blob: 369f782d18cad378f418b3e757e13f905819f0f0 [file] [log] [blame]
/*
* Copyright 2012 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkColorFilterImageFilter.h"
#include "SkBitmap.h"
#include "SkCanvas.h"
#include "SkColorMatrixFilter.h"
#include "SkDevice.h"
#include "SkColorFilter.h"
#include "SkFlattenableBuffers.h"
namespace {
void mult_color_matrix(SkScalar a[20], SkScalar b[20], SkScalar out[20]) {
for (int j = 0; j < 4; ++j) {
for (int i = 0; i < 5; ++i) {
out[i+j*5] = 4 == i ? a[4+j*5] : 0;
for (int k = 0; k < 4; ++k)
out[i+j*5] += SkScalarMul(a[k+j*5], b[i+k*5]);
}
}
}
// To detect if we need to apply clamping after applying a matrix, we check if
// any output component might go outside of [0, 255] for any combination of
// input components in [0..255].
// Each output component is an affine transformation of the input component, so
// the minimum and maximum values are for any combination of minimum or maximum
// values of input components (i.e. 0 or 255).
// E.g. if R' = x*R + y*G + z*B + w*A + t
// Then the maximum value will be for R=255 if x>0 or R=0 if x<0, and the
// minimum value will be for R=0 if x>0 or R=255 if x<0.
// Same goes for all components.
bool component_needs_clamping(SkScalar row[5]) {
SkScalar maxValue = row[4] / 255;
SkScalar minValue = row[4] / 255;
for (int i = 0; i < 4; ++i) {
if (row[i] > 0)
maxValue += row[i];
else
minValue += row[i];
}
return (maxValue > 1) || (minValue < 0);
}
bool matrix_needs_clamping(SkScalar matrix[20]) {
return component_needs_clamping(matrix)
|| component_needs_clamping(matrix+5)
|| component_needs_clamping(matrix+10)
|| component_needs_clamping(matrix+15);
}
};
SkColorFilterImageFilter* SkColorFilterImageFilter::Create(SkColorFilter* cf,
SkImageFilter* input) {
SkASSERT(cf);
SkScalar colorMatrix[20], inputMatrix[20];
SkColorFilter* inputColorFilter;
if (input && cf->asColorMatrix(colorMatrix)
&& (inputColorFilter = input->asColorFilter())
&& inputColorFilter->asColorMatrix(inputMatrix)
&& !matrix_needs_clamping(inputMatrix)) {
SkScalar combinedMatrix[20];
mult_color_matrix(inputMatrix, colorMatrix, combinedMatrix);
SkAutoTUnref<SkColorFilter> newCF(SkNEW_ARGS(SkColorMatrixFilter, (combinedMatrix)));
return SkNEW_ARGS(SkColorFilterImageFilter, (newCF, input->getInput(0)));
} else {
return SkNEW_ARGS(SkColorFilterImageFilter, (cf, input));
}
}
SkColorFilterImageFilter::SkColorFilterImageFilter(SkColorFilter* cf, SkImageFilter* input) : INHERITED(input), fColorFilter(cf) {
SkASSERT(cf);
SkSafeRef(cf);
}
SkColorFilterImageFilter::SkColorFilterImageFilter(SkFlattenableReadBuffer& buffer) : INHERITED(buffer) {
fColorFilter = buffer.readFlattenableT<SkColorFilter>();
}
void SkColorFilterImageFilter::flatten(SkFlattenableWriteBuffer& buffer) const {
this->INHERITED::flatten(buffer);
buffer.writeFlattenable(fColorFilter);
}
SkColorFilterImageFilter::~SkColorFilterImageFilter() {
SkSafeUnref(fColorFilter);
}
bool SkColorFilterImageFilter::onFilterImage(Proxy* proxy, const SkBitmap& source,
const SkMatrix& matrix,
SkBitmap* result,
SkIPoint* loc) {
SkBitmap src = this->getInputResult(proxy, source, matrix, loc);
SkAutoTUnref<SkDevice> device(proxy->createDevice(src.width(), src.height()));
SkCanvas canvas(device.get());
SkPaint paint;
paint.setXfermodeMode(SkXfermode::kSrc_Mode);
paint.setColorFilter(fColorFilter);
canvas.drawSprite(src, 0, 0, &paint);
*result = device.get()->accessBitmap(false);
return true;
}
SkColorFilter* SkColorFilterImageFilter::asColorFilter() const {
return fColorFilter;
}