & out)
{
out << open_element(MODULE, true);
out << init_attr(NAME, name) << close_element(NONE, true);
output_summary(out);
output_symbols(out, true);
out << close_element(MODULE);
}
void module_info::output_summary(ostream & out)
{
for (size_t p = lo; p <= hi; ++p)
(void)xml_support->output_summary_data(out, summary, p);
}
void module_info::output_symbols(ostream & out, bool is_module)
{
if (begin == (sym_iterator)0)
return;
for (sym_iterator it = begin; it != end; ++it)
xml_out->output_symbol(out, *it, lo, hi, is_module);
}
void binary_info::close_binary(sym_iterator it)
{
set_end(it);
if (nr_modules > 0) {
module_info & m = my_modules[nr_modules-1];
m.set_end(it);
}
}
void binary_info::dump()
{
cverb << vxml << "app_name=" << name << endl;
if (begin != (sym_iterator)0)
dump_symbols(" ", begin, end);
for (size_t i = 0; i < nr_modules; ++i)
my_modules[i].dump();
}
void binary_info::
add_module_symbol(string const & module, string const & app,
sym_iterator it)
{
size_t m = nr_modules;
if (module == app) {
// set begin symbol for binary if not set
set_begin(it);
if (m > 0) {
// close out current module
module_info & mod = my_modules[m-1];
mod.set_end(it);
}
// add symbol count to binary count
add_to_summary((*it)->sample.counts);
return;
}
string current_module_name = (m == 0 ? "" : my_modules[m-1].get_name());
if (module != current_module_name) {
// we have a module distinct from it's binary: --separate=lib
// and this is the first symbol for this module
if (m != 0) {
// close out current module
module_info & mod = my_modules[m-1];
mod.set_end(it);
add_to_summary(mod.get_summary());
}
// mark end of enclosing binary symbols if there have been any
// NOTE: it is possible for the binary's symbols to follow its
// module symbols
if (begin != (sym_iterator)0 && end == (sym_iterator)0)
set_end(it);
// build the new module
nr_modules++;
my_modules[m].build_module(module, it, 0, nr_classes-1);
}
// propagate this symbols counts to the module
my_modules[nr_modules-1].add_to_summary((*it)->sample.counts);
}
void binary_root_info::
summarize_binaries(extra_images const & extra_found_images)
{
binary_info * current_binary = 0;
string current_binary_name = "";
for (sym_iterator it = symbols_begin ; it != symbols_end; ++it) {
string binary = get_image_name((*it)->app_name,
image_name_storage::int_filename, extra_found_images);
string module = get_image_name((*it)->image_name,
image_name_storage::int_filename, extra_found_images);
if (binary != current_binary_name) {
current_binary = binaries_root.add_binary(binary, it);
current_binary_name = binary;
}
current_binary->add_module_symbol(module, binary, it);
}
// close out last binary and module
current_binary->close_binary(symbols_end);
}
process_info *
process_root_info::add_process(string const & pid, size_t lo, size_t hi)
{
processes[nr_processes].build_process(pid, lo, hi);
return &processes[nr_processes++];
}
void process_root_info::
add_modules(string const & module, string const & app_name,
sym_iterator it)
{
for (size_t p = 0; p < nr_processes; ++p)
processes[p].add_modules(module, app_name, it);
}
void process_root_info::summarize()
{
for (size_t p = 0; p < nr_processes; ++p)
processes[p].summarize();
}
void process_root_info::
summarize_processes(extra_images const & extra_found_images)
{
// add modules to the appropriate threads in the process hierarchy
for (sym_iterator it = symbols_begin ; it != symbols_end; ++it) {
string binary = get_image_name((*it)->app_name,
image_name_storage::int_filename, extra_found_images);
string module = get_image_name((*it)->image_name,
image_name_storage::int_filename, extra_found_images);
processes_root.add_modules(module, binary, it);
}
// set end symbol boundary for all modules in all threads
processes_root.set_process_end();
// propagate summaries to process/thread
processes_root.summarize();
}
void process_root_info::set_process_end()
{
for (size_t p = 0; p < nr_processes; ++p)
processes[p].set_end(symbols_end);
}
void process_root_info::output_process_symbols(ostream & out)
{
for (size_t p = 0; p < nr_processes; ++p)
processes[p].output(out);
}
void process_root_info::dump_processes()
{
cverb << vxml << "<!-- processes_dump:" << endl;
for (size_t p = 0; p < nr_processes; ++p)
processes[p].dump();
cverb << vxml << "end processes_dump -->" << endl;
}
binary_info *
binary_info::build_binary(string const & n)
{
name = n;
lo = 0;
hi = nr_classes-1;
return this;
}
void binary_info::output(ostream & out)
{
out << open_element(BINARY, true);
out << init_attr(NAME, name) << close_element(NONE, true);
output_summary(out);
output_symbols(out, false);
for (size_t a = 0; a < nr_modules; ++a)
my_modules[a].output(out);
out << close_element(BINARY);
}
binary_info *
binary_root_info::add_binary(string const & n, sym_iterator it)
{
size_t a = nr_binaries++;
// close out previous binary and module
if (a > 0) binaries[a-1].close_binary(it);
return binaries[a].build_binary(n);
}
void binary_root_info::output_binary_symbols(ostream & out)
{
for (size_t a = 0; a < nr_binaries; ++a)
binaries[a].output(out);
}
void binary_root_info::dump_binaries()
{
cverb << vxml << "<!-- binaries_dump:" << endl;
for (size_t p = 0; p < nr_binaries; ++p)
binaries[p].dump();
cverb << vxml << "end processes_dump -->" << endl;
}
void process_info::build_process(string const & pid, size_t l, size_t h)
{
process_id = pid;
lo = l;
hi = h;
}
void process_info::add_thread(string const & tid, size_t l, size_t h)
{
my_threads[nr_threads++].build_thread(tid, l, h);
}
void process_info::add_modules(string const & module,
string const & app_name, sym_iterator it)
{
bool added = false;
for (size_t t = 0; t < nr_threads; ++t)
added |= my_threads[t].add_modules(module, it);
if (added && name.size() == 0) name = app_name;
}
void process_info::summarize()
{
for (size_t t = 0; t < nr_threads; ++t) {
thread_info & thr = my_threads[t];
thr.summarize();
add_to_summary(thr.get_summary());
}
}
void thread_info::build_thread(string const & tid, size_t l, size_t h)
{
thread_id = tid;
lo = l;
hi = h;
}
void thread_info::summarize()
{
for (size_t m = 0; m < nr_modules; ++m)
add_to_summary(my_modules[m].get_summary());
}
void thread_info::set_end(sym_iterator end)
{
for (size_t m = 0; m < nr_modules; ++m)
my_modules[m].set_end(end);
}
void thread_info::add_module_symbol(string const & n, sym_iterator it)
{
module_info & m = my_modules[nr_modules++];
m.build_module(n, it, lo, hi);
m.add_to_summary((*it)->sample.counts);
}
void thread_info::output(ostream & out)
{
ostringstream thread_summary;
ostringstream modules_output;
output_summary(thread_summary);
for (size_t m = 0; m < nr_modules; ++m)
my_modules[m].output(modules_output);
// ignore threads with no sample data
if (modules_output.str().size() == 0 && thread_summary.str().size() == 0)
return;
out << open_element(THREAD, true);
out << init_attr(THREAD_ID, thread_id) << close_element(NONE, true);
out << thread_summary.str();
out << modules_output.str();
out << close_element(THREAD);
}
bool thread_info::add_modules(string const & module, sym_iterator it)
{
string old_name =
(nr_modules == 0 ? "" : my_modules[nr_modules-1].get_name());
if (nr_modules > 0 && old_name != module) {
module_info & m = my_modules[nr_modules-1];
// close out previous module if it hasn't already been closed out
if (!m.is_closed(old_name))
m.set_end(it);
}
// add a new module for this symbol if it has a non-zero count
if (nr_modules == 0 || module != old_name) {
if (has_sample_counts((*it)->sample.counts, lo, hi)) {
add_module_symbol(module, it);
return true;
}
} else {
// propagate symbols count to module
my_modules[nr_modules-1].add_to_summary((*it)->sample.counts);
}
return false;
}
void thread_info::dump()
{
cverb << vxml << "tid=" << thread_id << endl;
for (size_t i = 0; i < nr_modules; ++i)
my_modules[i].dump();
}
void process_info::set_end(sym_iterator end)
{
for (size_t t = 0; t < nr_threads; ++t)
my_threads[t].set_end(end);
}
void process_info::output(ostream & out)
{
ostringstream process_summary;
ostringstream thread_output;
output_summary(process_summary);
for (size_t t = 0; t < nr_threads; ++t)
my_threads[t].output(thread_output);
// ignore processes with no sample data
if (thread_output.str().size() == 0 && process_summary.str().size() == 0)
return;
out << open_element(PROCESS, true);
out << init_attr(PROC_ID, process_id);
out << init_attr(NAME, name) << close_element(NONE, true);
out << process_summary.str();
out << thread_output.str();
out << close_element(PROCESS);
}
void process_info::dump()
{
cverb << vxml << "pid=" << process_id << " app=" << name << endl;
for (size_t i = 0; i < nr_threads; ++i)
my_threads[i].dump();
}
size_t get_next_tgid_pclass(size_t start)
{
string cur_tgid = classes.v[start].ptemplate.tgid;
size_t i = start;
for (i = start;
i < nr_classes && classes.v[i].ptemplate.tgid == cur_tgid;
++i) ;
return i;
}
size_t get_next_tid_pclass(size_t start)
{
string cur_tid = classes.v[start].ptemplate.tid;
size_t i;
for (i = start;
i < nr_classes && classes.v[i].ptemplate.tid == cur_tid;
++i) ;
return i;
}
// build the process/thread/module hierarchy that will allow us later
// to collect the summary sample data at each level and then
// traverse the hierarchy to intersperse the summary data for the
// symbols
void build_process_tree()
{
size_t tgid = 0;
size_t tid = 0;
// build the structure representing the process/thread/module hierarchy
// for holding the summary data associated with each level and to be
// traversed when outputting the body of the XML
do {
size_t next_tgid = get_next_tgid_pclass(tgid);
string const tgid_str = classes.v[tgid].ptemplate.tgid;
process_info * p = processes_root.add_process(tgid_str, tgid, next_tgid-1);
do {
size_t next_tid = get_next_tid_pclass(tid);
// build array of threads associated with this process
p->add_thread(classes.v[tid].ptemplate.tid, tid, next_tid-1);
tid = next_tid;
} while (tid != next_tgid);
tgid = next_tgid;
} while (tgid != nr_classes);
}
void xml_utils::output_program_structure(ostream & out)
{
if (cverb << vxml)
dump_classes();
if (has_separated_thread_info()) {
build_process_tree();
processes_root.summarize_processes(extra_found_images);
if (cverb << vxml)
processes_root.dump_processes();
processes_root.output_process_symbols(out);
} else {
binaries_root.summarize_binaries(extra_found_images);
if (cverb << vxml)
binaries_root.dump_binaries();
binaries_root.output_binary_symbols(out);
}
}