| |
| /* |
| * Copyright 2011 Google Inc. |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "GrPathUtils.h" |
| #include "GrPoint.h" |
| #include "SkGeometry.h" |
| |
| GrScalar GrPathUtils::scaleToleranceToSrc(GrScalar devTol, |
| const GrMatrix& viewM, |
| const GrRect& pathBounds) { |
| // In order to tesselate the path we get a bound on how much the matrix can |
| // stretch when mapping to screen coordinates. |
| GrScalar stretch = viewM.getMaxStretch(); |
| GrScalar srcTol = devTol; |
| |
| if (stretch < 0) { |
| // take worst case mapRadius amoung four corners. |
| // (less than perfect) |
| for (int i = 0; i < 4; ++i) { |
| GrMatrix mat; |
| mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight, |
| (i < 2) ? pathBounds.fTop : pathBounds.fBottom); |
| mat.postConcat(viewM); |
| stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1)); |
| } |
| } |
| srcTol = GrScalarDiv(srcTol, stretch); |
| return srcTol; |
| } |
| |
| static const int MAX_POINTS_PER_CURVE = 1 << 10; |
| static const GrScalar gMinCurveTol = GrFloatToScalar(0.0001f); |
| |
| uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[], |
| GrScalar tol) { |
| if (tol < gMinCurveTol) { |
| tol = gMinCurveTol; |
| } |
| GrAssert(tol > 0); |
| |
| GrScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]); |
| if (d <= tol) { |
| return 1; |
| } else { |
| // Each time we subdivide, d should be cut in 4. So we need to |
| // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x) |
| // points. |
| // 2^(log4(x)) = sqrt(x); |
| int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol))); |
| int pow2 = GrNextPow2(temp); |
| // Because of NaNs & INFs we can wind up with a degenerate temp |
| // such that pow2 comes out negative. Also, our point generator |
| // will always output at least one pt. |
| if (pow2 < 1) { |
| pow2 = 1; |
| } |
| return GrMin(pow2, MAX_POINTS_PER_CURVE); |
| } |
| } |
| |
| uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0, |
| const GrPoint& p1, |
| const GrPoint& p2, |
| GrScalar tolSqd, |
| GrPoint** points, |
| uint32_t pointsLeft) { |
| if (pointsLeft < 2 || |
| (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) { |
| (*points)[0] = p2; |
| *points += 1; |
| return 1; |
| } |
| |
| GrPoint q[] = { |
| { GrScalarAve(p0.fX, p1.fX), GrScalarAve(p0.fY, p1.fY) }, |
| { GrScalarAve(p1.fX, p2.fX), GrScalarAve(p1.fY, p2.fY) }, |
| }; |
| GrPoint r = { GrScalarAve(q[0].fX, q[1].fX), GrScalarAve(q[0].fY, q[1].fY) }; |
| |
| pointsLeft >>= 1; |
| uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft); |
| uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft); |
| return a + b; |
| } |
| |
| uint32_t GrPathUtils::cubicPointCount(const GrPoint points[], |
| GrScalar tol) { |
| if (tol < gMinCurveTol) { |
| tol = gMinCurveTol; |
| } |
| GrAssert(tol > 0); |
| |
| GrScalar d = GrMax( |
| points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]), |
| points[2].distanceToLineSegmentBetweenSqd(points[0], points[3])); |
| d = SkScalarSqrt(d); |
| if (d <= tol) { |
| return 1; |
| } else { |
| int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol))); |
| int pow2 = GrNextPow2(temp); |
| // Because of NaNs & INFs we can wind up with a degenerate temp |
| // such that pow2 comes out negative. Also, our point generator |
| // will always output at least one pt. |
| if (pow2 < 1) { |
| pow2 = 1; |
| } |
| return GrMin(pow2, MAX_POINTS_PER_CURVE); |
| } |
| } |
| |
| uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0, |
| const GrPoint& p1, |
| const GrPoint& p2, |
| const GrPoint& p3, |
| GrScalar tolSqd, |
| GrPoint** points, |
| uint32_t pointsLeft) { |
| if (pointsLeft < 2 || |
| (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd && |
| p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) { |
| (*points)[0] = p3; |
| *points += 1; |
| return 1; |
| } |
| GrPoint q[] = { |
| { GrScalarAve(p0.fX, p1.fX), GrScalarAve(p0.fY, p1.fY) }, |
| { GrScalarAve(p1.fX, p2.fX), GrScalarAve(p1.fY, p2.fY) }, |
| { GrScalarAve(p2.fX, p3.fX), GrScalarAve(p2.fY, p3.fY) } |
| }; |
| GrPoint r[] = { |
| { GrScalarAve(q[0].fX, q[1].fX), GrScalarAve(q[0].fY, q[1].fY) }, |
| { GrScalarAve(q[1].fX, q[2].fX), GrScalarAve(q[1].fY, q[2].fY) } |
| }; |
| GrPoint s = { GrScalarAve(r[0].fX, r[1].fX), GrScalarAve(r[0].fY, r[1].fY) }; |
| pointsLeft >>= 1; |
| uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft); |
| uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft); |
| return a + b; |
| } |
| |
| int GrPathUtils::worstCasePointCount(const GrPath& path, int* subpaths, |
| GrScalar tol) { |
| if (tol < gMinCurveTol) { |
| tol = gMinCurveTol; |
| } |
| GrAssert(tol > 0); |
| |
| int pointCount = 0; |
| *subpaths = 1; |
| |
| bool first = true; |
| |
| SkPath::Iter iter(path, false); |
| GrPathCmd cmd; |
| |
| GrPoint pts[4]; |
| while ((cmd = (GrPathCmd)iter.next(pts)) != kEnd_PathCmd) { |
| |
| switch (cmd) { |
| case kLine_PathCmd: |
| pointCount += 1; |
| break; |
| case kQuadratic_PathCmd: |
| pointCount += quadraticPointCount(pts, tol); |
| break; |
| case kCubic_PathCmd: |
| pointCount += cubicPointCount(pts, tol); |
| break; |
| case kMove_PathCmd: |
| pointCount += 1; |
| if (!first) { |
| ++(*subpaths); |
| } |
| break; |
| default: |
| break; |
| } |
| first = false; |
| } |
| return pointCount; |
| } |
| |
| namespace { |
| // The matrix computed for quadDesignSpaceToUVCoordsMatrix should never really |
| // have perspective and we really want to avoid perspective matrix muls. |
| // However, the first two entries of the perspective row may be really close to |
| // 0 and the third may not be 1 due to a scale on the entire matrix. |
| inline void fixup_matrix(GrMatrix* mat) { |
| #ifndef SK_SCALAR_IS_FLOAT |
| GrCrash("Expected scalar is float."); |
| #endif |
| static const GrScalar gTOL = 1.f / 100.f; |
| GrAssert(GrScalarAbs(mat->get(SkMatrix::kMPersp0)) < gTOL); |
| GrAssert(GrScalarAbs(mat->get(SkMatrix::kMPersp1)) < gTOL); |
| float m33 = mat->get(SkMatrix::kMPersp2); |
| if (1.f != m33) { |
| m33 = 1.f / m33; |
| mat->setAll(m33 * mat->get(SkMatrix::kMScaleX), |
| m33 * mat->get(SkMatrix::kMSkewX), |
| m33 * mat->get(SkMatrix::kMTransX), |
| m33 * mat->get(SkMatrix::kMSkewY), |
| m33 * mat->get(SkMatrix::kMScaleY), |
| m33 * mat->get(SkMatrix::kMTransY), |
| 0.f, 0.f, 1.f); |
| } else { |
| mat->setPerspX(0); |
| mat->setPerspY(0); |
| } |
| } |
| } |
| |
| // Compute a matrix that goes from the 2d space coordinates to UV space where |
| // u^2-v = 0 specifies the quad. |
| void GrPathUtils::quadDesignSpaceToUVCoordsMatrix(const SkPoint qPts[3], |
| GrMatrix* matrix) { |
| // can't make this static, no cons :( |
| SkMatrix UVpts; |
| #ifndef SK_SCALAR_IS_FLOAT |
| GrCrash("Expected scalar is float."); |
| #endif |
| // We want M such that M * xy_pt = uv_pt |
| // We know M * control_pts = [0 1/2 1] |
| // [0 0 1] |
| // [1 1 1] |
| // We invert the control pt matrix and post concat to both sides to get M. |
| UVpts.setAll(0, 0.5f, 1.f, |
| 0, 0, 1.f, |
| 1.f, 1.f, 1.f); |
| matrix->setAll(qPts[0].fX, qPts[1].fX, qPts[2].fX, |
| qPts[0].fY, qPts[1].fY, qPts[2].fY, |
| 1.f, 1.f, 1.f); |
| if (!matrix->invert(matrix)) { |
| // The quad is degenerate. Hopefully this is rare. Find the pts that are |
| // farthest apart to compute a line (unless it is really a pt). |
| SkScalar maxD = qPts[0].distanceToSqd(qPts[1]); |
| int maxEdge = 0; |
| SkScalar d = qPts[1].distanceToSqd(qPts[2]); |
| if (d > maxD) { |
| maxD = d; |
| maxEdge = 1; |
| } |
| d = qPts[2].distanceToSqd(qPts[0]); |
| if (d > maxD) { |
| maxD = d; |
| maxEdge = 2; |
| } |
| // We could have a tolerance here, not sure if it would improve anything |
| if (maxD > 0) { |
| // Set the matrix to give (u = 0, v = distance_to_line) |
| GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge]; |
| // when looking from the point 0 down the line we want positive |
| // distances to be to the left. This matches the non-degenerate |
| // case. |
| lineVec.setOrthog(lineVec, GrPoint::kLeft_Side); |
| lineVec.dot(qPts[0]); |
| matrix->setAll(0, 0, 0, |
| lineVec.fX, lineVec.fY, -lineVec.dot(qPts[maxEdge]), |
| 0, 0, 1.f); |
| } else { |
| // It's a point. It should cover zero area. Just set the matrix such |
| // that (u, v) will always be far away from the quad. |
| matrix->setAll(0, 0, 100 * SK_Scalar1, |
| 0, 0, 100 * SK_Scalar1, |
| 0, 0, 1.f); |
| } |
| } else { |
| matrix->postConcat(UVpts); |
| fixup_matrix(matrix); |
| } |
| } |
| |
| namespace { |
| void convert_noninflect_cubic_to_quads(const SkPoint p[4], |
| SkScalar tolScale, |
| SkTArray<SkPoint, true>* quads, |
| int sublevel = 0) { |
| SkVector ab = p[1]; |
| ab -= p[0]; |
| SkVector dc = p[2]; |
| dc -= p[3]; |
| |
| static const SkScalar gLengthScale = 3 * SK_Scalar1 / 2; |
| // base tolerance is 2 pixels in dev coords. |
| const SkScalar distanceSqdTol = SkScalarMul(tolScale, 1 * SK_Scalar1); |
| static const int kMaxSubdivs = 10; |
| |
| ab.scale(gLengthScale); |
| dc.scale(gLengthScale); |
| |
| SkVector c0 = p[0]; |
| c0 += ab; |
| SkVector c1 = p[3]; |
| c1 += dc; |
| |
| SkScalar dSqd = c0.distanceToSqd(c1); |
| if (sublevel > kMaxSubdivs || dSqd <= distanceSqdTol) { |
| SkPoint cAvg = c0; |
| cAvg += c1; |
| cAvg.scale(SK_ScalarHalf); |
| |
| SkPoint* pts = quads->push_back_n(3); |
| pts[0] = p[0]; |
| pts[1] = cAvg; |
| pts[2] = p[3]; |
| |
| return; |
| } else { |
| SkPoint choppedPts[7]; |
| SkChopCubicAtHalf(p, choppedPts); |
| convert_noninflect_cubic_to_quads(choppedPts + 0, tolScale, |
| quads, sublevel + 1); |
| convert_noninflect_cubic_to_quads(choppedPts + 3, tolScale, |
| quads, sublevel + 1); |
| } |
| } |
| } |
| |
| void GrPathUtils::convertCubicToQuads(const GrPoint p[4], |
| SkScalar tolScale, |
| SkTArray<SkPoint, true>* quads) { |
| SkPoint chopped[10]; |
| int count = SkChopCubicAtInflections(p, chopped); |
| |
| for (int i = 0; i < count; ++i) { |
| SkPoint* cubic = chopped + 3*i; |
| convert_noninflect_cubic_to_quads(cubic, tolScale, quads); |
| } |
| |
| } |