blob: 2853b0703a6990f1b52c441483a916d629a7db28 [file] [log] [blame]
/*
* Copyright 2008 The Android Open Source Project
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "SkInterpolator.h"
#include "SkMath.h"
#include "SkTSearch.h"
SkInterpolatorBase::SkInterpolatorBase() {
fStorage = NULL;
fTimes = NULL;
SkDEBUGCODE(fTimesArray = NULL;)
}
SkInterpolatorBase::~SkInterpolatorBase() {
if (fStorage) {
sk_free(fStorage);
}
}
void SkInterpolatorBase::reset(int elemCount, int frameCount) {
fFlags = 0;
fElemCount = SkToU8(elemCount);
fFrameCount = SkToS16(frameCount);
fRepeat = SK_Scalar1;
if (fStorage) {
sk_free(fStorage);
fStorage = NULL;
fTimes = NULL;
SkDEBUGCODE(fTimesArray = NULL);
}
}
/* Each value[] run is formated as:
<time (in msec)>
<blend>
<data[fElemCount]>
Totaling fElemCount+2 entries per keyframe
*/
bool SkInterpolatorBase::getDuration(SkMSec* startTime, SkMSec* endTime) const {
if (fFrameCount == 0) {
return false;
}
if (startTime) {
*startTime = fTimes[0].fTime;
}
if (endTime) {
*endTime = fTimes[fFrameCount - 1].fTime;
}
return true;
}
SkScalar SkInterpolatorBase::ComputeRelativeT(SkMSec time, SkMSec prevTime,
SkMSec nextTime, const SkScalar blend[4]) {
SkASSERT(time > prevTime && time < nextTime);
SkScalar t = SkScalarDiv((SkScalar)(time - prevTime),
(SkScalar)(nextTime - prevTime));
return blend ?
SkUnitCubicInterp(t, blend[0], blend[1], blend[2], blend[3]) : t;
}
SkInterpolatorBase::Result SkInterpolatorBase::timeToT(SkMSec time, SkScalar* T,
int* indexPtr, SkBool* exactPtr) const {
SkASSERT(fFrameCount > 0);
Result result = kNormal_Result;
if (fRepeat != SK_Scalar1) {
SkMSec startTime = 0, endTime = 0; // initialize to avoid warning
this->getDuration(&startTime, &endTime);
SkMSec totalTime = endTime - startTime;
SkMSec offsetTime = time - startTime;
endTime = SkScalarMulFloor(fRepeat, totalTime);
if (offsetTime >= endTime) {
SkScalar fraction = SkScalarFraction(fRepeat);
offsetTime = fraction == 0 && fRepeat > 0 ? totalTime :
(SkMSec) SkScalarMulFloor(fraction, totalTime);
result = kFreezeEnd_Result;
} else {
int mirror = fFlags & kMirror;
offsetTime = offsetTime % (totalTime << mirror);
if (offsetTime > totalTime) { // can only be true if fMirror is true
offsetTime = (totalTime << 1) - offsetTime;
}
}
time = offsetTime + startTime;
}
int index = SkTSearch<SkMSec>(&fTimes[0].fTime, fFrameCount, time,
sizeof(SkTimeCode));
bool exact = true;
if (index < 0) {
index = ~index;
if (index == 0) {
result = kFreezeStart_Result;
} else if (index == fFrameCount) {
if (fFlags & kReset) {
index = 0;
} else {
index -= 1;
}
result = kFreezeEnd_Result;
} else {
exact = false;
}
}
SkASSERT(index < fFrameCount);
const SkTimeCode* nextTime = &fTimes[index];
SkMSec nextT = nextTime[0].fTime;
if (exact) {
*T = 0;
} else {
SkMSec prevT = nextTime[-1].fTime;
*T = ComputeRelativeT(time, prevT, nextT, nextTime[-1].fBlend);
}
*indexPtr = index;
*exactPtr = exact;
return result;
}
SkInterpolator::SkInterpolator() {
INHERITED::reset(0, 0);
fValues = NULL;
SkDEBUGCODE(fScalarsArray = NULL;)
}
SkInterpolator::SkInterpolator(int elemCount, int frameCount) {
SkASSERT(elemCount > 0);
this->reset(elemCount, frameCount);
}
void SkInterpolator::reset(int elemCount, int frameCount) {
INHERITED::reset(elemCount, frameCount);
fStorage = sk_malloc_throw((sizeof(SkScalar) * elemCount +
sizeof(SkTimeCode)) * frameCount);
fTimes = (SkTimeCode*) fStorage;
fValues = (SkScalar*) ((char*) fStorage + sizeof(SkTimeCode) * frameCount);
#ifdef SK_DEBUG
fTimesArray = (SkTimeCode(*)[10]) fTimes;
fScalarsArray = (SkScalar(*)[10]) fValues;
#endif
}
#define SK_Fixed1Third (SK_Fixed1/3)
#define SK_Fixed2Third (SK_Fixed1*2/3)
static const SkScalar gIdentityBlend[4] = {
#ifdef SK_SCALAR_IS_FLOAT
0.33333333f, 0.33333333f, 0.66666667f, 0.66666667f
#else
SK_Fixed1Third, SK_Fixed1Third, SK_Fixed2Third, SK_Fixed2Third
#endif
};
bool SkInterpolator::setKeyFrame(int index, SkMSec time,
const SkScalar values[], const SkScalar blend[4]) {
SkASSERT(values != NULL);
if (blend == NULL) {
blend = gIdentityBlend;
}
bool success = ~index == SkTSearch<SkMSec>(&fTimes->fTime, index, time,
sizeof(SkTimeCode));
SkASSERT(success);
if (success) {
SkTimeCode* timeCode = &fTimes[index];
timeCode->fTime = time;
memcpy(timeCode->fBlend, blend, sizeof(timeCode->fBlend));
SkScalar* dst = &fValues[fElemCount * index];
memcpy(dst, values, fElemCount * sizeof(SkScalar));
}
return success;
}
SkInterpolator::Result SkInterpolator::timeToValues(SkMSec time,
SkScalar values[]) const {
SkScalar T;
int index;
SkBool exact;
Result result = timeToT(time, &T, &index, &exact);
if (values) {
const SkScalar* nextSrc = &fValues[index * fElemCount];
if (exact) {
memcpy(values, nextSrc, fElemCount * sizeof(SkScalar));
} else {
SkASSERT(index > 0);
const SkScalar* prevSrc = nextSrc - fElemCount;
for (int i = fElemCount - 1; i >= 0; --i) {
values[i] = SkScalarInterp(prevSrc[i], nextSrc[i], T);
}
}
}
return result;
}
///////////////////////////////////////////////////////////////////////////////
typedef int Dot14;
#define Dot14_ONE (1 << 14)
#define Dot14_HALF (1 << 13)
#define Dot14ToFloat(x) ((x) / 16384.f)
static inline Dot14 Dot14Mul(Dot14 a, Dot14 b) {
return (a * b + Dot14_HALF) >> 14;
}
static inline Dot14 eval_cubic(Dot14 t, Dot14 A, Dot14 B, Dot14 C) {
return Dot14Mul(Dot14Mul(Dot14Mul(C, t) + B, t) + A, t);
}
static inline Dot14 pin_and_convert(SkScalar x) {
if (x <= 0) {
return 0;
}
if (x >= SK_Scalar1) {
return Dot14_ONE;
}
return SkScalarToFixed(x) >> 2;
}
SkScalar SkUnitCubicInterp(SkScalar value, SkScalar bx, SkScalar by,
SkScalar cx, SkScalar cy) {
// pin to the unit-square, and convert to 2.14
Dot14 x = pin_and_convert(value);
if (x == 0) return 0;
if (x == Dot14_ONE) return SK_Scalar1;
Dot14 b = pin_and_convert(bx);
Dot14 c = pin_and_convert(cx);
// Now compute our coefficients from the control points
// t -> 3b
// t^2 -> 3c - 6b
// t^3 -> 3b - 3c + 1
Dot14 A = 3*b;
Dot14 B = 3*(c - 2*b);
Dot14 C = 3*(b - c) + Dot14_ONE;
// Now search for a t value given x
Dot14 t = Dot14_HALF;
Dot14 dt = Dot14_HALF;
for (int i = 0; i < 13; i++) {
dt >>= 1;
Dot14 guess = eval_cubic(t, A, B, C);
if (x < guess) {
t -= dt;
} else {
t += dt;
}
}
// Now we have t, so compute the coeff for Y and evaluate
b = pin_and_convert(by);
c = pin_and_convert(cy);
A = 3*b;
B = 3*(c - 2*b);
C = 3*(b - c) + Dot14_ONE;
return SkFixedToScalar(eval_cubic(t, A, B, C) << 2);
}
///////////////////////////////////////////////////////////////////////////////
///////////////////////////////////////////////////////////////////////////////
#ifdef SK_DEBUG
#ifdef SK_SUPPORT_UNITTEST
static SkScalar* iset(SkScalar array[3], int a, int b, int c) {
array[0] = SkIntToScalar(a);
array[1] = SkIntToScalar(b);
array[2] = SkIntToScalar(c);
return array;
}
#endif
void SkInterpolator::UnitTest() {
#ifdef SK_SUPPORT_UNITTEST
SkInterpolator inter(3, 2);
SkScalar v1[3], v2[3], v[3], vv[3];
Result result;
inter.setKeyFrame(0, 100, iset(v1, 10, 20, 30), 0);
inter.setKeyFrame(1, 200, iset(v2, 110, 220, 330));
result = inter.timeToValues(0, v);
SkASSERT(result == kFreezeStart_Result);
SkASSERT(memcmp(v, v1, sizeof(v)) == 0);
result = inter.timeToValues(99, v);
SkASSERT(result == kFreezeStart_Result);
SkASSERT(memcmp(v, v1, sizeof(v)) == 0);
result = inter.timeToValues(100, v);
SkASSERT(result == kNormal_Result);
SkASSERT(memcmp(v, v1, sizeof(v)) == 0);
result = inter.timeToValues(200, v);
SkASSERT(result == kNormal_Result);
SkASSERT(memcmp(v, v2, sizeof(v)) == 0);
result = inter.timeToValues(201, v);
SkASSERT(result == kFreezeEnd_Result);
SkASSERT(memcmp(v, v2, sizeof(v)) == 0);
result = inter.timeToValues(150, v);
SkASSERT(result == kNormal_Result);
SkASSERT(memcmp(v, iset(vv, 60, 120, 180), sizeof(v)) == 0);
result = inter.timeToValues(125, v);
SkASSERT(result == kNormal_Result);
result = inter.timeToValues(175, v);
SkASSERT(result == kNormal_Result);
#endif
}
#endif