| |
| /* |
| * Copyright 2008 The Android Open Source Project |
| * |
| * Use of this source code is governed by a BSD-style license that can be |
| * found in the LICENSE file. |
| */ |
| |
| |
| #include "SkInterpolator.h" |
| #include "SkMath.h" |
| #include "SkTSearch.h" |
| |
| SkInterpolatorBase::SkInterpolatorBase() { |
| fStorage = NULL; |
| fTimes = NULL; |
| SkDEBUGCODE(fTimesArray = NULL;) |
| } |
| |
| SkInterpolatorBase::~SkInterpolatorBase() { |
| if (fStorage) { |
| sk_free(fStorage); |
| } |
| } |
| |
| void SkInterpolatorBase::reset(int elemCount, int frameCount) { |
| fFlags = 0; |
| fElemCount = SkToU8(elemCount); |
| fFrameCount = SkToS16(frameCount); |
| fRepeat = SK_Scalar1; |
| if (fStorage) { |
| sk_free(fStorage); |
| fStorage = NULL; |
| fTimes = NULL; |
| SkDEBUGCODE(fTimesArray = NULL); |
| } |
| } |
| |
| /* Each value[] run is formated as: |
| <time (in msec)> |
| <blend> |
| <data[fElemCount]> |
| |
| Totaling fElemCount+2 entries per keyframe |
| */ |
| |
| bool SkInterpolatorBase::getDuration(SkMSec* startTime, SkMSec* endTime) const { |
| if (fFrameCount == 0) { |
| return false; |
| } |
| |
| if (startTime) { |
| *startTime = fTimes[0].fTime; |
| } |
| if (endTime) { |
| *endTime = fTimes[fFrameCount - 1].fTime; |
| } |
| return true; |
| } |
| |
| SkScalar SkInterpolatorBase::ComputeRelativeT(SkMSec time, SkMSec prevTime, |
| SkMSec nextTime, const SkScalar blend[4]) { |
| SkASSERT(time > prevTime && time < nextTime); |
| |
| SkScalar t = SkScalarDiv((SkScalar)(time - prevTime), |
| (SkScalar)(nextTime - prevTime)); |
| return blend ? |
| SkUnitCubicInterp(t, blend[0], blend[1], blend[2], blend[3]) : t; |
| } |
| |
| SkInterpolatorBase::Result SkInterpolatorBase::timeToT(SkMSec time, SkScalar* T, |
| int* indexPtr, SkBool* exactPtr) const { |
| SkASSERT(fFrameCount > 0); |
| Result result = kNormal_Result; |
| if (fRepeat != SK_Scalar1) { |
| SkMSec startTime = 0, endTime = 0; // initialize to avoid warning |
| this->getDuration(&startTime, &endTime); |
| SkMSec totalTime = endTime - startTime; |
| SkMSec offsetTime = time - startTime; |
| endTime = SkScalarMulFloor(fRepeat, totalTime); |
| if (offsetTime >= endTime) { |
| SkScalar fraction = SkScalarFraction(fRepeat); |
| offsetTime = fraction == 0 && fRepeat > 0 ? totalTime : |
| (SkMSec) SkScalarMulFloor(fraction, totalTime); |
| result = kFreezeEnd_Result; |
| } else { |
| int mirror = fFlags & kMirror; |
| offsetTime = offsetTime % (totalTime << mirror); |
| if (offsetTime > totalTime) { // can only be true if fMirror is true |
| offsetTime = (totalTime << 1) - offsetTime; |
| } |
| } |
| time = offsetTime + startTime; |
| } |
| |
| int index = SkTSearch<SkMSec>(&fTimes[0].fTime, fFrameCount, time, |
| sizeof(SkTimeCode)); |
| |
| bool exact = true; |
| |
| if (index < 0) { |
| index = ~index; |
| if (index == 0) { |
| result = kFreezeStart_Result; |
| } else if (index == fFrameCount) { |
| if (fFlags & kReset) { |
| index = 0; |
| } else { |
| index -= 1; |
| } |
| result = kFreezeEnd_Result; |
| } else { |
| exact = false; |
| } |
| } |
| SkASSERT(index < fFrameCount); |
| const SkTimeCode* nextTime = &fTimes[index]; |
| SkMSec nextT = nextTime[0].fTime; |
| if (exact) { |
| *T = 0; |
| } else { |
| SkMSec prevT = nextTime[-1].fTime; |
| *T = ComputeRelativeT(time, prevT, nextT, nextTime[-1].fBlend); |
| } |
| *indexPtr = index; |
| *exactPtr = exact; |
| return result; |
| } |
| |
| |
| SkInterpolator::SkInterpolator() { |
| INHERITED::reset(0, 0); |
| fValues = NULL; |
| SkDEBUGCODE(fScalarsArray = NULL;) |
| } |
| |
| SkInterpolator::SkInterpolator(int elemCount, int frameCount) { |
| SkASSERT(elemCount > 0); |
| this->reset(elemCount, frameCount); |
| } |
| |
| void SkInterpolator::reset(int elemCount, int frameCount) { |
| INHERITED::reset(elemCount, frameCount); |
| fStorage = sk_malloc_throw((sizeof(SkScalar) * elemCount + |
| sizeof(SkTimeCode)) * frameCount); |
| fTimes = (SkTimeCode*) fStorage; |
| fValues = (SkScalar*) ((char*) fStorage + sizeof(SkTimeCode) * frameCount); |
| #ifdef SK_DEBUG |
| fTimesArray = (SkTimeCode(*)[10]) fTimes; |
| fScalarsArray = (SkScalar(*)[10]) fValues; |
| #endif |
| } |
| |
| #define SK_Fixed1Third (SK_Fixed1/3) |
| #define SK_Fixed2Third (SK_Fixed1*2/3) |
| |
| static const SkScalar gIdentityBlend[4] = { |
| #ifdef SK_SCALAR_IS_FLOAT |
| 0.33333333f, 0.33333333f, 0.66666667f, 0.66666667f |
| #else |
| SK_Fixed1Third, SK_Fixed1Third, SK_Fixed2Third, SK_Fixed2Third |
| #endif |
| }; |
| |
| bool SkInterpolator::setKeyFrame(int index, SkMSec time, |
| const SkScalar values[], const SkScalar blend[4]) { |
| SkASSERT(values != NULL); |
| |
| if (blend == NULL) { |
| blend = gIdentityBlend; |
| } |
| |
| bool success = ~index == SkTSearch<SkMSec>(&fTimes->fTime, index, time, |
| sizeof(SkTimeCode)); |
| SkASSERT(success); |
| if (success) { |
| SkTimeCode* timeCode = &fTimes[index]; |
| timeCode->fTime = time; |
| memcpy(timeCode->fBlend, blend, sizeof(timeCode->fBlend)); |
| SkScalar* dst = &fValues[fElemCount * index]; |
| memcpy(dst, values, fElemCount * sizeof(SkScalar)); |
| } |
| return success; |
| } |
| |
| SkInterpolator::Result SkInterpolator::timeToValues(SkMSec time, |
| SkScalar values[]) const { |
| SkScalar T; |
| int index; |
| SkBool exact; |
| Result result = timeToT(time, &T, &index, &exact); |
| if (values) { |
| const SkScalar* nextSrc = &fValues[index * fElemCount]; |
| |
| if (exact) { |
| memcpy(values, nextSrc, fElemCount * sizeof(SkScalar)); |
| } else { |
| SkASSERT(index > 0); |
| |
| const SkScalar* prevSrc = nextSrc - fElemCount; |
| |
| for (int i = fElemCount - 1; i >= 0; --i) { |
| values[i] = SkScalarInterp(prevSrc[i], nextSrc[i], T); |
| } |
| } |
| } |
| return result; |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| typedef int Dot14; |
| #define Dot14_ONE (1 << 14) |
| #define Dot14_HALF (1 << 13) |
| |
| #define Dot14ToFloat(x) ((x) / 16384.f) |
| |
| static inline Dot14 Dot14Mul(Dot14 a, Dot14 b) { |
| return (a * b + Dot14_HALF) >> 14; |
| } |
| |
| static inline Dot14 eval_cubic(Dot14 t, Dot14 A, Dot14 B, Dot14 C) { |
| return Dot14Mul(Dot14Mul(Dot14Mul(C, t) + B, t) + A, t); |
| } |
| |
| static inline Dot14 pin_and_convert(SkScalar x) { |
| if (x <= 0) { |
| return 0; |
| } |
| if (x >= SK_Scalar1) { |
| return Dot14_ONE; |
| } |
| return SkScalarToFixed(x) >> 2; |
| } |
| |
| SkScalar SkUnitCubicInterp(SkScalar value, SkScalar bx, SkScalar by, |
| SkScalar cx, SkScalar cy) { |
| // pin to the unit-square, and convert to 2.14 |
| Dot14 x = pin_and_convert(value); |
| |
| if (x == 0) return 0; |
| if (x == Dot14_ONE) return SK_Scalar1; |
| |
| Dot14 b = pin_and_convert(bx); |
| Dot14 c = pin_and_convert(cx); |
| |
| // Now compute our coefficients from the control points |
| // t -> 3b |
| // t^2 -> 3c - 6b |
| // t^3 -> 3b - 3c + 1 |
| Dot14 A = 3*b; |
| Dot14 B = 3*(c - 2*b); |
| Dot14 C = 3*(b - c) + Dot14_ONE; |
| |
| // Now search for a t value given x |
| Dot14 t = Dot14_HALF; |
| Dot14 dt = Dot14_HALF; |
| for (int i = 0; i < 13; i++) { |
| dt >>= 1; |
| Dot14 guess = eval_cubic(t, A, B, C); |
| if (x < guess) { |
| t -= dt; |
| } else { |
| t += dt; |
| } |
| } |
| |
| // Now we have t, so compute the coeff for Y and evaluate |
| b = pin_and_convert(by); |
| c = pin_and_convert(cy); |
| A = 3*b; |
| B = 3*(c - 2*b); |
| C = 3*(b - c) + Dot14_ONE; |
| return SkFixedToScalar(eval_cubic(t, A, B, C) << 2); |
| } |
| |
| /////////////////////////////////////////////////////////////////////////////// |
| /////////////////////////////////////////////////////////////////////////////// |
| |
| #ifdef SK_DEBUG |
| |
| #ifdef SK_SUPPORT_UNITTEST |
| static SkScalar* iset(SkScalar array[3], int a, int b, int c) { |
| array[0] = SkIntToScalar(a); |
| array[1] = SkIntToScalar(b); |
| array[2] = SkIntToScalar(c); |
| return array; |
| } |
| #endif |
| |
| void SkInterpolator::UnitTest() { |
| #ifdef SK_SUPPORT_UNITTEST |
| SkInterpolator inter(3, 2); |
| SkScalar v1[3], v2[3], v[3], vv[3]; |
| Result result; |
| |
| inter.setKeyFrame(0, 100, iset(v1, 10, 20, 30), 0); |
| inter.setKeyFrame(1, 200, iset(v2, 110, 220, 330)); |
| |
| result = inter.timeToValues(0, v); |
| SkASSERT(result == kFreezeStart_Result); |
| SkASSERT(memcmp(v, v1, sizeof(v)) == 0); |
| |
| result = inter.timeToValues(99, v); |
| SkASSERT(result == kFreezeStart_Result); |
| SkASSERT(memcmp(v, v1, sizeof(v)) == 0); |
| |
| result = inter.timeToValues(100, v); |
| SkASSERT(result == kNormal_Result); |
| SkASSERT(memcmp(v, v1, sizeof(v)) == 0); |
| |
| result = inter.timeToValues(200, v); |
| SkASSERT(result == kNormal_Result); |
| SkASSERT(memcmp(v, v2, sizeof(v)) == 0); |
| |
| result = inter.timeToValues(201, v); |
| SkASSERT(result == kFreezeEnd_Result); |
| SkASSERT(memcmp(v, v2, sizeof(v)) == 0); |
| |
| result = inter.timeToValues(150, v); |
| SkASSERT(result == kNormal_Result); |
| SkASSERT(memcmp(v, iset(vv, 60, 120, 180), sizeof(v)) == 0); |
| |
| result = inter.timeToValues(125, v); |
| SkASSERT(result == kNormal_Result); |
| result = inter.timeToValues(175, v); |
| SkASSERT(result == kNormal_Result); |
| #endif |
| } |
| |
| #endif |