| /* |
| SDL - Simple DirectMedia Layer |
| Copyright (C) 1997-2006 Sam Lantinga |
| |
| This library is free software; you can redistribute it and/or |
| modify it under the terms of the GNU Lesser General Public |
| License as published by the Free Software Foundation; either |
| version 2.1 of the License, or (at your option) any later version. |
| |
| This library is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY; without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| Lesser General Public License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public |
| License along with this library; if not, write to the Free Software |
| Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA |
| |
| Sam Lantinga |
| slouken@libsdl.org |
| */ |
| #include "SDL_config.h" |
| |
| /* |
| * RLE encoding for software colorkey and alpha-channel acceleration |
| * |
| * Original version by Sam Lantinga |
| * |
| * Mattias EngdegÄrd (Yorick): Rewrite. New encoding format, encoder and |
| * decoder. Added per-surface alpha blitter. Added per-pixel alpha |
| * format, encoder and blitter. |
| * |
| * Many thanks to Xark and johns for hints, benchmarks and useful comments |
| * leading to this code. |
| * |
| * Welcome to Macro Mayhem. |
| */ |
| |
| /* |
| * The encoding translates the image data to a stream of segments of the form |
| * |
| * <skip> <run> <data> |
| * |
| * where <skip> is the number of transparent pixels to skip, |
| * <run> is the number of opaque pixels to blit, |
| * and <data> are the pixels themselves. |
| * |
| * This basic structure is used both for colorkeyed surfaces, used for simple |
| * binary transparency and for per-surface alpha blending, and for surfaces |
| * with per-pixel alpha. The details differ, however: |
| * |
| * Encoding of colorkeyed surfaces: |
| * |
| * Encoded pixels always have the same format as the target surface. |
| * <skip> and <run> are unsigned 8 bit integers, except for 32 bit depth |
| * where they are 16 bit. This makes the pixel data aligned at all times. |
| * Segments never wrap around from one scan line to the next. |
| * |
| * The end of the sequence is marked by a zero <skip>,<run> pair at the * |
| * beginning of a line. |
| * |
| * Encoding of surfaces with per-pixel alpha: |
| * |
| * The sequence begins with a struct RLEDestFormat describing the target |
| * pixel format, to provide reliable un-encoding. |
| * |
| * Each scan line is encoded twice: First all completely opaque pixels, |
| * encoded in the target format as described above, and then all |
| * partially transparent (translucent) pixels (where 1 <= alpha <= 254), |
| * in the following 32-bit format: |
| * |
| * For 32-bit targets, each pixel has the target RGB format but with |
| * the alpha value occupying the highest 8 bits. The <skip> and <run> |
| * counts are 16 bit. |
| * |
| * For 16-bit targets, each pixel has the target RGB format, but with |
| * the middle component (usually green) shifted 16 steps to the left, |
| * and the hole filled with the 5 most significant bits of the alpha value. |
| * i.e. if the target has the format rrrrrggggggbbbbb, |
| * the encoded pixel will be 00000gggggg00000rrrrr0aaaaabbbbb. |
| * The <skip> and <run> counts are 8 bit for the opaque lines, 16 bit |
| * for the translucent lines. Two padding bytes may be inserted |
| * before each translucent line to keep them 32-bit aligned. |
| * |
| * The end of the sequence is marked by a zero <skip>,<run> pair at the |
| * beginning of an opaque line. |
| */ |
| |
| #include "SDL_video.h" |
| #include "SDL_sysvideo.h" |
| #include "SDL_blit.h" |
| #include "SDL_RLEaccel_c.h" |
| |
| #if defined(__GNUC__) && (defined(__i386__) || defined(__x86_64__)) && SDL_ASSEMBLY_ROUTINES |
| #define MMX_ASMBLIT |
| #endif |
| |
| #ifdef MMX_ASMBLIT |
| #include "mmx.h" |
| #include "SDL_cpuinfo.h" |
| #endif |
| |
| #ifndef MAX |
| #define MAX(a, b) ((a) > (b) ? (a) : (b)) |
| #endif |
| #ifndef MIN |
| #define MIN(a, b) ((a) < (b) ? (a) : (b)) |
| #endif |
| |
| #define PIXEL_COPY(to, from, len, bpp) \ |
| do { \ |
| if(bpp == 4) { \ |
| SDL_memcpy4(to, from, (size_t)(len)); \ |
| } else { \ |
| SDL_memcpy(to, from, (size_t)(len) * (bpp)); \ |
| } \ |
| } while(0) |
| |
| /* |
| * Various colorkey blit methods, for opaque and per-surface alpha |
| */ |
| |
| #define OPAQUE_BLIT(to, from, length, bpp, alpha) \ |
| PIXEL_COPY(to, from, length, bpp) |
| |
| #ifdef MMX_ASMBLIT |
| |
| #define ALPHA_BLIT32_888MMX(to, from, length, bpp, alpha) \ |
| do { \ |
| Uint32 *srcp = (Uint32 *)(from); \ |
| Uint32 *dstp = (Uint32 *)(to); \ |
| int i = 0x00FF00FF; \ |
| movd_m2r(*(&i), mm3); \ |
| punpckldq_r2r(mm3, mm3); \ |
| i = 0xFF000000; \ |
| movd_m2r(*(&i), mm7); \ |
| punpckldq_r2r(mm7, mm7); \ |
| i = alpha | alpha << 16; \ |
| movd_m2r(*(&i), mm4); \ |
| punpckldq_r2r(mm4, mm4); \ |
| pcmpeqd_r2r(mm5,mm5); /* set mm5 to "1" */ \ |
| pxor_r2r(mm7, mm5); /* make clear alpha mask */ \ |
| i = length; \ |
| if(i & 1) { \ |
| movd_m2r((*srcp), mm1); /* src -> mm1 */ \ |
| punpcklbw_r2r(mm1, mm1); \ |
| pand_r2r(mm3, mm1); \ |
| movd_m2r((*dstp), mm2); /* dst -> mm2 */ \ |
| punpcklbw_r2r(mm2, mm2); \ |
| pand_r2r(mm3, mm2); \ |
| psubw_r2r(mm2, mm1); \ |
| pmullw_r2r(mm4, mm1); \ |
| psrlw_i2r(8, mm1); \ |
| paddw_r2r(mm1, mm2); \ |
| pand_r2r(mm3, mm2); \ |
| packuswb_r2r(mm2, mm2); \ |
| pand_r2r(mm5, mm2); /* 00000RGB -> mm2 */ \ |
| movd_r2m(mm2, *dstp); \ |
| ++srcp; \ |
| ++dstp; \ |
| i--; \ |
| } \ |
| for(; i > 0; --i) { \ |
| movq_m2r((*srcp), mm0); \ |
| movq_r2r(mm0, mm1); \ |
| punpcklbw_r2r(mm0, mm0); \ |
| movq_m2r((*dstp), mm2); \ |
| punpckhbw_r2r(mm1, mm1); \ |
| movq_r2r(mm2, mm6); \ |
| pand_r2r(mm3, mm0); \ |
| punpcklbw_r2r(mm2, mm2); \ |
| pand_r2r(mm3, mm1); \ |
| punpckhbw_r2r(mm6, mm6); \ |
| pand_r2r(mm3, mm2); \ |
| psubw_r2r(mm2, mm0); \ |
| pmullw_r2r(mm4, mm0); \ |
| pand_r2r(mm3, mm6); \ |
| psubw_r2r(mm6, mm1); \ |
| pmullw_r2r(mm4, mm1); \ |
| psrlw_i2r(8, mm0); \ |
| paddw_r2r(mm0, mm2); \ |
| psrlw_i2r(8, mm1); \ |
| paddw_r2r(mm1, mm6); \ |
| pand_r2r(mm3, mm2); \ |
| pand_r2r(mm3, mm6); \ |
| packuswb_r2r(mm2, mm2); \ |
| packuswb_r2r(mm6, mm6); \ |
| psrlq_i2r(32, mm2); \ |
| psllq_i2r(32, mm6); \ |
| por_r2r(mm6, mm2); \ |
| pand_r2r(mm5, mm2); /* 00000RGB -> mm2 */ \ |
| movq_r2m(mm2, *dstp); \ |
| srcp += 2; \ |
| dstp += 2; \ |
| i--; \ |
| } \ |
| emms(); \ |
| } while(0) |
| |
| #define ALPHA_BLIT16_565MMX(to, from, length, bpp, alpha) \ |
| do { \ |
| int i, n = 0; \ |
| Uint16 *srcp = (Uint16 *)(from); \ |
| Uint16 *dstp = (Uint16 *)(to); \ |
| Uint32 ALPHA = 0xF800; \ |
| movd_m2r(*(&ALPHA), mm1); \ |
| punpcklwd_r2r(mm1, mm1); \ |
| punpcklwd_r2r(mm1, mm1); \ |
| ALPHA = 0x07E0; \ |
| movd_m2r(*(&ALPHA), mm4); \ |
| punpcklwd_r2r(mm4, mm4); \ |
| punpcklwd_r2r(mm4, mm4); \ |
| ALPHA = 0x001F; \ |
| movd_m2r(*(&ALPHA), mm7); \ |
| punpcklwd_r2r(mm7, mm7); \ |
| punpcklwd_r2r(mm7, mm7); \ |
| alpha &= ~(1+2+4); \ |
| i = (Uint32)alpha | (Uint32)alpha << 16; \ |
| movd_m2r(*(&i), mm0); \ |
| punpckldq_r2r(mm0, mm0); \ |
| ALPHA = alpha >> 3; \ |
| i = ((int)(length) & 3); \ |
| for(; i > 0; --i) { \ |
| Uint32 s = *srcp++; \ |
| Uint32 d = *dstp; \ |
| s = (s | s << 16) & 0x07e0f81f; \ |
| d = (d | d << 16) & 0x07e0f81f; \ |
| d += (s - d) * ALPHA >> 5; \ |
| d &= 0x07e0f81f; \ |
| *dstp++ = d | d >> 16; \ |
| n++; \ |
| } \ |
| i = (int)(length) - n; \ |
| for(; i > 0; --i) { \ |
| movq_m2r((*dstp), mm3); \ |
| movq_m2r((*srcp), mm2); \ |
| movq_r2r(mm2, mm5); \ |
| pand_r2r(mm1 , mm5); \ |
| psrlq_i2r(11, mm5); \ |
| movq_r2r(mm3, mm6); \ |
| pand_r2r(mm1 , mm6); \ |
| psrlq_i2r(11, mm6); \ |
| psubw_r2r(mm6, mm5); \ |
| pmullw_r2r(mm0, mm5); \ |
| psrlw_i2r(8, mm5); \ |
| paddw_r2r(mm5, mm6); \ |
| psllq_i2r(11, mm6); \ |
| pand_r2r(mm1, mm6); \ |
| movq_r2r(mm4, mm5); \ |
| por_r2r(mm7, mm5); \ |
| pand_r2r(mm5, mm3); \ |
| por_r2r(mm6, mm3); \ |
| movq_r2r(mm2, mm5); \ |
| pand_r2r(mm4 , mm5); \ |
| psrlq_i2r(5, mm5); \ |
| movq_r2r(mm3, mm6); \ |
| pand_r2r(mm4 , mm6); \ |
| psrlq_i2r(5, mm6); \ |
| psubw_r2r(mm6, mm5); \ |
| pmullw_r2r(mm0, mm5); \ |
| psrlw_i2r(8, mm5); \ |
| paddw_r2r(mm5, mm6); \ |
| psllq_i2r(5, mm6); \ |
| pand_r2r(mm4, mm6); \ |
| movq_r2r(mm1, mm5); \ |
| por_r2r(mm7, mm5); \ |
| pand_r2r(mm5, mm3); \ |
| por_r2r(mm6, mm3); \ |
| movq_r2r(mm2, mm5); \ |
| pand_r2r(mm7 , mm5); \ |
| movq_r2r(mm3, mm6); \ |
| pand_r2r(mm7 , mm6); \ |
| psubw_r2r(mm6, mm5); \ |
| pmullw_r2r(mm0, mm5); \ |
| psrlw_i2r(8, mm5); \ |
| paddw_r2r(mm5, mm6); \ |
| pand_r2r(mm7, mm6); \ |
| movq_r2r(mm1, mm5); \ |
| por_r2r(mm4, mm5); \ |
| pand_r2r(mm5, mm3); \ |
| por_r2r(mm6, mm3); \ |
| movq_r2m(mm3, *dstp); \ |
| srcp += 4; \ |
| dstp += 4; \ |
| i -= 3; \ |
| } \ |
| emms(); \ |
| } while(0) |
| |
| #define ALPHA_BLIT16_555MMX(to, from, length, bpp, alpha) \ |
| do { \ |
| int i, n = 0; \ |
| Uint16 *srcp = (Uint16 *)(from); \ |
| Uint16 *dstp = (Uint16 *)(to); \ |
| Uint32 ALPHA = 0x7C00; \ |
| movd_m2r(*(&ALPHA), mm1); \ |
| punpcklwd_r2r(mm1, mm1); \ |
| punpcklwd_r2r(mm1, mm1); \ |
| ALPHA = 0x03E0; \ |
| movd_m2r(*(&ALPHA), mm4); \ |
| punpcklwd_r2r(mm4, mm4); \ |
| punpcklwd_r2r(mm4, mm4); \ |
| ALPHA = 0x001F; \ |
| movd_m2r(*(&ALPHA), mm7); \ |
| punpcklwd_r2r(mm7, mm7); \ |
| punpcklwd_r2r(mm7, mm7); \ |
| alpha &= ~(1+2+4); \ |
| i = (Uint32)alpha | (Uint32)alpha << 16; \ |
| movd_m2r(*(&i), mm0); \ |
| punpckldq_r2r(mm0, mm0); \ |
| i = ((int)(length) & 3); \ |
| ALPHA = alpha >> 3; \ |
| for(; i > 0; --i) { \ |
| Uint32 s = *srcp++; \ |
| Uint32 d = *dstp; \ |
| s = (s | s << 16) & 0x03e07c1f; \ |
| d = (d | d << 16) & 0x03e07c1f; \ |
| d += (s - d) * ALPHA >> 5; \ |
| d &= 0x03e07c1f; \ |
| *dstp++ = d | d >> 16; \ |
| n++; \ |
| } \ |
| i = (int)(length) - n; \ |
| for(; i > 0; --i) { \ |
| movq_m2r((*dstp), mm3); \ |
| movq_m2r((*srcp), mm2); \ |
| movq_r2r(mm2, mm5); \ |
| pand_r2r(mm1 , mm5); \ |
| psrlq_i2r(10, mm5); \ |
| movq_r2r(mm3, mm6); \ |
| pand_r2r(mm1 , mm6); \ |
| psrlq_i2r(10, mm6); \ |
| psubw_r2r(mm6, mm5); \ |
| pmullw_r2r(mm0, mm5); \ |
| psrlw_i2r(8, mm5); \ |
| paddw_r2r(mm5, mm6); \ |
| psllq_i2r(10, mm6); \ |
| pand_r2r(mm1, mm6); \ |
| movq_r2r(mm4, mm5); \ |
| por_r2r(mm7, mm5); \ |
| pand_r2r(mm5, mm3); \ |
| por_r2r(mm6, mm3); \ |
| movq_r2r(mm2, mm5); \ |
| pand_r2r(mm4 , mm5); \ |
| psrlq_i2r(5, mm5); \ |
| movq_r2r(mm3, mm6); \ |
| pand_r2r(mm4 , mm6); \ |
| psrlq_i2r(5, mm6); \ |
| psubw_r2r(mm6, mm5); \ |
| pmullw_r2r(mm0, mm5); \ |
| psrlw_i2r(8, mm5); \ |
| paddw_r2r(mm5, mm6); \ |
| psllq_i2r(5, mm6); \ |
| pand_r2r(mm4, mm6); \ |
| movq_r2r(mm1, mm5); \ |
| por_r2r(mm7, mm5); \ |
| pand_r2r(mm5, mm3); \ |
| por_r2r(mm6, mm3); \ |
| movq_r2r(mm2, mm5); \ |
| pand_r2r(mm7 , mm5); \ |
| movq_r2r(mm3, mm6); \ |
| pand_r2r(mm7 , mm6); \ |
| psubw_r2r(mm6, mm5); \ |
| pmullw_r2r(mm0, mm5); \ |
| psrlw_i2r(8, mm5); \ |
| paddw_r2r(mm5, mm6); \ |
| pand_r2r(mm7, mm6); \ |
| movq_r2r(mm1, mm5); \ |
| por_r2r(mm4, mm5); \ |
| pand_r2r(mm5, mm3); \ |
| por_r2r(mm6, mm3); \ |
| movq_r2m(mm3, *dstp); \ |
| srcp += 4; \ |
| dstp += 4; \ |
| i -= 3; \ |
| } \ |
| emms(); \ |
| } while(0) |
| |
| #endif |
| |
| /* |
| * For 32bpp pixels on the form 0x00rrggbb: |
| * If we treat the middle component separately, we can process the two |
| * remaining in parallel. This is safe to do because of the gap to the left |
| * of each component, so the bits from the multiplication don't collide. |
| * This can be used for any RGB permutation of course. |
| */ |
| #define ALPHA_BLIT32_888(to, from, length, bpp, alpha) \ |
| do { \ |
| int i; \ |
| Uint32 *src = (Uint32 *)(from); \ |
| Uint32 *dst = (Uint32 *)(to); \ |
| for(i = 0; i < (int)(length); i++) { \ |
| Uint32 s = *src++; \ |
| Uint32 d = *dst; \ |
| Uint32 s1 = s & 0xff00ff; \ |
| Uint32 d1 = d & 0xff00ff; \ |
| d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \ |
| s &= 0xff00; \ |
| d &= 0xff00; \ |
| d = (d + ((s - d) * alpha >> 8)) & 0xff00; \ |
| *dst++ = d1 | d; \ |
| } \ |
| } while(0) |
| |
| /* |
| * For 16bpp pixels we can go a step further: put the middle component |
| * in the high 16 bits of a 32 bit word, and process all three RGB |
| * components at the same time. Since the smallest gap is here just |
| * 5 bits, we have to scale alpha down to 5 bits as well. |
| */ |
| #define ALPHA_BLIT16_565(to, from, length, bpp, alpha) \ |
| do { \ |
| int i; \ |
| Uint16 *src = (Uint16 *)(from); \ |
| Uint16 *dst = (Uint16 *)(to); \ |
| Uint32 ALPHA = alpha >> 3; \ |
| for(i = 0; i < (int)(length); i++) { \ |
| Uint32 s = *src++; \ |
| Uint32 d = *dst; \ |
| s = (s | s << 16) & 0x07e0f81f; \ |
| d = (d | d << 16) & 0x07e0f81f; \ |
| d += (s - d) * ALPHA >> 5; \ |
| d &= 0x07e0f81f; \ |
| *dst++ = (Uint16)(d | d >> 16); \ |
| } \ |
| } while(0) |
| |
| #define ALPHA_BLIT16_555(to, from, length, bpp, alpha) \ |
| do { \ |
| int i; \ |
| Uint16 *src = (Uint16 *)(from); \ |
| Uint16 *dst = (Uint16 *)(to); \ |
| Uint32 ALPHA = alpha >> 3; \ |
| for(i = 0; i < (int)(length); i++) { \ |
| Uint32 s = *src++; \ |
| Uint32 d = *dst; \ |
| s = (s | s << 16) & 0x03e07c1f; \ |
| d = (d | d << 16) & 0x03e07c1f; \ |
| d += (s - d) * ALPHA >> 5; \ |
| d &= 0x03e07c1f; \ |
| *dst++ = (Uint16)(d | d >> 16); \ |
| } \ |
| } while(0) |
| |
| /* |
| * The general slow catch-all function, for remaining depths and formats |
| */ |
| #define ALPHA_BLIT_ANY(to, from, length, bpp, alpha) \ |
| do { \ |
| int i; \ |
| Uint8 *src = from; \ |
| Uint8 *dst = to; \ |
| for(i = 0; i < (int)(length); i++) { \ |
| Uint32 s, d; \ |
| unsigned rs, gs, bs, rd, gd, bd; \ |
| switch(bpp) { \ |
| case 2: \ |
| s = *(Uint16 *)src; \ |
| d = *(Uint16 *)dst; \ |
| break; \ |
| case 3: \ |
| if(SDL_BYTEORDER == SDL_BIG_ENDIAN) { \ |
| s = (src[0] << 16) | (src[1] << 8) | src[2]; \ |
| d = (dst[0] << 16) | (dst[1] << 8) | dst[2]; \ |
| } else { \ |
| s = (src[2] << 16) | (src[1] << 8) | src[0]; \ |
| d = (dst[2] << 16) | (dst[1] << 8) | dst[0]; \ |
| } \ |
| break; \ |
| case 4: \ |
| s = *(Uint32 *)src; \ |
| d = *(Uint32 *)dst; \ |
| break; \ |
| } \ |
| RGB_FROM_PIXEL(s, fmt, rs, gs, bs); \ |
| RGB_FROM_PIXEL(d, fmt, rd, gd, bd); \ |
| rd += (rs - rd) * alpha >> 8; \ |
| gd += (gs - gd) * alpha >> 8; \ |
| bd += (bs - bd) * alpha >> 8; \ |
| PIXEL_FROM_RGB(d, fmt, rd, gd, bd); \ |
| switch(bpp) { \ |
| case 2: \ |
| *(Uint16 *)dst = (Uint16)d; \ |
| break; \ |
| case 3: \ |
| if(SDL_BYTEORDER == SDL_BIG_ENDIAN) { \ |
| dst[0] = (Uint8)(d >> 16); \ |
| dst[1] = (Uint8)(d >> 8); \ |
| dst[2] = (Uint8)(d); \ |
| } else { \ |
| dst[0] = (Uint8)d; \ |
| dst[1] = (Uint8)(d >> 8); \ |
| dst[2] = (Uint8)(d >> 16); \ |
| } \ |
| break; \ |
| case 4: \ |
| *(Uint32 *)dst = d; \ |
| break; \ |
| } \ |
| src += bpp; \ |
| dst += bpp; \ |
| } \ |
| } while(0) |
| |
| #ifdef MMX_ASMBLIT |
| |
| #define ALPHA_BLIT32_888_50MMX(to, from, length, bpp, alpha) \ |
| do { \ |
| Uint32 *srcp = (Uint32 *)(from); \ |
| Uint32 *dstp = (Uint32 *)(to); \ |
| int i = 0x00fefefe; \ |
| movd_m2r(*(&i), mm4); \ |
| punpckldq_r2r(mm4, mm4); \ |
| i = 0x00010101; \ |
| movd_m2r(*(&i), mm3); \ |
| punpckldq_r2r(mm3, mm3); \ |
| i = (int)(length); \ |
| if( i & 1 ) { \ |
| Uint32 s = *srcp++; \ |
| Uint32 d = *dstp; \ |
| *dstp++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \ |
| + (s & d & 0x00010101); \ |
| i--; \ |
| } \ |
| for(; i > 0; --i) { \ |
| movq_m2r((*dstp), mm2); /* dst -> mm2 */ \ |
| movq_r2r(mm2, mm6); /* dst -> mm6 */ \ |
| movq_m2r((*srcp), mm1); /* src -> mm1 */ \ |
| movq_r2r(mm1, mm5); /* src -> mm5 */ \ |
| pand_r2r(mm4, mm6); /* dst & 0x00fefefe -> mm6 */ \ |
| pand_r2r(mm4, mm5); /* src & 0x00fefefe -> mm5 */ \ |
| paddd_r2r(mm6, mm5); /* (dst & 0x00fefefe) + (dst & 0x00fefefe) -> mm5 */ \ |
| psrld_i2r(1, mm5); \ |
| pand_r2r(mm1, mm2); /* s & d -> mm2 */ \ |
| pand_r2r(mm3, mm2); /* s & d & 0x00010101 -> mm2 */ \ |
| paddd_r2r(mm5, mm2); \ |
| movq_r2m(mm2, (*dstp)); \ |
| dstp += 2; \ |
| srcp += 2; \ |
| i--; \ |
| } \ |
| emms(); \ |
| } while(0) |
| |
| #endif |
| |
| /* |
| * Special case: 50% alpha (alpha=128) |
| * This is treated specially because it can be optimized very well, and |
| * since it is good for many cases of semi-translucency. |
| * The theory is to do all three components at the same time: |
| * First zero the lowest bit of each component, which gives us room to |
| * add them. Then shift right and add the sum of the lowest bits. |
| */ |
| #define ALPHA_BLIT32_888_50(to, from, length, bpp, alpha) \ |
| do { \ |
| int i; \ |
| Uint32 *src = (Uint32 *)(from); \ |
| Uint32 *dst = (Uint32 *)(to); \ |
| for(i = 0; i < (int)(length); i++) { \ |
| Uint32 s = *src++; \ |
| Uint32 d = *dst; \ |
| *dst++ = (((s & 0x00fefefe) + (d & 0x00fefefe)) >> 1) \ |
| + (s & d & 0x00010101); \ |
| } \ |
| } while(0) |
| |
| /* |
| * For 16bpp, we can actually blend two pixels in parallel, if we take |
| * care to shift before we add, not after. |
| */ |
| |
| /* helper: blend a single 16 bit pixel at 50% */ |
| #define BLEND16_50(dst, src, mask) \ |
| do { \ |
| Uint32 s = *src++; \ |
| Uint32 d = *dst; \ |
| *dst++ = (Uint16)((((s & mask) + (d & mask)) >> 1) + \ |
| (s & d & (~mask & 0xffff))); \ |
| } while(0) |
| |
| /* basic 16bpp blender. mask is the pixels to keep when adding. */ |
| #define ALPHA_BLIT16_50(to, from, length, bpp, alpha, mask) \ |
| do { \ |
| unsigned n = (length); \ |
| Uint16 *src = (Uint16 *)(from); \ |
| Uint16 *dst = (Uint16 *)(to); \ |
| if(((uintptr_t)src ^ (uintptr_t)dst) & 3) { \ |
| /* source and destination not in phase, blit one by one */ \ |
| while(n--) \ |
| BLEND16_50(dst, src, mask); \ |
| } else { \ |
| if((uintptr_t)src & 3) { \ |
| /* first odd pixel */ \ |
| BLEND16_50(dst, src, mask); \ |
| n--; \ |
| } \ |
| for(; n > 1; n -= 2) { \ |
| Uint32 s = *(Uint32 *)src; \ |
| Uint32 d = *(Uint32 *)dst; \ |
| *(Uint32 *)dst = ((s & (mask | mask << 16)) >> 1) \ |
| + ((d & (mask | mask << 16)) >> 1) \ |
| + (s & d & (~(mask | mask << 16))); \ |
| src += 2; \ |
| dst += 2; \ |
| } \ |
| if(n) \ |
| BLEND16_50(dst, src, mask); /* last odd pixel */ \ |
| } \ |
| } while(0) |
| |
| #define ALPHA_BLIT16_565_50(to, from, length, bpp, alpha) \ |
| ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xf7de) |
| |
| #define ALPHA_BLIT16_555_50(to, from, length, bpp, alpha) \ |
| ALPHA_BLIT16_50(to, from, length, bpp, alpha, 0xfbde) |
| |
| #ifdef MMX_ASMBLIT |
| |
| #define CHOOSE_BLIT(blitter, alpha, fmt) \ |
| do { \ |
| if(alpha == 255) { \ |
| switch(fmt->BytesPerPixel) { \ |
| case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \ |
| case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \ |
| case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \ |
| case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \ |
| } \ |
| } else { \ |
| switch(fmt->BytesPerPixel) { \ |
| case 1: \ |
| /* No 8bpp alpha blitting */ \ |
| break; \ |
| \ |
| case 2: \ |
| switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) { \ |
| case 0xffff: \ |
| if(fmt->Gmask == 0x07e0 \ |
| || fmt->Rmask == 0x07e0 \ |
| || fmt->Bmask == 0x07e0) { \ |
| if(alpha == 128) \ |
| blitter(2, Uint8, ALPHA_BLIT16_565_50); \ |
| else { \ |
| if(SDL_HasMMX()) \ |
| blitter(2, Uint8, ALPHA_BLIT16_565MMX); \ |
| else \ |
| blitter(2, Uint8, ALPHA_BLIT16_565); \ |
| } \ |
| } else \ |
| goto general16; \ |
| break; \ |
| \ |
| case 0x7fff: \ |
| if(fmt->Gmask == 0x03e0 \ |
| || fmt->Rmask == 0x03e0 \ |
| || fmt->Bmask == 0x03e0) { \ |
| if(alpha == 128) \ |
| blitter(2, Uint8, ALPHA_BLIT16_555_50); \ |
| else { \ |
| if(SDL_HasMMX()) \ |
| blitter(2, Uint8, ALPHA_BLIT16_555MMX); \ |
| else \ |
| blitter(2, Uint8, ALPHA_BLIT16_555); \ |
| } \ |
| break; \ |
| } \ |
| /* fallthrough */ \ |
| \ |
| default: \ |
| general16: \ |
| blitter(2, Uint8, ALPHA_BLIT_ANY); \ |
| } \ |
| break; \ |
| \ |
| case 3: \ |
| blitter(3, Uint8, ALPHA_BLIT_ANY); \ |
| break; \ |
| \ |
| case 4: \ |
| if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \ |
| && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \ |
| || fmt->Bmask == 0xff00)) { \ |
| if(alpha == 128) \ |
| { \ |
| if(SDL_HasMMX()) \ |
| blitter(4, Uint16, ALPHA_BLIT32_888_50MMX);\ |
| else \ |
| blitter(4, Uint16, ALPHA_BLIT32_888_50);\ |
| } \ |
| else \ |
| { \ |
| if(SDL_HasMMX()) \ |
| blitter(4, Uint16, ALPHA_BLIT32_888MMX);\ |
| else \ |
| blitter(4, Uint16, ALPHA_BLIT32_888); \ |
| } \ |
| } else \ |
| blitter(4, Uint16, ALPHA_BLIT_ANY); \ |
| break; \ |
| } \ |
| } \ |
| } while(0) |
| |
| #else |
| |
| #define CHOOSE_BLIT(blitter, alpha, fmt) \ |
| do { \ |
| if(alpha == 255) { \ |
| switch(fmt->BytesPerPixel) { \ |
| case 1: blitter(1, Uint8, OPAQUE_BLIT); break; \ |
| case 2: blitter(2, Uint8, OPAQUE_BLIT); break; \ |
| case 3: blitter(3, Uint8, OPAQUE_BLIT); break; \ |
| case 4: blitter(4, Uint16, OPAQUE_BLIT); break; \ |
| } \ |
| } else { \ |
| switch(fmt->BytesPerPixel) { \ |
| case 1: \ |
| /* No 8bpp alpha blitting */ \ |
| break; \ |
| \ |
| case 2: \ |
| switch(fmt->Rmask | fmt->Gmask | fmt->Bmask) { \ |
| case 0xffff: \ |
| if(fmt->Gmask == 0x07e0 \ |
| || fmt->Rmask == 0x07e0 \ |
| || fmt->Bmask == 0x07e0) { \ |
| if(alpha == 128) \ |
| blitter(2, Uint8, ALPHA_BLIT16_565_50); \ |
| else { \ |
| blitter(2, Uint8, ALPHA_BLIT16_565); \ |
| } \ |
| } else \ |
| goto general16; \ |
| break; \ |
| \ |
| case 0x7fff: \ |
| if(fmt->Gmask == 0x03e0 \ |
| || fmt->Rmask == 0x03e0 \ |
| || fmt->Bmask == 0x03e0) { \ |
| if(alpha == 128) \ |
| blitter(2, Uint8, ALPHA_BLIT16_555_50); \ |
| else { \ |
| blitter(2, Uint8, ALPHA_BLIT16_555); \ |
| } \ |
| break; \ |
| } \ |
| /* fallthrough */ \ |
| \ |
| default: \ |
| general16: \ |
| blitter(2, Uint8, ALPHA_BLIT_ANY); \ |
| } \ |
| break; \ |
| \ |
| case 3: \ |
| blitter(3, Uint8, ALPHA_BLIT_ANY); \ |
| break; \ |
| \ |
| case 4: \ |
| if((fmt->Rmask | fmt->Gmask | fmt->Bmask) == 0x00ffffff \ |
| && (fmt->Gmask == 0xff00 || fmt->Rmask == 0xff00 \ |
| || fmt->Bmask == 0xff00)) { \ |
| if(alpha == 128) \ |
| blitter(4, Uint16, ALPHA_BLIT32_888_50); \ |
| else \ |
| blitter(4, Uint16, ALPHA_BLIT32_888); \ |
| } else \ |
| blitter(4, Uint16, ALPHA_BLIT_ANY); \ |
| break; \ |
| } \ |
| } \ |
| } while(0) |
| |
| #endif |
| |
| /* |
| * This takes care of the case when the surface is clipped on the left and/or |
| * right. Top clipping has already been taken care of. |
| */ |
| static void RLEClipBlit(int w, Uint8 *srcbuf, SDL_Surface *dst, |
| Uint8 *dstbuf, SDL_Rect *srcrect, unsigned alpha) |
| { |
| SDL_PixelFormat *fmt = dst->format; |
| |
| #define RLECLIPBLIT(bpp, Type, do_blit) \ |
| do { \ |
| int linecount = srcrect->h; \ |
| int ofs = 0; \ |
| int left = srcrect->x; \ |
| int right = left + srcrect->w; \ |
| dstbuf -= left * bpp; \ |
| for(;;) { \ |
| int run; \ |
| ofs += *(Type *)srcbuf; \ |
| run = ((Type *)srcbuf)[1]; \ |
| srcbuf += 2 * sizeof(Type); \ |
| if(run) { \ |
| /* clip to left and right borders */ \ |
| if(ofs < right) { \ |
| int start = 0; \ |
| int len = run; \ |
| int startcol; \ |
| if(left - ofs > 0) { \ |
| start = left - ofs; \ |
| len -= start; \ |
| if(len <= 0) \ |
| goto nocopy ## bpp ## do_blit; \ |
| } \ |
| startcol = ofs + start; \ |
| if(len > right - startcol) \ |
| len = right - startcol; \ |
| do_blit(dstbuf + startcol * bpp, srcbuf + start * bpp, \ |
| len, bpp, alpha); \ |
| } \ |
| nocopy ## bpp ## do_blit: \ |
| srcbuf += run * bpp; \ |
| ofs += run; \ |
| } else if(!ofs) \ |
| break; \ |
| if(ofs == w) { \ |
| ofs = 0; \ |
| dstbuf += dst->pitch; \ |
| if(!--linecount) \ |
| break; \ |
| } \ |
| } \ |
| } while(0) |
| |
| CHOOSE_BLIT(RLECLIPBLIT, alpha, fmt); |
| |
| #undef RLECLIPBLIT |
| |
| } |
| |
| |
| /* blit a colorkeyed RLE surface */ |
| int SDL_RLEBlit(SDL_Surface *src, SDL_Rect *srcrect, |
| SDL_Surface *dst, SDL_Rect *dstrect) |
| { |
| Uint8 *dstbuf; |
| Uint8 *srcbuf; |
| int x, y; |
| int w = src->w; |
| unsigned alpha; |
| |
| /* Lock the destination if necessary */ |
| if ( SDL_MUSTLOCK(dst) ) { |
| if ( SDL_LockSurface(dst) < 0 ) { |
| return(-1); |
| } |
| } |
| |
| /* Set up the source and destination pointers */ |
| x = dstrect->x; |
| y = dstrect->y; |
| dstbuf = (Uint8 *)dst->pixels |
| + y * dst->pitch + x * src->format->BytesPerPixel; |
| srcbuf = (Uint8 *)src->map->sw_data->aux_data; |
| |
| { |
| /* skip lines at the top if neccessary */ |
| int vskip = srcrect->y; |
| int ofs = 0; |
| if(vskip) { |
| |
| #define RLESKIP(bpp, Type) \ |
| for(;;) { \ |
| int run; \ |
| ofs += *(Type *)srcbuf; \ |
| run = ((Type *)srcbuf)[1]; \ |
| srcbuf += sizeof(Type) * 2; \ |
| if(run) { \ |
| srcbuf += run * bpp; \ |
| ofs += run; \ |
| } else if(!ofs) \ |
| goto done; \ |
| if(ofs == w) { \ |
| ofs = 0; \ |
| if(!--vskip) \ |
| break; \ |
| } \ |
| } |
| |
| switch(src->format->BytesPerPixel) { |
| case 1: RLESKIP(1, Uint8); break; |
| case 2: RLESKIP(2, Uint8); break; |
| case 3: RLESKIP(3, Uint8); break; |
| case 4: RLESKIP(4, Uint16); break; |
| } |
| |
| #undef RLESKIP |
| |
| } |
| } |
| |
| alpha = (src->flags & SDL_SRCALPHA) == SDL_SRCALPHA |
| ? src->format->alpha : 255; |
| /* if left or right edge clipping needed, call clip blit */ |
| if ( srcrect->x || srcrect->w != src->w ) { |
| RLEClipBlit(w, srcbuf, dst, dstbuf, srcrect, alpha); |
| } else { |
| SDL_PixelFormat *fmt = src->format; |
| |
| #define RLEBLIT(bpp, Type, do_blit) \ |
| do { \ |
| int linecount = srcrect->h; \ |
| int ofs = 0; \ |
| for(;;) { \ |
| unsigned run; \ |
| ofs += *(Type *)srcbuf; \ |
| run = ((Type *)srcbuf)[1]; \ |
| srcbuf += 2 * sizeof(Type); \ |
| if(run) { \ |
| do_blit(dstbuf + ofs * bpp, srcbuf, run, bpp, alpha); \ |
| srcbuf += run * bpp; \ |
| ofs += run; \ |
| } else if(!ofs) \ |
| break; \ |
| if(ofs == w) { \ |
| ofs = 0; \ |
| dstbuf += dst->pitch; \ |
| if(!--linecount) \ |
| break; \ |
| } \ |
| } \ |
| } while(0) |
| |
| CHOOSE_BLIT(RLEBLIT, alpha, fmt); |
| |
| #undef RLEBLIT |
| } |
| |
| done: |
| /* Unlock the destination if necessary */ |
| if ( SDL_MUSTLOCK(dst) ) { |
| SDL_UnlockSurface(dst); |
| } |
| return(0); |
| } |
| |
| #undef OPAQUE_BLIT |
| |
| /* |
| * Per-pixel blitting macros for translucent pixels: |
| * These use the same techniques as the per-surface blitting macros |
| */ |
| |
| /* |
| * For 32bpp pixels, we have made sure the alpha is stored in the top |
| * 8 bits, so proceed as usual |
| */ |
| #define BLIT_TRANSL_888(src, dst) \ |
| do { \ |
| Uint32 s = src; \ |
| Uint32 d = dst; \ |
| unsigned alpha = s >> 24; \ |
| Uint32 s1 = s & 0xff00ff; \ |
| Uint32 d1 = d & 0xff00ff; \ |
| d1 = (d1 + ((s1 - d1) * alpha >> 8)) & 0xff00ff; \ |
| s &= 0xff00; \ |
| d &= 0xff00; \ |
| d = (d + ((s - d) * alpha >> 8)) & 0xff00; \ |
| dst = d1 | d; \ |
| } while(0) |
| |
| /* |
| * For 16bpp pixels, we have stored the 5 most significant alpha bits in |
| * bits 5-10. As before, we can process all 3 RGB components at the same time. |
| */ |
| #define BLIT_TRANSL_565(src, dst) \ |
| do { \ |
| Uint32 s = src; \ |
| Uint32 d = dst; \ |
| unsigned alpha = (s & 0x3e0) >> 5; \ |
| s &= 0x07e0f81f; \ |
| d = (d | d << 16) & 0x07e0f81f; \ |
| d += (s - d) * alpha >> 5; \ |
| d &= 0x07e0f81f; \ |
| dst = (Uint16)(d | d >> 16); \ |
| } while(0) |
| |
| #define BLIT_TRANSL_555(src, dst) \ |
| do { \ |
| Uint32 s = src; \ |
| Uint32 d = dst; \ |
| unsigned alpha = (s & 0x3e0) >> 5; \ |
| s &= 0x03e07c1f; \ |
| d = (d | d << 16) & 0x03e07c1f; \ |
| d += (s - d) * alpha >> 5; \ |
| d &= 0x03e07c1f; \ |
| dst = (Uint16)(d | d >> 16); \ |
| } while(0) |
| |
| /* used to save the destination format in the encoding. Designed to be |
| macro-compatible with SDL_PixelFormat but without the unneeded fields */ |
| typedef struct { |
| Uint8 BytesPerPixel; |
| Uint8 Rloss; |
| Uint8 Gloss; |
| Uint8 Bloss; |
| Uint8 Rshift; |
| Uint8 Gshift; |
| Uint8 Bshift; |
| Uint8 Ashift; |
| Uint32 Rmask; |
| Uint32 Gmask; |
| Uint32 Bmask; |
| Uint32 Amask; |
| } RLEDestFormat; |
| |
| /* blit a pixel-alpha RLE surface clipped at the right and/or left edges */ |
| static void RLEAlphaClipBlit(int w, Uint8 *srcbuf, SDL_Surface *dst, |
| Uint8 *dstbuf, SDL_Rect *srcrect) |
| { |
| SDL_PixelFormat *df = dst->format; |
| /* |
| * clipped blitter: Ptype is the destination pixel type, |
| * Ctype the translucent count type, and do_blend the macro |
| * to blend one pixel. |
| */ |
| #define RLEALPHACLIPBLIT(Ptype, Ctype, do_blend) \ |
| do { \ |
| int linecount = srcrect->h; \ |
| int left = srcrect->x; \ |
| int right = left + srcrect->w; \ |
| dstbuf -= left * sizeof(Ptype); \ |
| do { \ |
| int ofs = 0; \ |
| /* blit opaque pixels on one line */ \ |
| do { \ |
| unsigned run; \ |
| ofs += ((Ctype *)srcbuf)[0]; \ |
| run = ((Ctype *)srcbuf)[1]; \ |
| srcbuf += 2 * sizeof(Ctype); \ |
| if(run) { \ |
| /* clip to left and right borders */ \ |
| int cofs = ofs; \ |
| int crun = run; \ |
| if(left - cofs > 0) { \ |
| crun -= left - cofs; \ |
| cofs = left; \ |
| } \ |
| if(crun > right - cofs) \ |
| crun = right - cofs; \ |
| if(crun > 0) \ |
| PIXEL_COPY(dstbuf + cofs * sizeof(Ptype), \ |
| srcbuf + (cofs - ofs) * sizeof(Ptype), \ |
| (unsigned)crun, sizeof(Ptype)); \ |
| srcbuf += run * sizeof(Ptype); \ |
| ofs += run; \ |
| } else if(!ofs) \ |
| return; \ |
| } while(ofs < w); \ |
| /* skip padding if necessary */ \ |
| if(sizeof(Ptype) == 2) \ |
| srcbuf += (uintptr_t)srcbuf & 2; \ |
| /* blit translucent pixels on the same line */ \ |
| ofs = 0; \ |
| do { \ |
| unsigned run; \ |
| ofs += ((Uint16 *)srcbuf)[0]; \ |
| run = ((Uint16 *)srcbuf)[1]; \ |
| srcbuf += 4; \ |
| if(run) { \ |
| /* clip to left and right borders */ \ |
| int cofs = ofs; \ |
| int crun = run; \ |
| if(left - cofs > 0) { \ |
| crun -= left - cofs; \ |
| cofs = left; \ |
| } \ |
| if(crun > right - cofs) \ |
| crun = right - cofs; \ |
| if(crun > 0) { \ |
| Ptype *dst = (Ptype *)dstbuf + cofs; \ |
| Uint32 *src = (Uint32 *)srcbuf + (cofs - ofs); \ |
| int i; \ |
| for(i = 0; i < crun; i++) \ |
| do_blend(src[i], dst[i]); \ |
| } \ |
| srcbuf += run * 4; \ |
| ofs += run; \ |
| } \ |
| } while(ofs < w); \ |
| dstbuf += dst->pitch; \ |
| } while(--linecount); \ |
| } while(0) |
| |
| switch(df->BytesPerPixel) { |
| case 2: |
| if(df->Gmask == 0x07e0 || df->Rmask == 0x07e0 |
| || df->Bmask == 0x07e0) |
| RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_565); |
| else |
| RLEALPHACLIPBLIT(Uint16, Uint8, BLIT_TRANSL_555); |
| break; |
| case 4: |
| RLEALPHACLIPBLIT(Uint32, Uint16, BLIT_TRANSL_888); |
| break; |
| } |
| } |
| |
| /* blit a pixel-alpha RLE surface */ |
| int SDL_RLEAlphaBlit(SDL_Surface *src, SDL_Rect *srcrect, |
| SDL_Surface *dst, SDL_Rect *dstrect) |
| { |
| int x, y; |
| int w = src->w; |
| Uint8 *srcbuf, *dstbuf; |
| SDL_PixelFormat *df = dst->format; |
| |
| /* Lock the destination if necessary */ |
| if ( SDL_MUSTLOCK(dst) ) { |
| if ( SDL_LockSurface(dst) < 0 ) { |
| return -1; |
| } |
| } |
| |
| x = dstrect->x; |
| y = dstrect->y; |
| dstbuf = (Uint8 *)dst->pixels |
| + y * dst->pitch + x * df->BytesPerPixel; |
| srcbuf = (Uint8 *)src->map->sw_data->aux_data + sizeof(RLEDestFormat); |
| |
| { |
| /* skip lines at the top if necessary */ |
| int vskip = srcrect->y; |
| if(vskip) { |
| int ofs; |
| if(df->BytesPerPixel == 2) { |
| /* the 16/32 interleaved format */ |
| do { |
| /* skip opaque line */ |
| ofs = 0; |
| do { |
| int run; |
| ofs += srcbuf[0]; |
| run = srcbuf[1]; |
| srcbuf += 2; |
| if(run) { |
| srcbuf += 2 * run; |
| ofs += run; |
| } else if(!ofs) |
| goto done; |
| } while(ofs < w); |
| |
| /* skip padding */ |
| srcbuf += (uintptr_t)srcbuf & 2; |
| |
| /* skip translucent line */ |
| ofs = 0; |
| do { |
| int run; |
| ofs += ((Uint16 *)srcbuf)[0]; |
| run = ((Uint16 *)srcbuf)[1]; |
| srcbuf += 4 * (run + 1); |
| ofs += run; |
| } while(ofs < w); |
| } while(--vskip); |
| } else { |
| /* the 32/32 interleaved format */ |
| vskip <<= 1; /* opaque and translucent have same format */ |
| do { |
| ofs = 0; |
| do { |
| int run; |
| ofs += ((Uint16 *)srcbuf)[0]; |
| run = ((Uint16 *)srcbuf)[1]; |
| srcbuf += 4; |
| if(run) { |
| srcbuf += 4 * run; |
| ofs += run; |
| } else if(!ofs) |
| goto done; |
| } while(ofs < w); |
| } while(--vskip); |
| } |
| } |
| } |
| |
| /* if left or right edge clipping needed, call clip blit */ |
| if(srcrect->x || srcrect->w != src->w) { |
| RLEAlphaClipBlit(w, srcbuf, dst, dstbuf, srcrect); |
| } else { |
| |
| /* |
| * non-clipped blitter. Ptype is the destination pixel type, |
| * Ctype the translucent count type, and do_blend the |
| * macro to blend one pixel. |
| */ |
| #define RLEALPHABLIT(Ptype, Ctype, do_blend) \ |
| do { \ |
| int linecount = srcrect->h; \ |
| do { \ |
| int ofs = 0; \ |
| /* blit opaque pixels on one line */ \ |
| do { \ |
| unsigned run; \ |
| ofs += ((Ctype *)srcbuf)[0]; \ |
| run = ((Ctype *)srcbuf)[1]; \ |
| srcbuf += 2 * sizeof(Ctype); \ |
| if(run) { \ |
| PIXEL_COPY(dstbuf + ofs * sizeof(Ptype), srcbuf, \ |
| run, sizeof(Ptype)); \ |
| srcbuf += run * sizeof(Ptype); \ |
| ofs += run; \ |
| } else if(!ofs) \ |
| goto done; \ |
| } while(ofs < w); \ |
| /* skip padding if necessary */ \ |
| if(sizeof(Ptype) == 2) \ |
| srcbuf += (uintptr_t)srcbuf & 2; \ |
| /* blit translucent pixels on the same line */ \ |
| ofs = 0; \ |
| do { \ |
| unsigned run; \ |
| ofs += ((Uint16 *)srcbuf)[0]; \ |
| run = ((Uint16 *)srcbuf)[1]; \ |
| srcbuf += 4; \ |
| if(run) { \ |
| Ptype *dst = (Ptype *)dstbuf + ofs; \ |
| unsigned i; \ |
| for(i = 0; i < run; i++) { \ |
| Uint32 src = *(Uint32 *)srcbuf; \ |
| do_blend(src, *dst); \ |
| srcbuf += 4; \ |
| dst++; \ |
| } \ |
| ofs += run; \ |
| } \ |
| } while(ofs < w); \ |
| dstbuf += dst->pitch; \ |
| } while(--linecount); \ |
| } while(0) |
| |
| switch(df->BytesPerPixel) { |
| case 2: |
| if(df->Gmask == 0x07e0 || df->Rmask == 0x07e0 |
| || df->Bmask == 0x07e0) |
| RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_565); |
| else |
| RLEALPHABLIT(Uint16, Uint8, BLIT_TRANSL_555); |
| break; |
| case 4: |
| RLEALPHABLIT(Uint32, Uint16, BLIT_TRANSL_888); |
| break; |
| } |
| } |
| |
| done: |
| /* Unlock the destination if necessary */ |
| if ( SDL_MUSTLOCK(dst) ) { |
| SDL_UnlockSurface(dst); |
| } |
| return 0; |
| } |
| |
| /* |
| * Auxiliary functions: |
| * The encoding functions take 32bpp rgb + a, and |
| * return the number of bytes copied to the destination. |
| * The decoding functions copy to 32bpp rgb + a, and |
| * return the number of bytes copied from the source. |
| * These are only used in the encoder and un-RLE code and are therefore not |
| * highly optimised. |
| */ |
| |
| /* encode 32bpp rgb + a into 16bpp rgb, losing alpha */ |
| static int copy_opaque_16(void *dst, Uint32 *src, int n, |
| SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt) |
| { |
| int i; |
| Uint16 *d = dst; |
| for(i = 0; i < n; i++) { |
| unsigned r, g, b; |
| RGB_FROM_PIXEL(*src, sfmt, r, g, b); |
| PIXEL_FROM_RGB(*d, dfmt, r, g, b); |
| src++; |
| d++; |
| } |
| return n * 2; |
| } |
| |
| /* decode opaque pixels from 16bpp to 32bpp rgb + a */ |
| static int uncopy_opaque_16(Uint32 *dst, void *src, int n, |
| RLEDestFormat *sfmt, SDL_PixelFormat *dfmt) |
| { |
| int i; |
| Uint16 *s = src; |
| unsigned alpha = dfmt->Amask ? 255 : 0; |
| for(i = 0; i < n; i++) { |
| unsigned r, g, b; |
| RGB_FROM_PIXEL(*s, sfmt, r, g, b); |
| PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, alpha); |
| s++; |
| dst++; |
| } |
| return n * 2; |
| } |
| |
| |
| |
| /* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 565 */ |
| static int copy_transl_565(void *dst, Uint32 *src, int n, |
| SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt) |
| { |
| int i; |
| Uint32 *d = dst; |
| for(i = 0; i < n; i++) { |
| unsigned r, g, b, a; |
| Uint16 pix; |
| RGBA_FROM_8888(*src, sfmt, r, g, b, a); |
| PIXEL_FROM_RGB(pix, dfmt, r, g, b); |
| *d = ((pix & 0x7e0) << 16) | (pix & 0xf81f) | ((a << 2) & 0x7e0); |
| src++; |
| d++; |
| } |
| return n * 4; |
| } |
| |
| /* encode 32bpp rgb + a into 32bpp G0RAB format for blitting into 555 */ |
| static int copy_transl_555(void *dst, Uint32 *src, int n, |
| SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt) |
| { |
| int i; |
| Uint32 *d = dst; |
| for(i = 0; i < n; i++) { |
| unsigned r, g, b, a; |
| Uint16 pix; |
| RGBA_FROM_8888(*src, sfmt, r, g, b, a); |
| PIXEL_FROM_RGB(pix, dfmt, r, g, b); |
| *d = ((pix & 0x3e0) << 16) | (pix & 0xfc1f) | ((a << 2) & 0x3e0); |
| src++; |
| d++; |
| } |
| return n * 4; |
| } |
| |
| /* decode translucent pixels from 32bpp GORAB to 32bpp rgb + a */ |
| static int uncopy_transl_16(Uint32 *dst, void *src, int n, |
| RLEDestFormat *sfmt, SDL_PixelFormat *dfmt) |
| { |
| int i; |
| Uint32 *s = src; |
| for(i = 0; i < n; i++) { |
| unsigned r, g, b, a; |
| Uint32 pix = *s++; |
| a = (pix & 0x3e0) >> 2; |
| pix = (pix & ~0x3e0) | pix >> 16; |
| RGB_FROM_PIXEL(pix, sfmt, r, g, b); |
| PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a); |
| dst++; |
| } |
| return n * 4; |
| } |
| |
| /* encode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */ |
| static int copy_32(void *dst, Uint32 *src, int n, |
| SDL_PixelFormat *sfmt, SDL_PixelFormat *dfmt) |
| { |
| int i; |
| Uint32 *d = dst; |
| for(i = 0; i < n; i++) { |
| unsigned r, g, b, a; |
| Uint32 pixel; |
| RGBA_FROM_8888(*src, sfmt, r, g, b, a); |
| PIXEL_FROM_RGB(pixel, dfmt, r, g, b); |
| *d++ = pixel | a << 24; |
| src++; |
| } |
| return n * 4; |
| } |
| |
| /* decode 32bpp rgba into 32bpp rgba, keeping alpha (dual purpose) */ |
| static int uncopy_32(Uint32 *dst, void *src, int n, |
| RLEDestFormat *sfmt, SDL_PixelFormat *dfmt) |
| { |
| int i; |
| Uint32 *s = src; |
| for(i = 0; i < n; i++) { |
| unsigned r, g, b, a; |
| Uint32 pixel = *s++; |
| RGB_FROM_PIXEL(pixel, sfmt, r, g, b); |
| a = pixel >> 24; |
| PIXEL_FROM_RGBA(*dst, dfmt, r, g, b, a); |
| dst++; |
| } |
| return n * 4; |
| } |
| |
| #define ISOPAQUE(pixel, fmt) ((((pixel) & fmt->Amask) >> fmt->Ashift) == 255) |
| |
| #define ISTRANSL(pixel, fmt) \ |
| ((unsigned)((((pixel) & fmt->Amask) >> fmt->Ashift) - 1U) < 254U) |
| |
| /* convert surface to be quickly alpha-blittable onto dest, if possible */ |
| static int RLEAlphaSurface(SDL_Surface *surface) |
| { |
| SDL_Surface *dest; |
| SDL_PixelFormat *df; |
| int maxsize = 0; |
| int max_opaque_run; |
| int max_transl_run = 65535; |
| unsigned masksum; |
| Uint8 *rlebuf, *dst; |
| int (*copy_opaque)(void *, Uint32 *, int, |
| SDL_PixelFormat *, SDL_PixelFormat *); |
| int (*copy_transl)(void *, Uint32 *, int, |
| SDL_PixelFormat *, SDL_PixelFormat *); |
| |
| dest = surface->map->dst; |
| if(!dest) |
| return -1; |
| df = dest->format; |
| if(surface->format->BitsPerPixel != 32) |
| return -1; /* only 32bpp source supported */ |
| |
| /* find out whether the destination is one we support, |
| and determine the max size of the encoded result */ |
| masksum = df->Rmask | df->Gmask | df->Bmask; |
| switch(df->BytesPerPixel) { |
| case 2: |
| /* 16bpp: only support 565 and 555 formats */ |
| switch(masksum) { |
| case 0xffff: |
| if(df->Gmask == 0x07e0 |
| || df->Rmask == 0x07e0 || df->Bmask == 0x07e0) { |
| copy_opaque = copy_opaque_16; |
| copy_transl = copy_transl_565; |
| } else |
| return -1; |
| break; |
| case 0x7fff: |
| if(df->Gmask == 0x03e0 |
| || df->Rmask == 0x03e0 || df->Bmask == 0x03e0) { |
| copy_opaque = copy_opaque_16; |
| copy_transl = copy_transl_555; |
| } else |
| return -1; |
| break; |
| default: |
| return -1; |
| } |
| max_opaque_run = 255; /* runs stored as bytes */ |
| |
| /* worst case is alternating opaque and translucent pixels, |
| with room for alignment padding between lines */ |
| maxsize = surface->h * (2 + (4 + 2) * (surface->w + 1)) + 2; |
| break; |
| case 4: |
| if(masksum != 0x00ffffff) |
| return -1; /* requires unused high byte */ |
| copy_opaque = copy_32; |
| copy_transl = copy_32; |
| max_opaque_run = 255; /* runs stored as short ints */ |
| |
| /* worst case is alternating opaque and translucent pixels */ |
| maxsize = surface->h * 2 * 4 * (surface->w + 1) + 4; |
| break; |
| default: |
| return -1; /* anything else unsupported right now */ |
| } |
| |
| maxsize += sizeof(RLEDestFormat); |
| rlebuf = (Uint8 *)SDL_malloc(maxsize); |
| if(!rlebuf) { |
| SDL_OutOfMemory(); |
| return -1; |
| } |
| { |
| /* save the destination format so we can undo the encoding later */ |
| RLEDestFormat *r = (RLEDestFormat *)rlebuf; |
| r->BytesPerPixel = df->BytesPerPixel; |
| r->Rloss = df->Rloss; |
| r->Gloss = df->Gloss; |
| r->Bloss = df->Bloss; |
| r->Rshift = df->Rshift; |
| r->Gshift = df->Gshift; |
| r->Bshift = df->Bshift; |
| r->Ashift = df->Ashift; |
| r->Rmask = df->Rmask; |
| r->Gmask = df->Gmask; |
| r->Bmask = df->Bmask; |
| r->Amask = df->Amask; |
| } |
| dst = rlebuf + sizeof(RLEDestFormat); |
| |
| /* Do the actual encoding */ |
| { |
| int x, y; |
| int h = surface->h, w = surface->w; |
| SDL_PixelFormat *sf = surface->format; |
| Uint32 *src = (Uint32 *)surface->pixels; |
| Uint8 *lastline = dst; /* end of last non-blank line */ |
| |
| /* opaque counts are 8 or 16 bits, depending on target depth */ |
| #define ADD_OPAQUE_COUNTS(n, m) \ |
| if(df->BytesPerPixel == 4) { \ |
| ((Uint16 *)dst)[0] = n; \ |
| ((Uint16 *)dst)[1] = m; \ |
| dst += 4; \ |
| } else { \ |
| dst[0] = n; \ |
| dst[1] = m; \ |
| dst += 2; \ |
| } |
| |
| /* translucent counts are always 16 bit */ |
| #define ADD_TRANSL_COUNTS(n, m) \ |
| (((Uint16 *)dst)[0] = n, ((Uint16 *)dst)[1] = m, dst += 4) |
| |
| for(y = 0; y < h; y++) { |
| int runstart, skipstart; |
| int blankline = 0; |
| /* First encode all opaque pixels of a scan line */ |
| x = 0; |
| do { |
| int run, skip, len; |
| skipstart = x; |
| while(x < w && !ISOPAQUE(src[x], sf)) |
| x++; |
| runstart = x; |
| while(x < w && ISOPAQUE(src[x], sf)) |
| x++; |
| skip = runstart - skipstart; |
| if(skip == w) |
| blankline = 1; |
| run = x - runstart; |
| while(skip > max_opaque_run) { |
| ADD_OPAQUE_COUNTS(max_opaque_run, 0); |
| skip -= max_opaque_run; |
| } |
| len = MIN(run, max_opaque_run); |
| ADD_OPAQUE_COUNTS(skip, len); |
| dst += copy_opaque(dst, src + runstart, len, sf, df); |
| runstart += len; |
| run -= len; |
| while(run) { |
| len = MIN(run, max_opaque_run); |
| ADD_OPAQUE_COUNTS(0, len); |
| dst += copy_opaque(dst, src + runstart, len, sf, df); |
| runstart += len; |
| run -= len; |
| } |
| } while(x < w); |
| |
| /* Make sure the next output address is 32-bit aligned */ |
| dst += (uintptr_t)dst & 2; |
| |
| /* Next, encode all translucent pixels of the same scan line */ |
| x = 0; |
| do { |
| int run, skip, len; |
| skipstart = x; |
| while(x < w && !ISTRANSL(src[x], sf)) |
| x++; |
| runstart = x; |
| while(x < w && ISTRANSL(src[x], sf)) |
| x++; |
| skip = runstart - skipstart; |
| blankline &= (skip == w); |
| run = x - runstart; |
| while(skip > max_transl_run) { |
| ADD_TRANSL_COUNTS(max_transl_run, 0); |
| skip -= max_transl_run; |
| } |
| len = MIN(run, max_transl_run); |
| ADD_TRANSL_COUNTS(skip, len); |
| dst += copy_transl(dst, src + runstart, len, sf, df); |
| runstart += len; |
| run -= len; |
| while(run) { |
| len = MIN(run, max_transl_run); |
| ADD_TRANSL_COUNTS(0, len); |
| dst += copy_transl(dst, src + runstart, len, sf, df); |
| runstart += len; |
| run -= len; |
| } |
| if(!blankline) |
| lastline = dst; |
| } while(x < w); |
| |
| src += surface->pitch >> 2; |
| } |
| dst = lastline; /* back up past trailing blank lines */ |
| ADD_OPAQUE_COUNTS(0, 0); |
| } |
| |
| #undef ADD_OPAQUE_COUNTS |
| #undef ADD_TRANSL_COUNTS |
| |
| /* Now that we have it encoded, release the original pixels */ |
| if((surface->flags & SDL_PREALLOC) != SDL_PREALLOC |
| && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) { |
| SDL_free( surface->pixels ); |
| surface->pixels = NULL; |
| } |
| |
| /* realloc the buffer to release unused memory */ |
| { |
| Uint8 *p = SDL_realloc(rlebuf, dst - rlebuf); |
| if(!p) |
| p = rlebuf; |
| surface->map->sw_data->aux_data = p; |
| } |
| |
| return 0; |
| } |
| |
| static Uint32 getpix_8(Uint8 *srcbuf) |
| { |
| return *srcbuf; |
| } |
| |
| static Uint32 getpix_16(Uint8 *srcbuf) |
| { |
| return *(Uint16 *)srcbuf; |
| } |
| |
| static Uint32 getpix_24(Uint8 *srcbuf) |
| { |
| #if SDL_BYTEORDER == SDL_LIL_ENDIAN |
| return srcbuf[0] + (srcbuf[1] << 8) + (srcbuf[2] << 16); |
| #else |
| return (srcbuf[0] << 16) + (srcbuf[1] << 8) + srcbuf[2]; |
| #endif |
| } |
| |
| static Uint32 getpix_32(Uint8 *srcbuf) |
| { |
| return *(Uint32 *)srcbuf; |
| } |
| |
| typedef Uint32 (*getpix_func)(Uint8 *); |
| |
| static getpix_func getpixes[4] = { |
| getpix_8, getpix_16, getpix_24, getpix_32 |
| }; |
| |
| static int RLEColorkeySurface(SDL_Surface *surface) |
| { |
| Uint8 *rlebuf, *dst; |
| int maxn; |
| int y; |
| Uint8 *srcbuf, *curbuf, *lastline; |
| int maxsize = 0; |
| int skip, run; |
| int bpp = surface->format->BytesPerPixel; |
| getpix_func getpix; |
| Uint32 ckey, rgbmask; |
| int w, h; |
| |
| /* calculate the worst case size for the compressed surface */ |
| switch(bpp) { |
| case 1: |
| /* worst case is alternating opaque and transparent pixels, |
| starting with an opaque pixel */ |
| maxsize = surface->h * 3 * (surface->w / 2 + 1) + 2; |
| break; |
| case 2: |
| case 3: |
| /* worst case is solid runs, at most 255 pixels wide */ |
| maxsize = surface->h * (2 * (surface->w / 255 + 1) |
| + surface->w * bpp) + 2; |
| break; |
| case 4: |
| /* worst case is solid runs, at most 65535 pixels wide */ |
| maxsize = surface->h * (4 * (surface->w / 65535 + 1) |
| + surface->w * 4) + 4; |
| break; |
| } |
| |
| rlebuf = (Uint8 *)SDL_malloc(maxsize); |
| if ( rlebuf == NULL ) { |
| SDL_OutOfMemory(); |
| return(-1); |
| } |
| |
| /* Set up the conversion */ |
| srcbuf = (Uint8 *)surface->pixels; |
| curbuf = srcbuf; |
| maxn = bpp == 4 ? 65535 : 255; |
| skip = run = 0; |
| dst = rlebuf; |
| rgbmask = ~surface->format->Amask; |
| ckey = surface->format->colorkey & rgbmask; |
| lastline = dst; |
| getpix = getpixes[bpp - 1]; |
| w = surface->w; |
| h = surface->h; |
| |
| #define ADD_COUNTS(n, m) \ |
| if(bpp == 4) { \ |
| ((Uint16 *)dst)[0] = n; \ |
| ((Uint16 *)dst)[1] = m; \ |
| dst += 4; \ |
| } else { \ |
| dst[0] = n; \ |
| dst[1] = m; \ |
| dst += 2; \ |
| } |
| |
| for(y = 0; y < h; y++) { |
| int x = 0; |
| int blankline = 0; |
| do { |
| int run, skip, len; |
| int runstart; |
| int skipstart = x; |
| |
| /* find run of transparent, then opaque pixels */ |
| while(x < w && (getpix(srcbuf + x * bpp) & rgbmask) == ckey) |
| x++; |
| runstart = x; |
| while(x < w && (getpix(srcbuf + x * bpp) & rgbmask) != ckey) |
| x++; |
| skip = runstart - skipstart; |
| if(skip == w) |
| blankline = 1; |
| run = x - runstart; |
| |
| /* encode segment */ |
| while(skip > maxn) { |
| ADD_COUNTS(maxn, 0); |
| skip -= maxn; |
| } |
| len = MIN(run, maxn); |
| ADD_COUNTS(skip, len); |
| SDL_memcpy(dst, srcbuf + runstart * bpp, len * bpp); |
| dst += len * bpp; |
| run -= len; |
| runstart += len; |
| while(run) { |
| len = MIN(run, maxn); |
| ADD_COUNTS(0, len); |
| SDL_memcpy(dst, srcbuf + runstart * bpp, len * bpp); |
| dst += len * bpp; |
| runstart += len; |
| run -= len; |
| } |
| if(!blankline) |
| lastline = dst; |
| } while(x < w); |
| |
| srcbuf += surface->pitch; |
| } |
| dst = lastline; /* back up bast trailing blank lines */ |
| ADD_COUNTS(0, 0); |
| |
| #undef ADD_COUNTS |
| |
| /* Now that we have it encoded, release the original pixels */ |
| if((surface->flags & SDL_PREALLOC) != SDL_PREALLOC |
| && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) { |
| SDL_free( surface->pixels ); |
| surface->pixels = NULL; |
| } |
| |
| /* realloc the buffer to release unused memory */ |
| { |
| /* If realloc returns NULL, the original block is left intact */ |
| Uint8 *p = SDL_realloc(rlebuf, dst - rlebuf); |
| if(!p) |
| p = rlebuf; |
| surface->map->sw_data->aux_data = p; |
| } |
| |
| return(0); |
| } |
| |
| int SDL_RLESurface(SDL_Surface *surface) |
| { |
| int retcode; |
| |
| /* Clear any previous RLE conversion */ |
| if ( (surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL ) { |
| SDL_UnRLESurface(surface, 1); |
| } |
| |
| /* We don't support RLE encoding of bitmaps */ |
| if ( surface->format->BitsPerPixel < 8 ) { |
| return(-1); |
| } |
| |
| /* Lock the surface if it's in hardware */ |
| if ( SDL_MUSTLOCK(surface) ) { |
| if ( SDL_LockSurface(surface) < 0 ) { |
| return(-1); |
| } |
| } |
| |
| /* Encode */ |
| if((surface->flags & SDL_SRCCOLORKEY) == SDL_SRCCOLORKEY) { |
| retcode = RLEColorkeySurface(surface); |
| } else { |
| if((surface->flags & SDL_SRCALPHA) == SDL_SRCALPHA |
| && surface->format->Amask != 0) |
| retcode = RLEAlphaSurface(surface); |
| else |
| retcode = -1; /* no RLE for per-surface alpha sans ckey */ |
| } |
| |
| /* Unlock the surface if it's in hardware */ |
| if ( SDL_MUSTLOCK(surface) ) { |
| SDL_UnlockSurface(surface); |
| } |
| |
| if(retcode < 0) |
| return -1; |
| |
| /* The surface is now accelerated */ |
| surface->flags |= SDL_RLEACCEL; |
| |
| return(0); |
| } |
| |
| /* |
| * Un-RLE a surface with pixel alpha |
| * This may not give back exactly the image before RLE-encoding; all |
| * completely transparent pixels will be lost, and colour and alpha depth |
| * may have been reduced (when encoding for 16bpp targets). |
| */ |
| static SDL_bool UnRLEAlpha(SDL_Surface *surface) |
| { |
| Uint8 *srcbuf; |
| Uint32 *dst; |
| SDL_PixelFormat *sf = surface->format; |
| RLEDestFormat *df = surface->map->sw_data->aux_data; |
| int (*uncopy_opaque)(Uint32 *, void *, int, |
| RLEDestFormat *, SDL_PixelFormat *); |
| int (*uncopy_transl)(Uint32 *, void *, int, |
| RLEDestFormat *, SDL_PixelFormat *); |
| int w = surface->w; |
| int bpp = df->BytesPerPixel; |
| |
| if(bpp == 2) { |
| uncopy_opaque = uncopy_opaque_16; |
| uncopy_transl = uncopy_transl_16; |
| } else { |
| uncopy_opaque = uncopy_transl = uncopy_32; |
| } |
| |
| surface->pixels = SDL_malloc(surface->h * surface->pitch); |
| if ( !surface->pixels ) { |
| return(SDL_FALSE); |
| } |
| /* fill background with transparent pixels */ |
| SDL_memset(surface->pixels, 0, surface->h * surface->pitch); |
| |
| dst = surface->pixels; |
| srcbuf = (Uint8 *)(df + 1); |
| for(;;) { |
| /* copy opaque pixels */ |
| int ofs = 0; |
| do { |
| unsigned run; |
| if(bpp == 2) { |
| ofs += srcbuf[0]; |
| run = srcbuf[1]; |
| srcbuf += 2; |
| } else { |
| ofs += ((Uint16 *)srcbuf)[0]; |
| run = ((Uint16 *)srcbuf)[1]; |
| srcbuf += 4; |
| } |
| if(run) { |
| srcbuf += uncopy_opaque(dst + ofs, srcbuf, run, df, sf); |
| ofs += run; |
| } else if(!ofs) |
| return(SDL_TRUE); |
| } while(ofs < w); |
| |
| /* skip padding if needed */ |
| if(bpp == 2) |
| srcbuf += (uintptr_t)srcbuf & 2; |
| |
| /* copy translucent pixels */ |
| ofs = 0; |
| do { |
| unsigned run; |
| ofs += ((Uint16 *)srcbuf)[0]; |
| run = ((Uint16 *)srcbuf)[1]; |
| srcbuf += 4; |
| if(run) { |
| srcbuf += uncopy_transl(dst + ofs, srcbuf, run, df, sf); |
| ofs += run; |
| } |
| } while(ofs < w); |
| dst += surface->pitch >> 2; |
| } |
| /* Make the compiler happy */ |
| return(SDL_TRUE); |
| } |
| |
| void SDL_UnRLESurface(SDL_Surface *surface, int recode) |
| { |
| if ( (surface->flags & SDL_RLEACCEL) == SDL_RLEACCEL ) { |
| surface->flags &= ~SDL_RLEACCEL; |
| |
| if(recode && (surface->flags & SDL_PREALLOC) != SDL_PREALLOC |
| && (surface->flags & SDL_HWSURFACE) != SDL_HWSURFACE) { |
| if((surface->flags & SDL_SRCCOLORKEY) == SDL_SRCCOLORKEY) { |
| SDL_Rect full; |
| unsigned alpha_flag; |
| |
| /* re-create the original surface */ |
| surface->pixels = SDL_malloc(surface->h * surface->pitch); |
| if ( !surface->pixels ) { |
| /* Oh crap... */ |
| surface->flags |= SDL_RLEACCEL; |
| return; |
| } |
| |
| /* fill it with the background colour */ |
| SDL_FillRect(surface, NULL, surface->format->colorkey); |
| |
| /* now render the encoded surface */ |
| full.x = full.y = 0; |
| full.w = surface->w; |
| full.h = surface->h; |
| alpha_flag = surface->flags & SDL_SRCALPHA; |
| surface->flags &= ~SDL_SRCALPHA; /* opaque blit */ |
| SDL_RLEBlit(surface, &full, surface, &full); |
| surface->flags |= alpha_flag; |
| } else { |
| if ( !UnRLEAlpha(surface) ) { |
| /* Oh crap... */ |
| surface->flags |= SDL_RLEACCEL; |
| return; |
| } |
| } |
| } |
| |
| if ( surface->map && surface->map->sw_data->aux_data ) { |
| SDL_free(surface->map->sw_data->aux_data); |
| surface->map->sw_data->aux_data = NULL; |
| } |
| } |
| } |
| |
| |