| // Copyright 2003-2009 The RE2 Authors. All Rights Reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| #ifndef RE2_RE2_H |
| #define RE2_RE2_H |
| |
| // C++ interface to the re2 regular-expression library. |
| // RE2 supports Perl-style regular expressions (with extensions like |
| // \d, \w, \s, ...). |
| // |
| // ----------------------------------------------------------------------- |
| // REGEXP SYNTAX: |
| // |
| // This module uses the re2 library and hence supports |
| // its syntax for regular expressions, which is similar to Perl's with |
| // some of the more complicated things thrown away. In particular, |
| // backreferences and generalized assertions are not available, nor is \Z. |
| // |
| // See http://code.google.com/p/re2/wiki/Syntax for the syntax |
| // supported by RE2, and a comparison with PCRE and PERL regexps. |
| // |
| // For those not familiar with Perl's regular expressions, |
| // here are some examples of the most commonly used extensions: |
| // |
| // "hello (\\w+) world" -- \w matches a "word" character |
| // "version (\\d+)" -- \d matches a digit |
| // "hello\\s+world" -- \s matches any whitespace character |
| // "\\b(\\w+)\\b" -- \b matches non-empty string at word boundary |
| // "(?i)hello" -- (?i) turns on case-insensitive matching |
| // "/\\*(.*?)\\*/" -- .*? matches . minimum no. of times possible |
| // |
| // ----------------------------------------------------------------------- |
| // MATCHING INTERFACE: |
| // |
| // The "FullMatch" operation checks that supplied text matches a |
| // supplied pattern exactly. |
| // |
| // Example: successful match |
| // CHECK(RE2::FullMatch("hello", "h.*o")); |
| // |
| // Example: unsuccessful match (requires full match): |
| // CHECK(!RE2::FullMatch("hello", "e")); |
| // |
| // ----------------------------------------------------------------------- |
| // UTF-8 AND THE MATCHING INTERFACE: |
| // |
| // By default, the pattern and input text are interpreted as UTF-8. |
| // The RE2::Latin1 option causes them to be interpreted as Latin-1. |
| // |
| // Example: |
| // CHECK(RE2::FullMatch(utf8_string, RE2(utf8_pattern))); |
| // CHECK(RE2::FullMatch(latin1_string, RE2(latin1_pattern, RE2::Latin1))); |
| // |
| // ----------------------------------------------------------------------- |
| // MATCHING WITH SUB-STRING EXTRACTION: |
| // |
| // You can supply extra pointer arguments to extract matched subpieces. |
| // |
| // Example: extracts "ruby" into "s" and 1234 into "i" |
| // int i; |
| // string s; |
| // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s, &i)); |
| // |
| // Example: fails because string cannot be stored in integer |
| // CHECK(!RE2::FullMatch("ruby", "(.*)", &i)); |
| // |
| // Example: fails because there aren't enough sub-patterns: |
| // CHECK(!RE2::FullMatch("ruby:1234", "\\w+:\\d+", &s)); |
| // |
| // Example: does not try to extract any extra sub-patterns |
| // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", &s)); |
| // |
| // Example: does not try to extract into NULL |
| // CHECK(RE2::FullMatch("ruby:1234", "(\\w+):(\\d+)", NULL, &i)); |
| // |
| // Example: integer overflow causes failure |
| // CHECK(!RE2::FullMatch("ruby:1234567891234", "\\w+:(\\d+)", &i)); |
| // |
| // NOTE(rsc): Asking for substrings slows successful matches quite a bit. |
| // This may get a little faster in the future, but right now is slower |
| // than PCRE. On the other hand, failed matches run *very* fast (faster |
| // than PCRE), as do matches without substring extraction. |
| // |
| // ----------------------------------------------------------------------- |
| // PARTIAL MATCHES |
| // |
| // You can use the "PartialMatch" operation when you want the pattern |
| // to match any substring of the text. |
| // |
| // Example: simple search for a string: |
| // CHECK(RE2::PartialMatch("hello", "ell")); |
| // |
| // Example: find first number in a string |
| // int number; |
| // CHECK(RE2::PartialMatch("x*100 + 20", "(\\d+)", &number)); |
| // CHECK_EQ(number, 100); |
| // |
| // ----------------------------------------------------------------------- |
| // PRE-COMPILED REGULAR EXPRESSIONS |
| // |
| // RE2 makes it easy to use any string as a regular expression, without |
| // requiring a separate compilation step. |
| // |
| // If speed is of the essence, you can create a pre-compiled "RE2" |
| // object from the pattern and use it multiple times. If you do so, |
| // you can typically parse text faster than with sscanf. |
| // |
| // Example: precompile pattern for faster matching: |
| // RE2 pattern("h.*o"); |
| // while (ReadLine(&str)) { |
| // if (RE2::FullMatch(str, pattern)) ...; |
| // } |
| // |
| // ----------------------------------------------------------------------- |
| // SCANNING TEXT INCREMENTALLY |
| // |
| // The "Consume" operation may be useful if you want to repeatedly |
| // match regular expressions at the front of a string and skip over |
| // them as they match. This requires use of the "StringPiece" type, |
| // which represents a sub-range of a real string. |
| // |
| // Example: read lines of the form "var = value" from a string. |
| // string contents = ...; // Fill string somehow |
| // StringPiece input(contents); // Wrap a StringPiece around it |
| // |
| // string var; |
| // int value; |
| // while (RE2::Consume(&input, "(\\w+) = (\\d+)\n", &var, &value)) { |
| // ...; |
| // } |
| // |
| // Each successful call to "Consume" will set "var/value", and also |
| // advance "input" so it points past the matched text. Note that if the |
| // regular expression matches an empty string, input will advance |
| // by 0 bytes. If the regular expression being used might match |
| // an empty string, the loop body must check for this case and either |
| // advance the string or break out of the loop. |
| // |
| // The "FindAndConsume" operation is similar to "Consume" but does not |
| // anchor your match at the beginning of the string. For example, you |
| // could extract all words from a string by repeatedly calling |
| // RE2::FindAndConsume(&input, "(\\w+)", &word) |
| // |
| // ----------------------------------------------------------------------- |
| // USING VARIABLE NUMBER OF ARGUMENTS |
| // |
| // The above operations require you to know the number of arguments |
| // when you write the code. This is not always possible or easy (for |
| // example, the regular expression may be calculated at run time). |
| // You can use the "N" version of the operations when the number of |
| // match arguments are determined at run time. |
| // |
| // Example: |
| // const RE2::Arg* args[10]; |
| // int n; |
| // // ... populate args with pointers to RE2::Arg values ... |
| // // ... set n to the number of RE2::Arg objects ... |
| // bool match = RE2::FullMatchN(input, pattern, args, n); |
| // |
| // The last statement is equivalent to |
| // |
| // bool match = RE2::FullMatch(input, pattern, |
| // *args[0], *args[1], ..., *args[n - 1]); |
| // |
| // ----------------------------------------------------------------------- |
| // PARSING HEX/OCTAL/C-RADIX NUMBERS |
| // |
| // By default, if you pass a pointer to a numeric value, the |
| // corresponding text is interpreted as a base-10 number. You can |
| // instead wrap the pointer with a call to one of the operators Hex(), |
| // Octal(), or CRadix() to interpret the text in another base. The |
| // CRadix operator interprets C-style "0" (base-8) and "0x" (base-16) |
| // prefixes, but defaults to base-10. |
| // |
| // Example: |
| // int a, b, c, d; |
| // CHECK(RE2::FullMatch("100 40 0100 0x40", "(.*) (.*) (.*) (.*)", |
| // RE2::Octal(&a), RE2::Hex(&b), RE2::CRadix(&c), RE2::CRadix(&d)); |
| // will leave 64 in a, b, c, and d. |
| |
| |
| #include <stdint.h> |
| #include <map> |
| #include <string> |
| #include "re2/stringpiece.h" |
| #include "re2/variadic_function.h" |
| |
| namespace re2 { |
| using std::string; |
| using std::map; |
| class Mutex; |
| class Prog; |
| class Regexp; |
| |
| // Interface for regular expression matching. Also corresponds to a |
| // pre-compiled regular expression. An "RE2" object is safe for |
| // concurrent use by multiple threads. |
| class RE2 { |
| public: |
| // We convert user-passed pointers into special Arg objects |
| class Arg; |
| class Options; |
| |
| // Defined in set.h. |
| class Set; |
| |
| enum ErrorCode { |
| NoError = 0, |
| |
| // Unexpected error |
| ErrorInternal, |
| |
| // Parse errors |
| ErrorBadEscape, // bad escape sequence |
| ErrorBadCharClass, // bad character class |
| ErrorBadCharRange, // bad character class range |
| ErrorMissingBracket, // missing closing ] |
| ErrorMissingParen, // missing closing ) |
| ErrorTrailingBackslash, // trailing \ at end of regexp |
| ErrorRepeatArgument, // repeat argument missing, e.g. "*" |
| ErrorRepeatSize, // bad repetition argument |
| ErrorRepeatOp, // bad repetition operator |
| ErrorBadPerlOp, // bad perl operator |
| ErrorBadUTF8, // invalid UTF-8 in regexp |
| ErrorBadNamedCapture, // bad named capture group |
| ErrorPatternTooLarge, // pattern too large (compile failed) |
| }; |
| |
| // Predefined common options. |
| // If you need more complicated things, instantiate |
| // an Option class, change the settings, and pass it to the |
| // RE2 constructor. |
| static const Options DefaultOptions; |
| static const Options Latin1; // treat input as Latin-1 (default UTF-8) |
| static const Options POSIX; // POSIX syntax, leftmost-longest match |
| static const Options Quiet; // do not log about regexp parse errors |
| |
| // Need to have the const char* and const string& forms for implicit |
| // conversions when passing string literals to FullMatch and PartialMatch. |
| // Otherwise the StringPiece form would be sufficient. |
| #ifndef SWIG |
| RE2(const char* pattern); |
| RE2(const string& pattern); |
| #endif |
| RE2(const StringPiece& pattern); |
| RE2(const StringPiece& pattern, const Options& option); |
| ~RE2(); |
| |
| // Returns whether RE2 was created properly. |
| bool ok() const { return error_code() == NoError; } |
| |
| // The string specification for this RE2. E.g. |
| // RE2 re("ab*c?d+"); |
| // re.pattern(); // "ab*c?d+" |
| const string& pattern() const { return pattern_; } |
| |
| // If RE2 could not be created properly, returns an error string. |
| // Else returns the empty string. |
| const string& error() const { return *error_; } |
| |
| // If RE2 could not be created properly, returns an error code. |
| // Else returns RE2::NoError (== 0). |
| ErrorCode error_code() const { return error_code_; } |
| |
| // If RE2 could not be created properly, returns the offending |
| // portion of the regexp. |
| const string& error_arg() const { return error_arg_; } |
| |
| // Returns the program size, a very approximate measure of a regexp's "cost". |
| // Larger numbers are more expensive than smaller numbers. |
| int ProgramSize() const; |
| |
| // Returns the underlying Regexp; not for general use. |
| // Returns entire_regexp_ so that callers don't need |
| // to know about prefix_ and prefix_foldcase_. |
| re2::Regexp* Regexp() const { return entire_regexp_; } |
| |
| /***** The useful part: the matching interface *****/ |
| |
| // Matches "text" against "pattern". If pointer arguments are |
| // supplied, copies matched sub-patterns into them. |
| // |
| // You can pass in a "const char*" or a "string" for "text". |
| // You can pass in a "const char*" or a "string" or a "RE2" for "pattern". |
| // |
| // The provided pointer arguments can be pointers to any scalar numeric |
| // type, or one of: |
| // string (matched piece is copied to string) |
| // StringPiece (StringPiece is mutated to point to matched piece) |
| // T (where "bool T::ParseFrom(const char*, int)" exists) |
| // (void*)NULL (the corresponding matched sub-pattern is not copied) |
| // |
| // Returns true iff all of the following conditions are satisfied: |
| // a. "text" matches "pattern" exactly |
| // b. The number of matched sub-patterns is >= number of supplied pointers |
| // c. The "i"th argument has a suitable type for holding the |
| // string captured as the "i"th sub-pattern. If you pass in |
| // NULL for the "i"th argument, or pass fewer arguments than |
| // number of sub-patterns, "i"th captured sub-pattern is |
| // ignored. |
| // |
| // CAVEAT: An optional sub-pattern that does not exist in the |
| // matched string is assigned the empty string. Therefore, the |
| // following will return false (because the empty string is not a |
| // valid number): |
| // int number; |
| // RE2::FullMatch("abc", "[a-z]+(\\d+)?", &number); |
| static bool FullMatchN(const StringPiece& text, const RE2& re, |
| const Arg* const args[], int argc); |
| static const VariadicFunction2< |
| bool, const StringPiece&, const RE2&, Arg, RE2::FullMatchN> FullMatch; |
| |
| // Exactly like FullMatch(), except that "pattern" is allowed to match |
| // a substring of "text". |
| static bool PartialMatchN(const StringPiece& text, const RE2& re, // 3..16 args |
| const Arg* const args[], int argc); |
| static const VariadicFunction2< |
| bool, const StringPiece&, const RE2&, Arg, RE2::PartialMatchN> PartialMatch; |
| |
| // Like FullMatch() and PartialMatch(), except that pattern has to |
| // match a prefix of "text", and "input" is advanced past the matched |
| // text. Note: "input" is modified iff this routine returns true. |
| static bool ConsumeN(StringPiece* input, const RE2& pattern, // 3..16 args |
| const Arg* const args[], int argc); |
| static const VariadicFunction2< |
| bool, StringPiece*, const RE2&, Arg, RE2::ConsumeN> Consume; |
| |
| // Like Consume(..), but does not anchor the match at the beginning of the |
| // string. That is, "pattern" need not start its match at the beginning of |
| // "input". For example, "FindAndConsume(s, "(\\w+)", &word)" finds the next |
| // word in "s" and stores it in "word". |
| static bool FindAndConsumeN(StringPiece* input, const RE2& pattern, |
| const Arg* const args[], int argc); |
| static const VariadicFunction2< |
| bool, StringPiece*, const RE2&, Arg, RE2::FindAndConsumeN> FindAndConsume; |
| |
| // Replace the first match of "pattern" in "str" with "rewrite". |
| // Within "rewrite", backslash-escaped digits (\1 to \9) can be |
| // used to insert text matching corresponding parenthesized group |
| // from the pattern. \0 in "rewrite" refers to the entire matching |
| // text. E.g., |
| // |
| // string s = "yabba dabba doo"; |
| // CHECK(RE2::Replace(&s, "b+", "d")); |
| // |
| // will leave "s" containing "yada dabba doo" |
| // |
| // Returns true if the pattern matches and a replacement occurs, |
| // false otherwise. |
| static bool Replace(string *str, |
| const RE2& pattern, |
| const StringPiece& rewrite); |
| |
| // Like Replace(), except replaces successive non-overlapping occurrences |
| // of the pattern in the string with the rewrite. E.g. |
| // |
| // string s = "yabba dabba doo"; |
| // CHECK(RE2::GlobalReplace(&s, "b+", "d")); |
| // |
| // will leave "s" containing "yada dada doo" |
| // Replacements are not subject to re-matching. |
| // |
| // Because GlobalReplace only replaces non-overlapping matches, |
| // replacing "ana" within "banana" makes only one replacement, not two. |
| // |
| // Returns the number of replacements made. |
| static int GlobalReplace(string *str, |
| const RE2& pattern, |
| const StringPiece& rewrite); |
| |
| // Like Replace, except that if the pattern matches, "rewrite" |
| // is copied into "out" with substitutions. The non-matching |
| // portions of "text" are ignored. |
| // |
| // Returns true iff a match occurred and the extraction happened |
| // successfully; if no match occurs, the string is left unaffected. |
| static bool Extract(const StringPiece &text, |
| const RE2& pattern, |
| const StringPiece &rewrite, |
| string *out); |
| |
| // Escapes all potentially meaningful regexp characters in |
| // 'unquoted'. The returned string, used as a regular expression, |
| // will exactly match the original string. For example, |
| // 1.5-2.0? |
| // may become: |
| // 1\.5\-2\.0\? |
| static string QuoteMeta(const StringPiece& unquoted); |
| |
| // Computes range for any strings matching regexp. The min and max can in |
| // some cases be arbitrarily precise, so the caller gets to specify the |
| // maximum desired length of string returned. |
| // |
| // Assuming PossibleMatchRange(&min, &max, N) returns successfully, any |
| // string s that is an anchored match for this regexp satisfies |
| // min <= s && s <= max. |
| // |
| // Note that PossibleMatchRange() will only consider the first copy of an |
| // infinitely repeated element (i.e., any regexp element followed by a '*' or |
| // '+' operator). Regexps with "{N}" constructions are not affected, as those |
| // do not compile down to infinite repetitions. |
| // |
| // Returns true on success, false on error. |
| bool PossibleMatchRange(string* min, string* max, int maxlen) const; |
| |
| // Generic matching interface |
| |
| // Type of match. |
| enum Anchor { |
| UNANCHORED, // No anchoring |
| ANCHOR_START, // Anchor at start only |
| ANCHOR_BOTH, // Anchor at start and end |
| }; |
| |
| // Return the number of capturing subpatterns, or -1 if the |
| // regexp wasn't valid on construction. The overall match ($0) |
| // does not count: if the regexp is "(a)(b)", returns 2. |
| int NumberOfCapturingGroups() const; |
| |
| |
| // Return a map from names to capturing indices. |
| // The map records the index of the leftmost group |
| // with the given name. |
| // Only valid until the re is deleted. |
| const map<string, int>& NamedCapturingGroups() const; |
| |
| // Return a map from capturing indices to names. |
| // The map has no entries for unnamed groups. |
| // Only valid until the re is deleted. |
| const map<int, string>& CapturingGroupNames() const; |
| |
| // General matching routine. |
| // Match against text starting at offset startpos |
| // and stopping the search at offset endpos. |
| // Returns true if match found, false if not. |
| // On a successful match, fills in match[] (up to nmatch entries) |
| // with information about submatches. |
| // I.e. matching RE2("(foo)|(bar)baz") on "barbazbla" will return true, |
| // setting match[0] = "barbaz", match[1] = NULL, match[2] = "bar", |
| // match[3] = NULL, ..., up to match[nmatch-1] = NULL. |
| // |
| // Don't ask for more match information than you will use: |
| // runs much faster with nmatch == 1 than nmatch > 1, and |
| // runs even faster if nmatch == 0. |
| // Doesn't make sense to use nmatch > 1 + NumberOfCapturingGroups(), |
| // but will be handled correctly. |
| // |
| // Passing text == StringPiece(NULL, 0) will be handled like any other |
| // empty string, but note that on return, it will not be possible to tell |
| // whether submatch i matched the empty string or did not match: |
| // either way, match[i] == NULL. |
| bool Match(const StringPiece& text, |
| int startpos, |
| int endpos, |
| Anchor anchor, |
| StringPiece *match, |
| int nmatch) const; |
| |
| // Check that the given rewrite string is suitable for use with this |
| // regular expression. It checks that: |
| // * The regular expression has enough parenthesized subexpressions |
| // to satisfy all of the \N tokens in rewrite |
| // * The rewrite string doesn't have any syntax errors. E.g., |
| // '\' followed by anything other than a digit or '\'. |
| // A true return value guarantees that Replace() and Extract() won't |
| // fail because of a bad rewrite string. |
| bool CheckRewriteString(const StringPiece& rewrite, string* error) const; |
| |
| // Constructor options |
| class Options { |
| public: |
| // The options are (defaults in parentheses): |
| // |
| // utf8 (true) text and pattern are UTF-8; otherwise Latin-1 |
| // posix_syntax (false) restrict regexps to POSIX egrep syntax |
| // longest_match (false) search for longest match, not first match |
| // log_errors (true) log syntax and execution errors to ERROR |
| // max_mem (see below) approx. max memory footprint of RE2 |
| // literal (false) interpret string as literal, not regexp |
| // never_nl (false) never match \n, even if it is in regexp |
| // case_sensitive (true) match is case-sensitive (regexp can override |
| // with (?i) unless in posix_syntax mode) |
| // |
| // The following options are only consulted when posix_syntax == true. |
| // (When posix_syntax == false these features are always enabled and |
| // cannot be turned off.) |
| // perl_classes (false) allow Perl's \d \s \w \D \S \W |
| // word_boundary (false) allow Perl's \b \B (word boundary and not) |
| // one_line (false) ^ and $ only match beginning and end of text |
| // |
| // The max_mem option controls how much memory can be used |
| // to hold the compiled form of the regexp (the Prog) and |
| // its cached DFA graphs. Code Search placed limits on the number |
| // of Prog instructions and DFA states: 10,000 for both. |
| // In RE2, those limits would translate to about 240 KB per Prog |
| // and perhaps 2.5 MB per DFA (DFA state sizes vary by regexp; RE2 does a |
| // better job of keeping them small than Code Search did). |
| // Each RE2 has two Progs (one forward, one reverse), and each Prog |
| // can have two DFAs (one first match, one longest match). |
| // That makes 4 DFAs: |
| // |
| // forward, first-match - used for UNANCHORED or ANCHOR_LEFT searches |
| // if opt.longest_match() == false |
| // forward, longest-match - used for all ANCHOR_BOTH searches, |
| // and the other two kinds if |
| // opt.longest_match() == true |
| // reverse, first-match - never used |
| // reverse, longest-match - used as second phase for unanchored searches |
| // |
| // The RE2 memory budget is statically divided between the two |
| // Progs and then the DFAs: two thirds to the forward Prog |
| // and one third to the reverse Prog. The forward Prog gives half |
| // of what it has left over to each of its DFAs. The reverse Prog |
| // gives it all to its longest-match DFA. |
| // |
| // Once a DFA fills its budget, it flushes its cache and starts over. |
| // If this happens too often, RE2 falls back on the NFA implementation. |
| |
| // For now, make the default budget something close to Code Search. |
| static const int kDefaultMaxMem = 8<<20; |
| |
| enum Encoding { |
| EncodingUTF8 = 1, |
| EncodingLatin1 |
| }; |
| |
| Options() : |
| encoding_(EncodingUTF8), |
| posix_syntax_(false), |
| longest_match_(false), |
| log_errors_(true), |
| max_mem_(kDefaultMaxMem), |
| literal_(false), |
| never_nl_(false), |
| case_sensitive_(true), |
| perl_classes_(false), |
| word_boundary_(false), |
| one_line_(false) { |
| } |
| |
| Encoding encoding() const { return encoding_; } |
| void set_encoding(Encoding encoding) { encoding_ = encoding; } |
| |
| // Legacy interface to encoding. |
| // TODO(rsc): Remove once clients have been converted. |
| bool utf8() const { return encoding_ == EncodingUTF8; } |
| void set_utf8(bool b) { |
| if (b) { |
| encoding_ = EncodingUTF8; |
| } else { |
| encoding_ = EncodingLatin1; |
| } |
| } |
| |
| bool posix_syntax() const { return posix_syntax_; } |
| void set_posix_syntax(bool b) { posix_syntax_ = b; } |
| |
| bool longest_match() const { return longest_match_; } |
| void set_longest_match(bool b) { longest_match_ = b; } |
| |
| bool log_errors() const { return log_errors_; } |
| void set_log_errors(bool b) { log_errors_ = b; } |
| |
| int max_mem() const { return max_mem_; } |
| void set_max_mem(int m) { max_mem_ = m; } |
| |
| bool literal() const { return literal_; } |
| void set_literal(bool b) { literal_ = b; } |
| |
| bool never_nl() const { return never_nl_; } |
| void set_never_nl(bool b) { never_nl_ = b; } |
| |
| bool case_sensitive() const { return case_sensitive_; } |
| void set_case_sensitive(bool b) { case_sensitive_ = b; } |
| |
| bool perl_classes() const { return perl_classes_; } |
| void set_perl_classes(bool b) { perl_classes_ = b; } |
| |
| bool word_boundary() const { return word_boundary_; } |
| void set_word_boundary(bool b) { word_boundary_ = b; } |
| |
| bool one_line() const { return one_line_; } |
| void set_one_line(bool b) { one_line_ = b; } |
| |
| void Copy(const Options& src) { |
| encoding_ = src.encoding_; |
| posix_syntax_ = src.posix_syntax_; |
| longest_match_ = src.longest_match_; |
| log_errors_ = src.log_errors_; |
| max_mem_ = src.max_mem_; |
| literal_ = src.literal_; |
| never_nl_ = src.never_nl_; |
| case_sensitive_ = src.case_sensitive_; |
| perl_classes_ = src.perl_classes_; |
| word_boundary_ = src.word_boundary_; |
| one_line_ = src.one_line_; |
| } |
| |
| int ParseFlags() const; |
| |
| private: |
| // Private constructor for defining constants like RE2::Latin1. |
| friend class RE2; |
| Options(Encoding encoding, |
| bool posix_syntax, |
| bool longest_match, |
| bool log_errors) : |
| encoding_(encoding), |
| posix_syntax_(posix_syntax), |
| longest_match_(longest_match), |
| log_errors_(log_errors), |
| max_mem_(kDefaultMaxMem), |
| literal_(false), |
| never_nl_(false), |
| case_sensitive_(true), |
| perl_classes_(false), |
| word_boundary_(false), |
| one_line_(false) { |
| } |
| |
| Encoding encoding_; |
| bool posix_syntax_; |
| bool longest_match_; |
| bool log_errors_; |
| int64_t max_mem_; |
| bool literal_; |
| bool never_nl_; |
| bool case_sensitive_; |
| bool perl_classes_; |
| bool word_boundary_; |
| bool one_line_; |
| |
| //DISALLOW_EVIL_CONSTRUCTORS(Options); |
| Options(const Options&); |
| void operator=(const Options&); |
| }; |
| |
| // Returns the options set in the constructor. |
| const Options& options() const { return options_; }; |
| |
| // Argument converters; see below. |
| static inline Arg CRadix(short* x); |
| static inline Arg CRadix(unsigned short* x); |
| static inline Arg CRadix(int* x); |
| static inline Arg CRadix(unsigned int* x); |
| static inline Arg CRadix(long* x); |
| static inline Arg CRadix(unsigned long* x); |
| static inline Arg CRadix(long long* x); |
| static inline Arg CRadix(unsigned long long* x); |
| |
| static inline Arg Hex(short* x); |
| static inline Arg Hex(unsigned short* x); |
| static inline Arg Hex(int* x); |
| static inline Arg Hex(unsigned int* x); |
| static inline Arg Hex(long* x); |
| static inline Arg Hex(unsigned long* x); |
| static inline Arg Hex(long long* x); |
| static inline Arg Hex(unsigned long long* x); |
| |
| static inline Arg Octal(short* x); |
| static inline Arg Octal(unsigned short* x); |
| static inline Arg Octal(int* x); |
| static inline Arg Octal(unsigned int* x); |
| static inline Arg Octal(long* x); |
| static inline Arg Octal(unsigned long* x); |
| static inline Arg Octal(long long* x); |
| static inline Arg Octal(unsigned long long* x); |
| |
| private: |
| void Init(const StringPiece& pattern, const Options& options); |
| |
| bool Rewrite(string *out, |
| const StringPiece &rewrite, |
| const StringPiece* vec, |
| int veclen) const; |
| |
| bool DoMatch(const StringPiece& text, |
| Anchor anchor, |
| int* consumed, |
| const Arg* const args[], |
| int n) const; |
| |
| re2::Prog* ReverseProg() const; |
| |
| mutable Mutex* mutex_; |
| string pattern_; // string regular expression |
| Options options_; // option flags |
| string prefix_; // required prefix (before regexp_) |
| bool prefix_foldcase_; // prefix is ASCII case-insensitive |
| re2::Regexp* entire_regexp_; // parsed regular expression |
| re2::Regexp* suffix_regexp_; // parsed regular expression, prefix removed |
| re2::Prog* prog_; // compiled program for regexp |
| mutable re2::Prog* rprog_; // reverse program for regexp |
| bool is_one_pass_; // can use prog_->SearchOnePass? |
| mutable const string* error_; // Error indicator |
| // (or points to empty string) |
| mutable ErrorCode error_code_; // Error code |
| mutable string error_arg_; // Fragment of regexp showing error |
| mutable int num_captures_; // Number of capturing groups |
| |
| // Map from capture names to indices |
| mutable const map<string, int>* named_groups_; |
| |
| // Map from capture indices to names |
| mutable const map<int, string>* group_names_; |
| |
| //DISALLOW_EVIL_CONSTRUCTORS(RE2); |
| RE2(const RE2&); |
| void operator=(const RE2&); |
| }; |
| |
| /***** Implementation details *****/ |
| |
| // Hex/Octal/Binary? |
| |
| // Special class for parsing into objects that define a ParseFrom() method |
| template <class T> |
| class _RE2_MatchObject { |
| public: |
| static inline bool Parse(const char* str, int n, void* dest) { |
| if (dest == NULL) return true; |
| T* object = reinterpret_cast<T*>(dest); |
| return object->ParseFrom(str, n); |
| } |
| }; |
| |
| class RE2::Arg { |
| public: |
| // Empty constructor so we can declare arrays of RE2::Arg |
| Arg(); |
| |
| // Constructor specially designed for NULL arguments |
| Arg(void*); |
| |
| typedef bool (*Parser)(const char* str, int n, void* dest); |
| |
| // Type-specific parsers |
| #define MAKE_PARSER(type,name) \ |
| Arg(type* p) : arg_(p), parser_(name) { } \ |
| Arg(type* p, Parser parser) : arg_(p), parser_(parser) { } \ |
| |
| |
| MAKE_PARSER(char, parse_char); |
| MAKE_PARSER(signed char, parse_char); |
| MAKE_PARSER(unsigned char, parse_uchar); |
| MAKE_PARSER(short, parse_short); |
| MAKE_PARSER(unsigned short, parse_ushort); |
| MAKE_PARSER(int, parse_int); |
| MAKE_PARSER(unsigned int, parse_uint); |
| MAKE_PARSER(long, parse_long); |
| MAKE_PARSER(unsigned long, parse_ulong); |
| MAKE_PARSER(long long, parse_longlong); |
| MAKE_PARSER(unsigned long long, parse_ulonglong); |
| MAKE_PARSER(float, parse_float); |
| MAKE_PARSER(double, parse_double); |
| MAKE_PARSER(string, parse_string); |
| MAKE_PARSER(StringPiece, parse_stringpiece); |
| |
| #undef MAKE_PARSER |
| |
| // Generic constructor |
| template <class T> Arg(T*, Parser parser); |
| // Generic constructor template |
| template <class T> Arg(T* p) |
| : arg_(p), parser_(_RE2_MatchObject<T>::Parse) { |
| } |
| |
| // Parse the data |
| bool Parse(const char* str, int n) const; |
| |
| private: |
| void* arg_; |
| Parser parser_; |
| |
| static bool parse_null (const char* str, int n, void* dest); |
| static bool parse_char (const char* str, int n, void* dest); |
| static bool parse_uchar (const char* str, int n, void* dest); |
| static bool parse_float (const char* str, int n, void* dest); |
| static bool parse_double (const char* str, int n, void* dest); |
| static bool parse_string (const char* str, int n, void* dest); |
| static bool parse_stringpiece (const char* str, int n, void* dest); |
| |
| #define DECLARE_INTEGER_PARSER(name) \ |
| private: \ |
| static bool parse_ ## name(const char* str, int n, void* dest); \ |
| static bool parse_ ## name ## _radix( \ |
| const char* str, int n, void* dest, int radix); \ |
| public: \ |
| static bool parse_ ## name ## _hex(const char* str, int n, void* dest); \ |
| static bool parse_ ## name ## _octal(const char* str, int n, void* dest); \ |
| static bool parse_ ## name ## _cradix(const char* str, int n, void* dest) |
| |
| DECLARE_INTEGER_PARSER(short); |
| DECLARE_INTEGER_PARSER(ushort); |
| DECLARE_INTEGER_PARSER(int); |
| DECLARE_INTEGER_PARSER(uint); |
| DECLARE_INTEGER_PARSER(long); |
| DECLARE_INTEGER_PARSER(ulong); |
| DECLARE_INTEGER_PARSER(longlong); |
| DECLARE_INTEGER_PARSER(ulonglong); |
| |
| #undef DECLARE_INTEGER_PARSER |
| }; |
| |
| inline RE2::Arg::Arg() : arg_(NULL), parser_(parse_null) { } |
| inline RE2::Arg::Arg(void* p) : arg_(p), parser_(parse_null) { } |
| |
| inline bool RE2::Arg::Parse(const char* str, int n) const { |
| return (*parser_)(str, n, arg_); |
| } |
| |
| // This part of the parser, appropriate only for ints, deals with bases |
| #define MAKE_INTEGER_PARSER(type, name) \ |
| inline RE2::Arg RE2::Hex(type* ptr) { \ |
| return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _hex); } \ |
| inline RE2::Arg RE2::Octal(type* ptr) { \ |
| return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _octal); } \ |
| inline RE2::Arg RE2::CRadix(type* ptr) { \ |
| return RE2::Arg(ptr, RE2::Arg::parse_ ## name ## _cradix); } |
| |
| MAKE_INTEGER_PARSER(short, short); |
| MAKE_INTEGER_PARSER(unsigned short, ushort); |
| MAKE_INTEGER_PARSER(int, int); |
| MAKE_INTEGER_PARSER(unsigned int, uint); |
| MAKE_INTEGER_PARSER(long, long); |
| MAKE_INTEGER_PARSER(unsigned long, ulong); |
| MAKE_INTEGER_PARSER(long long, longlong); |
| MAKE_INTEGER_PARSER(unsigned long long, ulonglong); |
| |
| #undef MAKE_INTEGER_PARSER |
| |
| } // namespace re2 |
| |
| using re2::RE2; |
| |
| #endif /* RE2_RE2_H */ |