blob: 9ef61158ea575771203ca769d6277d55334a3ef1 [file] [log] [blame]
// Copyright 2006-2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_ARM)
#include "ic-inl.h"
#include "codegen-inl.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
static void ProbeTable(MacroAssembler* masm,
Code::Flags flags,
StubCache::Table table,
Register name,
Register offset,
Register scratch,
Register scratch2) {
ExternalReference key_offset(SCTableReference::keyReference(table));
ExternalReference value_offset(SCTableReference::valueReference(table));
uint32_t key_off_addr = reinterpret_cast<uint32_t>(key_offset.address());
uint32_t value_off_addr = reinterpret_cast<uint32_t>(value_offset.address());
// Check the relative positions of the address fields.
ASSERT(value_off_addr > key_off_addr);
ASSERT((value_off_addr - key_off_addr) % 4 == 0);
ASSERT((value_off_addr - key_off_addr) < (256 * 4));
Label miss;
Register offsets_base_addr = scratch;
// Check that the key in the entry matches the name.
__ mov(offsets_base_addr, Operand(key_offset));
__ ldr(ip, MemOperand(offsets_base_addr, offset, LSL, 1));
__ cmp(name, ip);
__ b(ne, &miss);
// Get the code entry from the cache.
__ add(offsets_base_addr, offsets_base_addr,
Operand(value_off_addr - key_off_addr));
__ ldr(scratch2, MemOperand(offsets_base_addr, offset, LSL, 1));
// Check that the flags match what we're looking for.
__ ldr(scratch2, FieldMemOperand(scratch2, Code::kFlagsOffset));
__ bic(scratch2, scratch2, Operand(Code::kFlagsNotUsedInLookup));
__ cmp(scratch2, Operand(flags));
__ b(ne, &miss);
// Re-load code entry from cache.
__ ldr(offset, MemOperand(offsets_base_addr, offset, LSL, 1));
// Jump to the first instruction in the code stub.
__ add(offset, offset, Operand(Code::kHeaderSize - kHeapObjectTag));
__ Jump(offset);
// Miss: fall through.
__ bind(&miss);
}
// Helper function used to check that the dictionary doesn't contain
// the property. This function may return false negatives, so miss_label
// must always call a backup property check that is complete.
// This function is safe to call if the receiver has fast properties.
// Name must be a symbol and receiver must be a heap object.
static void GenerateDictionaryNegativeLookup(MacroAssembler* masm,
Label* miss_label,
Register receiver,
String* name,
Register scratch0,
Register scratch1) {
ASSERT(name->IsSymbol());
__ IncrementCounter(&Counters::negative_lookups, 1, scratch0, scratch1);
__ IncrementCounter(&Counters::negative_lookups_miss, 1, scratch0, scratch1);
Label done;
const int kInterceptorOrAccessCheckNeededMask =
(1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
// Bail out if the receiver has a named interceptor or requires access checks.
Register map = scratch1;
__ ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ ldrb(scratch0, FieldMemOperand(map, Map::kBitFieldOffset));
__ tst(scratch0, Operand(kInterceptorOrAccessCheckNeededMask));
__ b(ne, miss_label);
// Check that receiver is a JSObject.
__ ldrb(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ cmp(scratch0, Operand(FIRST_JS_OBJECT_TYPE));
__ b(lt, miss_label);
// Load properties array.
Register properties = scratch0;
__ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
// Check that the properties array is a dictionary.
__ ldr(map, FieldMemOperand(properties, HeapObject::kMapOffset));
Register tmp = properties;
__ LoadRoot(tmp, Heap::kHashTableMapRootIndex);
__ cmp(map, tmp);
__ b(ne, miss_label);
// Restore the temporarily used register.
__ ldr(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
// Compute the capacity mask.
const int kCapacityOffset =
StringDictionary::kHeaderSize +
StringDictionary::kCapacityIndex * kPointerSize;
// Generate an unrolled loop that performs a few probes before
// giving up.
static const int kProbes = 4;
const int kElementsStartOffset =
StringDictionary::kHeaderSize +
StringDictionary::kElementsStartIndex * kPointerSize;
// If names of slots in range from 1 to kProbes - 1 for the hash value are
// not equal to the name and kProbes-th slot is not used (its name is the
// undefined value), it guarantees the hash table doesn't contain the
// property. It's true even if some slots represent deleted properties
// (their names are the null value).
for (int i = 0; i < kProbes; i++) {
// scratch0 points to properties hash.
// Compute the masked index: (hash + i + i * i) & mask.
Register index = scratch1;
// Capacity is smi 2^n.
__ ldr(index, FieldMemOperand(properties, kCapacityOffset));
__ sub(index, index, Operand(1));
__ and_(index, index, Operand(
Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i))));
// Scale the index by multiplying by the entry size.
ASSERT(StringDictionary::kEntrySize == 3);
__ add(index, index, Operand(index, LSL, 1)); // index *= 3.
Register entity_name = scratch1;
// Having undefined at this place means the name is not contained.
ASSERT_EQ(kSmiTagSize, 1);
Register tmp = properties;
__ add(tmp, properties, Operand(index, LSL, 1));
__ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset));
ASSERT(!tmp.is(entity_name));
__ LoadRoot(tmp, Heap::kUndefinedValueRootIndex);
__ cmp(entity_name, tmp);
if (i != kProbes - 1) {
__ b(eq, &done);
// Stop if found the property.
__ cmp(entity_name, Operand(Handle<String>(name)));
__ b(eq, miss_label);
// Check if the entry name is not a symbol.
__ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset));
__ ldrb(entity_name,
FieldMemOperand(entity_name, Map::kInstanceTypeOffset));
__ tst(entity_name, Operand(kIsSymbolMask));
__ b(eq, miss_label);
// Restore the properties.
__ ldr(properties,
FieldMemOperand(receiver, JSObject::kPropertiesOffset));
} else {
// Give up probing if still not found the undefined value.
__ b(ne, miss_label);
}
}
__ bind(&done);
__ DecrementCounter(&Counters::negative_lookups_miss, 1, scratch0, scratch1);
}
void StubCache::GenerateProbe(MacroAssembler* masm,
Code::Flags flags,
Register receiver,
Register name,
Register scratch,
Register extra,
Register extra2) {
Label miss;
// Make sure that code is valid. The shifting code relies on the
// entry size being 8.
ASSERT(sizeof(Entry) == 8);
// Make sure the flags does not name a specific type.
ASSERT(Code::ExtractTypeFromFlags(flags) == 0);
// Make sure that there are no register conflicts.
ASSERT(!scratch.is(receiver));
ASSERT(!scratch.is(name));
ASSERT(!extra.is(receiver));
ASSERT(!extra.is(name));
ASSERT(!extra.is(scratch));
ASSERT(!extra2.is(receiver));
ASSERT(!extra2.is(name));
ASSERT(!extra2.is(scratch));
ASSERT(!extra2.is(extra));
// Check scratch, extra and extra2 registers are valid.
ASSERT(!scratch.is(no_reg));
ASSERT(!extra.is(no_reg));
ASSERT(!extra2.is(no_reg));
// Check that the receiver isn't a smi.
__ tst(receiver, Operand(kSmiTagMask));
__ b(eq, &miss);
// Get the map of the receiver and compute the hash.
__ ldr(scratch, FieldMemOperand(name, String::kHashFieldOffset));
__ ldr(ip, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ add(scratch, scratch, Operand(ip));
__ eor(scratch, scratch, Operand(flags));
__ and_(scratch,
scratch,
Operand((kPrimaryTableSize - 1) << kHeapObjectTagSize));
// Probe the primary table.
ProbeTable(masm, flags, kPrimary, name, scratch, extra, extra2);
// Primary miss: Compute hash for secondary probe.
__ sub(scratch, scratch, Operand(name));
__ add(scratch, scratch, Operand(flags));
__ and_(scratch,
scratch,
Operand((kSecondaryTableSize - 1) << kHeapObjectTagSize));
// Probe the secondary table.
ProbeTable(masm, flags, kSecondary, name, scratch, extra, extra2);
// Cache miss: Fall-through and let caller handle the miss by
// entering the runtime system.
__ bind(&miss);
}
void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm,
int index,
Register prototype) {
// Load the global or builtins object from the current context.
__ ldr(prototype, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
// Load the global context from the global or builtins object.
__ ldr(prototype,
FieldMemOperand(prototype, GlobalObject::kGlobalContextOffset));
// Load the function from the global context.
__ ldr(prototype, MemOperand(prototype, Context::SlotOffset(index)));
// Load the initial map. The global functions all have initial maps.
__ ldr(prototype,
FieldMemOperand(prototype, JSFunction::kPrototypeOrInitialMapOffset));
// Load the prototype from the initial map.
__ ldr(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype(
MacroAssembler* masm, int index, Register prototype, Label* miss) {
// Check we're still in the same context.
__ ldr(prototype, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ Move(ip, Top::global());
__ cmp(prototype, ip);
__ b(ne, miss);
// Get the global function with the given index.
JSFunction* function = JSFunction::cast(Top::global_context()->get(index));
// Load its initial map. The global functions all have initial maps.
__ Move(prototype, Handle<Map>(function->initial_map()));
// Load the prototype from the initial map.
__ ldr(prototype, FieldMemOperand(prototype, Map::kPrototypeOffset));
}
// Load a fast property out of a holder object (src). In-object properties
// are loaded directly otherwise the property is loaded from the properties
// fixed array.
void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm,
Register dst, Register src,
JSObject* holder, int index) {
// Adjust for the number of properties stored in the holder.
index -= holder->map()->inobject_properties();
if (index < 0) {
// Get the property straight out of the holder.
int offset = holder->map()->instance_size() + (index * kPointerSize);
__ ldr(dst, FieldMemOperand(src, offset));
} else {
// Calculate the offset into the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
__ ldr(dst, FieldMemOperand(src, JSObject::kPropertiesOffset));
__ ldr(dst, FieldMemOperand(dst, offset));
}
}
void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* miss_label) {
// Check that the receiver isn't a smi.
__ tst(receiver, Operand(kSmiTagMask));
__ b(eq, miss_label);
// Check that the object is a JS array.
__ CompareObjectType(receiver, scratch, scratch, JS_ARRAY_TYPE);
__ b(ne, miss_label);
// Load length directly from the JS array.
__ ldr(r0, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ Ret();
}
// Generate code to check if an object is a string. If the object is a
// heap object, its map's instance type is left in the scratch1 register.
// If this is not needed, scratch1 and scratch2 may be the same register.
static void GenerateStringCheck(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* smi,
Label* non_string_object) {
// Check that the receiver isn't a smi.
__ tst(receiver, Operand(kSmiTagMask));
__ b(eq, smi);
// Check that the object is a string.
__ ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset));
__ ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
__ and_(scratch2, scratch1, Operand(kIsNotStringMask));
// The cast is to resolve the overload for the argument of 0x0.
__ cmp(scratch2, Operand(static_cast<int32_t>(kStringTag)));
__ b(ne, non_string_object);
}
// Generate code to load the length from a string object and return the length.
// If the receiver object is not a string or a wrapped string object the
// execution continues at the miss label. The register containing the
// receiver is potentially clobbered.
void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss,
bool support_wrappers) {
Label check_wrapper;
// Check if the object is a string leaving the instance type in the
// scratch1 register.
GenerateStringCheck(masm, receiver, scratch1, scratch2, miss,
support_wrappers ? &check_wrapper : miss);
// Load length directly from the string.
__ ldr(r0, FieldMemOperand(receiver, String::kLengthOffset));
__ Ret();
if (support_wrappers) {
// Check if the object is a JSValue wrapper.
__ bind(&check_wrapper);
__ cmp(scratch1, Operand(JS_VALUE_TYPE));
__ b(ne, miss);
// Unwrap the value and check if the wrapped value is a string.
__ ldr(scratch1, FieldMemOperand(receiver, JSValue::kValueOffset));
GenerateStringCheck(masm, scratch1, scratch2, scratch2, miss, miss);
__ ldr(r0, FieldMemOperand(scratch1, String::kLengthOffset));
__ Ret();
}
}
void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss_label) {
__ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label);
__ mov(r0, scratch1);
__ Ret();
}
// Generate StoreField code, value is passed in r0 register.
// When leaving generated code after success, the receiver_reg and name_reg
// may be clobbered. Upon branch to miss_label, the receiver and name
// registers have their original values.
void StubCompiler::GenerateStoreField(MacroAssembler* masm,
JSObject* object,
int index,
Map* transition,
Register receiver_reg,
Register name_reg,
Register scratch,
Label* miss_label) {
// r0 : value
Label exit;
// Check that the receiver isn't a smi.
__ tst(receiver_reg, Operand(kSmiTagMask));
__ b(eq, miss_label);
// Check that the map of the receiver hasn't changed.
__ ldr(scratch, FieldMemOperand(receiver_reg, HeapObject::kMapOffset));
__ cmp(scratch, Operand(Handle<Map>(object->map())));
__ b(ne, miss_label);
// Perform global security token check if needed.
if (object->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(receiver_reg, scratch, miss_label);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
// Perform map transition for the receiver if necessary.
if ((transition != NULL) && (object->map()->unused_property_fields() == 0)) {
// The properties must be extended before we can store the value.
// We jump to a runtime call that extends the properties array.
__ push(receiver_reg);
__ mov(r2, Operand(Handle<Map>(transition)));
__ Push(r2, r0);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage)),
3, 1);
return;
}
if (transition != NULL) {
// Update the map of the object; no write barrier updating is
// needed because the map is never in new space.
__ mov(ip, Operand(Handle<Map>(transition)));
__ str(ip, FieldMemOperand(receiver_reg, HeapObject::kMapOffset));
}
// Adjust for the number of properties stored in the object. Even in the
// face of a transition we can use the old map here because the size of the
// object and the number of in-object properties is not going to change.
index -= object->map()->inobject_properties();
if (index < 0) {
// Set the property straight into the object.
int offset = object->map()->instance_size() + (index * kPointerSize);
__ str(r0, FieldMemOperand(receiver_reg, offset));
// Skip updating write barrier if storing a smi.
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &exit);
// Update the write barrier for the array address.
// Pass the now unused name_reg as a scratch register.
__ RecordWrite(receiver_reg, Operand(offset), name_reg, scratch);
} else {
// Write to the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
// Get the properties array
__ ldr(scratch, FieldMemOperand(receiver_reg, JSObject::kPropertiesOffset));
__ str(r0, FieldMemOperand(scratch, offset));
// Skip updating write barrier if storing a smi.
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &exit);
// Update the write barrier for the array address.
// Ok to clobber receiver_reg and name_reg, since we return.
__ RecordWrite(scratch, Operand(offset), name_reg, receiver_reg);
}
// Return the value (register r0).
__ bind(&exit);
__ Ret();
}
void StubCompiler::GenerateLoadMiss(MacroAssembler* masm, Code::Kind kind) {
ASSERT(kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC);
Code* code = NULL;
if (kind == Code::LOAD_IC) {
code = Builtins::builtin(Builtins::LoadIC_Miss);
} else {
code = Builtins::builtin(Builtins::KeyedLoadIC_Miss);
}
Handle<Code> ic(code);
__ Jump(ic, RelocInfo::CODE_TARGET);
}
static void GenerateCallFunction(MacroAssembler* masm,
Object* object,
const ParameterCount& arguments,
Label* miss) {
// ----------- S t a t e -------------
// -- r0: receiver
// -- r1: function to call
// -----------------------------------
// Check that the function really is a function.
__ JumpIfSmi(r1, miss);
__ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE);
__ b(ne, miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ ldr(r3, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset));
__ str(r3, MemOperand(sp, arguments.immediate() * kPointerSize));
}
// Invoke the function.
__ InvokeFunction(r1, arguments, JUMP_FUNCTION);
}
static void PushInterceptorArguments(MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
JSObject* holder_obj) {
__ push(name);
InterceptorInfo* interceptor = holder_obj->GetNamedInterceptor();
ASSERT(!Heap::InNewSpace(interceptor));
Register scratch = name;
__ mov(scratch, Operand(Handle<Object>(interceptor)));
__ push(scratch);
__ push(receiver);
__ push(holder);
__ ldr(scratch, FieldMemOperand(scratch, InterceptorInfo::kDataOffset));
__ push(scratch);
}
static void CompileCallLoadPropertyWithInterceptor(MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
JSObject* holder_obj) {
PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorOnly));
__ mov(r0, Operand(5));
__ mov(r1, Operand(ref));
CEntryStub stub(1);
__ CallStub(&stub);
}
static const int kFastApiCallArguments = 3;
// Reserves space for the extra arguments to FastHandleApiCall in the
// caller's frame.
//
// These arguments are set by CheckPrototypes and GenerateFastApiDirectCall.
static void ReserveSpaceForFastApiCall(MacroAssembler* masm,
Register scratch) {
__ mov(scratch, Operand(Smi::FromInt(0)));
for (int i = 0; i < kFastApiCallArguments; i++) {
__ push(scratch);
}
}
// Undoes the effects of ReserveSpaceForFastApiCall.
static void FreeSpaceForFastApiCall(MacroAssembler* masm) {
__ Drop(kFastApiCallArguments);
}
static MaybeObject* GenerateFastApiDirectCall(MacroAssembler* masm,
const CallOptimization& optimization,
int argc) {
// ----------- S t a t e -------------
// -- sp[0] : holder (set by CheckPrototypes)
// -- sp[4] : callee js function
// -- sp[8] : call data
// -- sp[12] : last js argument
// -- ...
// -- sp[(argc + 3) * 4] : first js argument
// -- sp[(argc + 4) * 4] : receiver
// -----------------------------------
// Get the function and setup the context.
JSFunction* function = optimization.constant_function();
__ mov(r5, Operand(Handle<JSFunction>(function)));
__ ldr(cp, FieldMemOperand(r5, JSFunction::kContextOffset));
// Pass the additional arguments FastHandleApiCall expects.
Object* call_data = optimization.api_call_info()->data();
Handle<CallHandlerInfo> api_call_info_handle(optimization.api_call_info());
if (Heap::InNewSpace(call_data)) {
__ Move(r0, api_call_info_handle);
__ ldr(r6, FieldMemOperand(r0, CallHandlerInfo::kDataOffset));
} else {
__ Move(r6, Handle<Object>(call_data));
}
// Store js function and call data.
__ stm(ib, sp, r5.bit() | r6.bit());
// r2 points to call data as expected by Arguments
// (refer to layout above).
__ add(r2, sp, Operand(2 * kPointerSize));
Object* callback = optimization.api_call_info()->callback();
Address api_function_address = v8::ToCData<Address>(callback);
ApiFunction fun(api_function_address);
const int kApiStackSpace = 4;
__ EnterExitFrame(false, kApiStackSpace);
// r0 = v8::Arguments&
// Arguments is after the return address.
__ add(r0, sp, Operand(1 * kPointerSize));
// v8::Arguments::implicit_args = data
__ str(r2, MemOperand(r0, 0 * kPointerSize));
// v8::Arguments::values = last argument
__ add(ip, r2, Operand(argc * kPointerSize));
__ str(ip, MemOperand(r0, 1 * kPointerSize));
// v8::Arguments::length_ = argc
__ mov(ip, Operand(argc));
__ str(ip, MemOperand(r0, 2 * kPointerSize));
// v8::Arguments::is_construct_call = 0
__ mov(ip, Operand(0));
__ str(ip, MemOperand(r0, 3 * kPointerSize));
// Emitting a stub call may try to allocate (if the code is not
// already generated). Do not allow the assembler to perform a
// garbage collection but instead return the allocation failure
// object.
MaybeObject* result = masm->TryCallApiFunctionAndReturn(
&fun, argc + kFastApiCallArguments + 1);
if (result->IsFailure()) {
return result;
}
return Heap::undefined_value();
}
class CallInterceptorCompiler BASE_EMBEDDED {
public:
CallInterceptorCompiler(StubCompiler* stub_compiler,
const ParameterCount& arguments,
Register name)
: stub_compiler_(stub_compiler),
arguments_(arguments),
name_(name) {}
MaybeObject* Compile(MacroAssembler* masm,
JSObject* object,
JSObject* holder,
String* name,
LookupResult* lookup,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Label* miss) {
ASSERT(holder->HasNamedInterceptor());
ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
CallOptimization optimization(lookup);
if (optimization.is_constant_call()) {
return CompileCacheable(masm,
object,
receiver,
scratch1,
scratch2,
scratch3,
holder,
lookup,
name,
optimization,
miss);
} else {
CompileRegular(masm,
object,
receiver,
scratch1,
scratch2,
scratch3,
name,
holder,
miss);
return Heap::undefined_value();
}
}
private:
MaybeObject* CompileCacheable(MacroAssembler* masm,
JSObject* object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
JSObject* interceptor_holder,
LookupResult* lookup,
String* name,
const CallOptimization& optimization,
Label* miss_label) {
ASSERT(optimization.is_constant_call());
ASSERT(!lookup->holder()->IsGlobalObject());
int depth1 = kInvalidProtoDepth;
int depth2 = kInvalidProtoDepth;
bool can_do_fast_api_call = false;
if (optimization.is_simple_api_call() &&
!lookup->holder()->IsGlobalObject()) {
depth1 =
optimization.GetPrototypeDepthOfExpectedType(object,
interceptor_holder);
if (depth1 == kInvalidProtoDepth) {
depth2 =
optimization.GetPrototypeDepthOfExpectedType(interceptor_holder,
lookup->holder());
}
can_do_fast_api_call = (depth1 != kInvalidProtoDepth) ||
(depth2 != kInvalidProtoDepth);
}
__ IncrementCounter(&Counters::call_const_interceptor, 1,
scratch1, scratch2);
if (can_do_fast_api_call) {
__ IncrementCounter(&Counters::call_const_interceptor_fast_api, 1,
scratch1, scratch2);
ReserveSpaceForFastApiCall(masm, scratch1);
}
// Check that the maps from receiver to interceptor's holder
// haven't changed and thus we can invoke interceptor.
Label miss_cleanup;
Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label;
Register holder =
stub_compiler_->CheckPrototypes(object, receiver,
interceptor_holder, scratch1,
scratch2, scratch3, name, depth1, miss);
// Invoke an interceptor and if it provides a value,
// branch to |regular_invoke|.
Label regular_invoke;
LoadWithInterceptor(masm, receiver, holder, interceptor_holder, scratch2,
&regular_invoke);
// Interceptor returned nothing for this property. Try to use cached
// constant function.
// Check that the maps from interceptor's holder to constant function's
// holder haven't changed and thus we can use cached constant function.
if (interceptor_holder != lookup->holder()) {
stub_compiler_->CheckPrototypes(interceptor_holder, receiver,
lookup->holder(), scratch1,
scratch2, scratch3, name, depth2, miss);
} else {
// CheckPrototypes has a side effect of fetching a 'holder'
// for API (object which is instanceof for the signature). It's
// safe to omit it here, as if present, it should be fetched
// by the previous CheckPrototypes.
ASSERT(depth2 == kInvalidProtoDepth);
}
// Invoke function.
if (can_do_fast_api_call) {
MaybeObject* result = GenerateFastApiDirectCall(masm,
optimization,
arguments_.immediate());
if (result->IsFailure()) return result;
} else {
__ InvokeFunction(optimization.constant_function(), arguments_,
JUMP_FUNCTION);
}
// Deferred code for fast API call case---clean preallocated space.
if (can_do_fast_api_call) {
__ bind(&miss_cleanup);
FreeSpaceForFastApiCall(masm);
__ b(miss_label);
}
// Invoke a regular function.
__ bind(&regular_invoke);
if (can_do_fast_api_call) {
FreeSpaceForFastApiCall(masm);
}
return Heap::undefined_value();
}
void CompileRegular(MacroAssembler* masm,
JSObject* object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
String* name,
JSObject* interceptor_holder,
Label* miss_label) {
Register holder =
stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3, name,
miss_label);
// Call a runtime function to load the interceptor property.
__ EnterInternalFrame();
// Save the name_ register across the call.
__ push(name_);
PushInterceptorArguments(masm,
receiver,
holder,
name_,
interceptor_holder);
__ CallExternalReference(
ExternalReference(
IC_Utility(IC::kLoadPropertyWithInterceptorForCall)),
5);
// Restore the name_ register.
__ pop(name_);
__ LeaveInternalFrame();
}
void LoadWithInterceptor(MacroAssembler* masm,
Register receiver,
Register holder,
JSObject* holder_obj,
Register scratch,
Label* interceptor_succeeded) {
__ EnterInternalFrame();
__ Push(holder, name_);
CompileCallLoadPropertyWithInterceptor(masm,
receiver,
holder,
name_,
holder_obj);
__ pop(name_); // Restore the name.
__ pop(receiver); // Restore the holder.
__ LeaveInternalFrame();
// If interceptor returns no-result sentinel, call the constant function.
__ LoadRoot(scratch, Heap::kNoInterceptorResultSentinelRootIndex);
__ cmp(r0, scratch);
__ b(ne, interceptor_succeeded);
}
StubCompiler* stub_compiler_;
const ParameterCount& arguments_;
Register name_;
};
// Generate code to check that a global property cell is empty. Create
// the property cell at compilation time if no cell exists for the
// property.
MUST_USE_RESULT static MaybeObject* GenerateCheckPropertyCell(
MacroAssembler* masm,
GlobalObject* global,
String* name,
Register scratch,
Label* miss) {
Object* probe;
{ MaybeObject* maybe_probe = global->EnsurePropertyCell(name);
if (!maybe_probe->ToObject(&probe)) return maybe_probe;
}
JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast(probe);
ASSERT(cell->value()->IsTheHole());
__ mov(scratch, Operand(Handle<Object>(cell)));
__ ldr(scratch,
FieldMemOperand(scratch, JSGlobalPropertyCell::kValueOffset));
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(scratch, ip);
__ b(ne, miss);
return cell;
}
// Calls GenerateCheckPropertyCell for each global object in the prototype chain
// from object to (but not including) holder.
MUST_USE_RESULT static MaybeObject* GenerateCheckPropertyCells(
MacroAssembler* masm,
JSObject* object,
JSObject* holder,
String* name,
Register scratch,
Label* miss) {
JSObject* current = object;
while (current != holder) {
if (current->IsGlobalObject()) {
// Returns a cell or a failure.
MaybeObject* result = GenerateCheckPropertyCell(
masm,
GlobalObject::cast(current),
name,
scratch,
miss);
if (result->IsFailure()) return result;
}
ASSERT(current->IsJSObject());
current = JSObject::cast(current->GetPrototype());
}
return NULL;
}
// Convert and store int passed in register ival to IEEE 754 single precision
// floating point value at memory location (dst + 4 * wordoffset)
// If VFP3 is available use it for conversion.
static void StoreIntAsFloat(MacroAssembler* masm,
Register dst,
Register wordoffset,
Register ival,
Register fval,
Register scratch1,
Register scratch2) {
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
__ vmov(s0, ival);
__ add(scratch1, dst, Operand(wordoffset, LSL, 2));
__ vcvt_f32_s32(s0, s0);
__ vstr(s0, scratch1, 0);
} else {
Label not_special, done;
// Move sign bit from source to destination. This works because the sign
// bit in the exponent word of the double has the same position and polarity
// as the 2's complement sign bit in a Smi.
ASSERT(kBinary32SignMask == 0x80000000u);
__ and_(fval, ival, Operand(kBinary32SignMask), SetCC);
// Negate value if it is negative.
__ rsb(ival, ival, Operand(0, RelocInfo::NONE), LeaveCC, ne);
// We have -1, 0 or 1, which we treat specially. Register ival contains
// absolute value: it is either equal to 1 (special case of -1 and 1),
// greater than 1 (not a special case) or less than 1 (special case of 0).
__ cmp(ival, Operand(1));
__ b(gt, &not_special);
// For 1 or -1 we need to or in the 0 exponent (biased).
static const uint32_t exponent_word_for_1 =
kBinary32ExponentBias << kBinary32ExponentShift;
__ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq);
__ b(&done);
__ bind(&not_special);
// Count leading zeros.
// Gets the wrong answer for 0, but we already checked for that case above.
Register zeros = scratch2;
__ CountLeadingZeros(zeros, ival, scratch1);
// Compute exponent and or it into the exponent register.
__ rsb(scratch1,
zeros,
Operand((kBitsPerInt - 1) + kBinary32ExponentBias));
__ orr(fval,
fval,
Operand(scratch1, LSL, kBinary32ExponentShift));
// Shift up the source chopping the top bit off.
__ add(zeros, zeros, Operand(1));
// This wouldn't work for 1 and -1 as the shift would be 32 which means 0.
__ mov(ival, Operand(ival, LSL, zeros));
// And the top (top 20 bits).
__ orr(fval,
fval,
Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits));
__ bind(&done);
__ str(fval, MemOperand(dst, wordoffset, LSL, 2));
}
}
// Convert unsigned integer with specified number of leading zeroes in binary
// representation to IEEE 754 double.
// Integer to convert is passed in register hiword.
// Resulting double is returned in registers hiword:loword.
// This functions does not work correctly for 0.
static void GenerateUInt2Double(MacroAssembler* masm,
Register hiword,
Register loword,
Register scratch,
int leading_zeroes) {
const int meaningful_bits = kBitsPerInt - leading_zeroes - 1;
const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits;
const int mantissa_shift_for_hi_word =
meaningful_bits - HeapNumber::kMantissaBitsInTopWord;
const int mantissa_shift_for_lo_word =
kBitsPerInt - mantissa_shift_for_hi_word;
__ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift));
if (mantissa_shift_for_hi_word > 0) {
__ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word));
__ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word));
} else {
__ mov(loword, Operand(0, RelocInfo::NONE));
__ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word));
}
// If least significant bit of biased exponent was not 1 it was corrupted
// by most significant bit of mantissa so we should fix that.
if (!(biased_exponent & 1)) {
__ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift));
}
}
#undef __
#define __ ACCESS_MASM(masm())
Register StubCompiler::CheckPrototypes(JSObject* object,
Register object_reg,
JSObject* holder,
Register holder_reg,
Register scratch1,
Register scratch2,
String* name,
int save_at_depth,
Label* miss) {
// Make sure there's no overlap between holder and object registers.
ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg)
&& !scratch2.is(scratch1));
// Keep track of the current object in register reg.
Register reg = object_reg;
int depth = 0;
if (save_at_depth == depth) {
__ str(reg, MemOperand(sp));
}
// Check the maps in the prototype chain.
// Traverse the prototype chain from the object and do map checks.
JSObject* current = object;
while (current != holder) {
depth++;
// Only global objects and objects that do not require access
// checks are allowed in stubs.
ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded());
ASSERT(current->GetPrototype()->IsJSObject());
JSObject* prototype = JSObject::cast(current->GetPrototype());
if (!current->HasFastProperties() &&
!current->IsJSGlobalObject() &&
!current->IsJSGlobalProxy()) {
if (!name->IsSymbol()) {
MaybeObject* maybe_lookup_result = Heap::LookupSymbol(name);
Object* lookup_result = NULL; // Initialization to please compiler.
if (!maybe_lookup_result->ToObject(&lookup_result)) {
set_failure(Failure::cast(maybe_lookup_result));
return reg;
}
name = String::cast(lookup_result);
}
ASSERT(current->property_dictionary()->FindEntry(name) ==
StringDictionary::kNotFound);
GenerateDictionaryNegativeLookup(masm(),
miss,
reg,
name,
scratch1,
scratch2);
__ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
reg = holder_reg; // from now the object is in holder_reg
__ ldr(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset));
} else if (Heap::InNewSpace(prototype)) {
// Get the map of the current object.
__ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
__ cmp(scratch1, Operand(Handle<Map>(current->map())));
// Branch on the result of the map check.
__ b(ne, miss);
// Check access rights to the global object. This has to happen
// after the map check so that we know that the object is
// actually a global object.
if (current->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
// Restore scratch register to be the map of the object. In the
// new space case below, we load the prototype from the map in
// the scratch register.
__ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
}
reg = holder_reg; // from now the object is in holder_reg
// The prototype is in new space; we cannot store a reference
// to it in the code. Load it from the map.
__ ldr(reg, FieldMemOperand(scratch1, Map::kPrototypeOffset));
} else {
// Check the map of the current object.
__ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
__ cmp(scratch1, Operand(Handle<Map>(current->map())));
// Branch on the result of the map check.
__ b(ne, miss);
// Check access rights to the global object. This has to happen
// after the map check so that we know that the object is
// actually a global object.
if (current->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
}
// The prototype is in old space; load it directly.
reg = holder_reg; // from now the object is in holder_reg
__ mov(reg, Operand(Handle<JSObject>(prototype)));
}
if (save_at_depth == depth) {
__ str(reg, MemOperand(sp));
}
// Go to the next object in the prototype chain.
current = prototype;
}
// Check the holder map.
__ ldr(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
__ cmp(scratch1, Operand(Handle<Map>(current->map())));
__ b(ne, miss);
// Log the check depth.
LOG(IntEvent("check-maps-depth", depth + 1));
// Perform security check for access to the global object.
ASSERT(holder->IsJSGlobalProxy() || !holder->IsAccessCheckNeeded());
if (holder->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
};
// If we've skipped any global objects, it's not enough to verify
// that their maps haven't changed. We also need to check that the
// property cell for the property is still empty.
MaybeObject* result = GenerateCheckPropertyCells(masm(),
object,
holder,
name,
scratch1,
miss);
if (result->IsFailure()) set_failure(Failure::cast(result));
// Return the register containing the holder.
return reg;
}
void StubCompiler::GenerateLoadField(JSObject* object,
JSObject* holder,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
int index,
String* name,
Label* miss) {
// Check that the receiver isn't a smi.
__ tst(receiver, Operand(kSmiTagMask));
__ b(eq, miss);
// Check that the maps haven't changed.
Register reg =
CheckPrototypes(object, receiver, holder, scratch1, scratch2, scratch3,
name, miss);
GenerateFastPropertyLoad(masm(), r0, reg, holder, index);
__ Ret();
}
void StubCompiler::GenerateLoadConstant(JSObject* object,
JSObject* holder,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Object* value,
String* name,
Label* miss) {
// Check that the receiver isn't a smi.
__ tst(receiver, Operand(kSmiTagMask));
__ b(eq, miss);
// Check that the maps haven't changed.
Register reg =
CheckPrototypes(object, receiver, holder,
scratch1, scratch2, scratch3, name, miss);
// Return the constant value.
__ mov(r0, Operand(Handle<Object>(value)));
__ Ret();
}
MaybeObject* StubCompiler::GenerateLoadCallback(JSObject* object,
JSObject* holder,
Register receiver,
Register name_reg,
Register scratch1,
Register scratch2,
Register scratch3,
AccessorInfo* callback,
String* name,
Label* miss) {
// Check that the receiver isn't a smi.
__ tst(receiver, Operand(kSmiTagMask));
__ b(eq, miss);
// Check that the maps haven't changed.
Register reg =
CheckPrototypes(object, receiver, holder, scratch1, scratch2, scratch3,
name, miss);
// Push the arguments on the JS stack of the caller.
__ push(receiver); // Receiver.
__ mov(scratch3, Operand(Handle<AccessorInfo>(callback))); // callback data
__ ldr(ip, FieldMemOperand(scratch3, AccessorInfo::kDataOffset));
__ Push(reg, ip, scratch3, name_reg);
// Do tail-call to the runtime system.
ExternalReference load_callback_property =
ExternalReference(IC_Utility(IC::kLoadCallbackProperty));
__ TailCallExternalReference(load_callback_property, 5, 1);
return Heap::undefined_value(); // Success.
}
void StubCompiler::GenerateLoadInterceptor(JSObject* object,
JSObject* interceptor_holder,
LookupResult* lookup,
Register receiver,
Register name_reg,
Register scratch1,
Register scratch2,
Register scratch3,
String* name,
Label* miss) {
ASSERT(interceptor_holder->HasNamedInterceptor());
ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// So far the most popular follow ups for interceptor loads are FIELD
// and CALLBACKS, so inline only them, other cases may be added
// later.
bool compile_followup_inline = false;
if (lookup->IsProperty() && lookup->IsCacheable()) {
if (lookup->type() == FIELD) {
compile_followup_inline = true;
} else if (lookup->type() == CALLBACKS &&
lookup->GetCallbackObject()->IsAccessorInfo() &&
AccessorInfo::cast(lookup->GetCallbackObject())->getter() != NULL) {
compile_followup_inline = true;
}
}
if (compile_followup_inline) {
// Compile the interceptor call, followed by inline code to load the
// property from further up the prototype chain if the call fails.
// Check that the maps haven't changed.
Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, miss);
ASSERT(holder_reg.is(receiver) || holder_reg.is(scratch1));
// Save necessary data before invoking an interceptor.
// Requires a frame to make GC aware of pushed pointers.
__ EnterInternalFrame();
if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) {
// CALLBACKS case needs a receiver to be passed into C++ callback.
__ Push(receiver, holder_reg, name_reg);
} else {
__ Push(holder_reg, name_reg);
}
// Invoke an interceptor. Note: map checks from receiver to
// interceptor's holder has been compiled before (see a caller
// of this method.)
CompileCallLoadPropertyWithInterceptor(masm(),
receiver,
holder_reg,
name_reg,
interceptor_holder);
// Check if interceptor provided a value for property. If it's
// the case, return immediately.
Label interceptor_failed;
__ LoadRoot(scratch1, Heap::kNoInterceptorResultSentinelRootIndex);
__ cmp(r0, scratch1);
__ b(eq, &interceptor_failed);
__ LeaveInternalFrame();
__ Ret();
__ bind(&interceptor_failed);
__ pop(name_reg);
__ pop(holder_reg);
if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) {
__ pop(receiver);
}
__ LeaveInternalFrame();
// Check that the maps from interceptor's holder to lookup's holder
// haven't changed. And load lookup's holder into |holder| register.
if (interceptor_holder != lookup->holder()) {
holder_reg = CheckPrototypes(interceptor_holder,
holder_reg,
lookup->holder(),
scratch1,
scratch2,
scratch3,
name,
miss);
}
if (lookup->type() == FIELD) {
// We found FIELD property in prototype chain of interceptor's holder.
// Retrieve a field from field's holder.
GenerateFastPropertyLoad(masm(), r0, holder_reg,
lookup->holder(), lookup->GetFieldIndex());
__ Ret();
} else {
// We found CALLBACKS property in prototype chain of interceptor's
// holder.
ASSERT(lookup->type() == CALLBACKS);
ASSERT(lookup->GetCallbackObject()->IsAccessorInfo());
AccessorInfo* callback = AccessorInfo::cast(lookup->GetCallbackObject());
ASSERT(callback != NULL);
ASSERT(callback->getter() != NULL);
// Tail call to runtime.
// Important invariant in CALLBACKS case: the code above must be
// structured to never clobber |receiver| register.
__ Move(scratch2, Handle<AccessorInfo>(callback));
// holder_reg is either receiver or scratch1.
if (!receiver.is(holder_reg)) {
ASSERT(scratch1.is(holder_reg));
__ Push(receiver, holder_reg);
__ ldr(scratch3,
FieldMemOperand(scratch2, AccessorInfo::kDataOffset));
__ Push(scratch3, scratch2, name_reg);
} else {
__ push(receiver);
__ ldr(scratch3,
FieldMemOperand(scratch2, AccessorInfo::kDataOffset));
__ Push(holder_reg, scratch3, scratch2, name_reg);
}
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadCallbackProperty));
__ TailCallExternalReference(ref, 5, 1);
}
} else { // !compile_followup_inline
// Call the runtime system to load the interceptor.
// Check that the maps haven't changed.
Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, miss);
PushInterceptorArguments(masm(), receiver, holder_reg,
name_reg, interceptor_holder);
ExternalReference ref = ExternalReference(
IC_Utility(IC::kLoadPropertyWithInterceptorForLoad));
__ TailCallExternalReference(ref, 5, 1);
}
}
void CallStubCompiler::GenerateNameCheck(String* name, Label* miss) {
if (kind_ == Code::KEYED_CALL_IC) {
__ cmp(r2, Operand(Handle<String>(name)));
__ b(ne, miss);
}
}
void CallStubCompiler::GenerateGlobalReceiverCheck(JSObject* object,
JSObject* holder,
String* name,
Label* miss) {
ASSERT(holder->IsGlobalObject());
// Get the number of arguments.
const int argc = arguments().immediate();
// Get the receiver from the stack.
__ ldr(r0, MemOperand(sp, argc * kPointerSize));
// If the object is the holder then we know that it's a global
// object which can only happen for contextual calls. In this case,
// the receiver cannot be a smi.
if (object != holder) {
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, miss);
}
// Check that the maps haven't changed.
CheckPrototypes(object, r0, holder, r3, r1, r4, name, miss);
}
void CallStubCompiler::GenerateLoadFunctionFromCell(JSGlobalPropertyCell* cell,
JSFunction* function,
Label* miss) {
// Get the value from the cell.
__ mov(r3, Operand(Handle<JSGlobalPropertyCell>(cell)));
__ ldr(r1, FieldMemOperand(r3, JSGlobalPropertyCell::kValueOffset));
// Check that the cell contains the same function.
if (Heap::InNewSpace(function)) {
// We can't embed a pointer to a function in new space so we have
// to verify that the shared function info is unchanged. This has
// the nice side effect that multiple closures based on the same
// function can all use this call IC. Before we load through the
// function, we have to verify that it still is a function.
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, miss);
__ CompareObjectType(r1, r3, r3, JS_FUNCTION_TYPE);
__ b(ne, miss);
// Check the shared function info. Make sure it hasn't changed.
__ Move(r3, Handle<SharedFunctionInfo>(function->shared()));
__ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ cmp(r4, r3);
__ b(ne, miss);
} else {
__ cmp(r1, Operand(Handle<JSFunction>(function)));
__ b(ne, miss);
}
}
MaybeObject* CallStubCompiler::GenerateMissBranch() {
MaybeObject* maybe_obj = StubCache::ComputeCallMiss(arguments().immediate(),
kind_);
Object* obj;
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
__ Jump(Handle<Code>(Code::cast(obj)), RelocInfo::CODE_TARGET);
return obj;
}
MaybeObject* CallStubCompiler::CompileCallField(JSObject* object,
JSObject* holder,
int index,
String* name) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
const int argc = arguments().immediate();
// Get the receiver of the function from the stack into r0.
__ ldr(r0, MemOperand(sp, argc * kPointerSize));
// Check that the receiver isn't a smi.
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &miss);
// Do the right check and compute the holder register.
Register reg = CheckPrototypes(object, r0, holder, r1, r3, r4, name, &miss);
GenerateFastPropertyLoad(masm(), r1, reg, holder, index);
GenerateCallFunction(masm(), object, arguments(), &miss);
// Handle call cache miss.
__ bind(&miss);
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return GetCode(FIELD, name);
}
MaybeObject* CallStubCompiler::CompileArrayPushCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
// If object is not an array, bail out to regular call.
if (!object->IsJSArray() || cell != NULL) return Heap::undefined_value();
Label miss;
GenerateNameCheck(name, &miss);
Register receiver = r1;
// Get the receiver from the stack
const int argc = arguments().immediate();
__ ldr(receiver, MemOperand(sp, argc * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Check that the maps haven't changed.
CheckPrototypes(JSObject::cast(object), receiver,
holder, r3, r0, r4, name, &miss);
if (argc == 0) {
// Nothing to do, just return the length.
__ ldr(r0, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ Drop(argc + 1);
__ Ret();
} else {
Label call_builtin;
Register elements = r3;
Register end_elements = r5;
// Get the elements array of the object.
__ ldr(elements, FieldMemOperand(receiver, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ CheckMap(elements, r0,
Heap::kFixedArrayMapRootIndex, &call_builtin, true);
if (argc == 1) { // Otherwise fall through to call the builtin.
Label exit, with_write_barrier, attempt_to_grow_elements;
// Get the array's length into r0 and calculate new length.
__ ldr(r0, FieldMemOperand(receiver, JSArray::kLengthOffset));
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
__ add(r0, r0, Operand(Smi::FromInt(argc)));
// Get the element's length.
__ ldr(r4, FieldMemOperand(elements, FixedArray::kLengthOffset));
// Check if we could survive without allocation.
__ cmp(r0, r4);
__ b(gt, &attempt_to_grow_elements);
// Save new length.
__ str(r0, FieldMemOperand(receiver, JSArray::kLengthOffset));
// Push the element.
__ ldr(r4, MemOperand(sp, (argc - 1) * kPointerSize));
// We may need a register containing the address end_elements below,
// so write back the value in end_elements.
__ add(end_elements, elements,
Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
const int kEndElementsOffset =
FixedArray::kHeaderSize - kHeapObjectTag - argc * kPointerSize;
__ str(r4, MemOperand(end_elements, kEndElementsOffset, PreIndex));
// Check for a smi.
__ JumpIfNotSmi(r4, &with_write_barrier);
__ bind(&exit);
__ Drop(argc + 1);
__ Ret();
__ bind(&with_write_barrier);
__ InNewSpace(elements, r4, eq, &exit);
__ RecordWriteHelper(elements, end_elements, r4);
__ Drop(argc + 1);
__ Ret();
__ bind(&attempt_to_grow_elements);
// r0: array's length + 1.
// r4: elements' length.
if (!FLAG_inline_new) {
__ b(&call_builtin);
}
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address();
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address();
const int kAllocationDelta = 4;
// Load top and check if it is the end of elements.
__ add(end_elements, elements,
Operand(r0, LSL, kPointerSizeLog2 - kSmiTagSize));
__ add(end_elements, end_elements, Operand(kEndElementsOffset));
__ mov(r7, Operand(new_space_allocation_top));
__ ldr(r6, MemOperand(r7));
__ cmp(end_elements, r6);
__ b(ne, &call_builtin);
__ mov(r9, Operand(new_space_allocation_limit));
__ ldr(r9, MemOperand(r9));
__ add(r6, r6, Operand(kAllocationDelta * kPointerSize));
__ cmp(r6, r9);
__ b(hi, &call_builtin);
// We fit and could grow elements.
// Update new_space_allocation_top.
__ str(r6, MemOperand(r7));
// Push the argument.
__ ldr(r6, MemOperand(sp, (argc - 1) * kPointerSize));
__ str(r6, MemOperand(end_elements));
// Fill the rest with holes.
__ LoadRoot(r6, Heap::kTheHoleValueRootIndex);
for (int i = 1; i < kAllocationDelta; i++) {
__ str(r6, MemOperand(end_elements, i * kPointerSize));
}
// Update elements' and array's sizes.
__ str(r0, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ add(r4, r4, Operand(Smi::FromInt(kAllocationDelta)));
__ str(r4, FieldMemOperand(elements, FixedArray::kLengthOffset));
// Elements are in new space, so write barrier is not required.
__ Drop(argc + 1);
__ Ret();
}
__ bind(&call_builtin);
__ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPush),
argc + 1,
1);
}
// Handle call cache miss.
__ bind(&miss);
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileArrayPopCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
// If object is not an array, bail out to regular call.
if (!object->IsJSArray() || cell != NULL) return Heap::undefined_value();
Label miss, return_undefined, call_builtin;
Register receiver = r1;
Register elements = r3;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack
const int argc = arguments().immediate();
__ ldr(receiver, MemOperand(sp, argc * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Check that the maps haven't changed.
CheckPrototypes(JSObject::cast(object),
receiver, holder, elements, r4, r0, name, &miss);
// Get the elements array of the object.
__ ldr(elements, FieldMemOperand(receiver, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ CheckMap(elements, r0, Heap::kFixedArrayMapRootIndex, &call_builtin, true);
// Get the array's length into r4 and calculate new length.
__ ldr(r4, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ sub(r4, r4, Operand(Smi::FromInt(1)), SetCC);
__ b(lt, &return_undefined);
// Get the last element.
__ LoadRoot(r6, Heap::kTheHoleValueRootIndex);
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
// We can't address the last element in one operation. Compute the more
// expensive shift first, and use an offset later on.
__ add(elements, elements, Operand(r4, LSL, kPointerSizeLog2 - kSmiTagSize));
__ ldr(r0, MemOperand(elements, FixedArray::kHeaderSize - kHeapObjectTag));
__ cmp(r0, r6);
__ b(eq, &call_builtin);
// Set the array's length.
__ str(r4, FieldMemOperand(receiver, JSArray::kLengthOffset));
// Fill with the hole.
__ str(r6, MemOperand(elements, FixedArray::kHeaderSize - kHeapObjectTag));
__ Drop(argc + 1);
__ Ret();
__ bind(&return_undefined);
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
__ Drop(argc + 1);
__ Ret();
__ bind(&call_builtin);
__ TailCallExternalReference(ExternalReference(Builtins::c_ArrayPop),
argc + 1,
1);
// Handle call cache miss.
__ bind(&miss);
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileStringCharCodeAtCall(
Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- r2 : function name
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
// If object is not a string, bail out to regular call.
if (!object->IsString() || cell != NULL) return Heap::undefined_value();
const int argc = arguments().immediate();
Label miss;
Label name_miss;
Label index_out_of_range;
Label* index_out_of_range_label = &index_out_of_range;
if (kind_ == Code::CALL_IC && extra_ic_state_ == DEFAULT_STRING_STUB) {
index_out_of_range_label = &miss;
}
GenerateNameCheck(name, &name_miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
r0,
&miss);
ASSERT(object != holder);
CheckPrototypes(JSObject::cast(object->GetPrototype()), r0, holder,
r1, r3, r4, name, &miss);
Register receiver = r1;
Register index = r4;
Register scratch = r3;
Register result = r0;
__ ldr(receiver, MemOperand(sp, argc * kPointerSize));
if (argc > 0) {
__ ldr(index, MemOperand(sp, (argc - 1) * kPointerSize));
} else {
__ LoadRoot(index, Heap::kUndefinedValueRootIndex);
}
StringCharCodeAtGenerator char_code_at_generator(receiver,
index,
scratch,
result,
&miss, // When not a string.
&miss, // When not a number.
index_out_of_range_label,
STRING_INDEX_IS_NUMBER);
char_code_at_generator.GenerateFast(masm());
__ Drop(argc + 1);
__ Ret();
StubRuntimeCallHelper call_helper;
char_code_at_generator.GenerateSlow(masm(), call_helper);
if (index_out_of_range.is_linked()) {
__ bind(&index_out_of_range);
__ LoadRoot(r0, Heap::kNanValueRootIndex);
__ Drop(argc + 1);
__ Ret();
}
__ bind(&miss);
// Restore function name in r2.
__ Move(r2, Handle<String>(name));
__ bind(&name_miss);
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileStringCharAtCall(
Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- r2 : function name
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
// If object is not a string, bail out to regular call.
if (!object->IsString() || cell != NULL) return Heap::undefined_value();
const int argc = arguments().immediate();
Label miss;
Label name_miss;
Label index_out_of_range;
Label* index_out_of_range_label = &index_out_of_range;
if (kind_ == Code::CALL_IC && extra_ic_state_ == DEFAULT_STRING_STUB) {
index_out_of_range_label = &miss;
}
GenerateNameCheck(name, &name_miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
r0,
&miss);
ASSERT(object != holder);
CheckPrototypes(JSObject::cast(object->GetPrototype()), r0, holder,
r1, r3, r4, name, &miss);
Register receiver = r0;
Register index = r4;
Register scratch1 = r1;
Register scratch2 = r3;
Register result = r0;
__ ldr(receiver, MemOperand(sp, argc * kPointerSize));
if (argc > 0) {
__ ldr(index, MemOperand(sp, (argc - 1) * kPointerSize));
} else {
__ LoadRoot(index, Heap::kUndefinedValueRootIndex);
}
StringCharAtGenerator char_at_generator(receiver,
index,
scratch1,
scratch2,
result,
&miss, // When not a string.
&miss, // When not a number.
index_out_of_range_label,
STRING_INDEX_IS_NUMBER);
char_at_generator.GenerateFast(masm());
__ Drop(argc + 1);
__ Ret();
StubRuntimeCallHelper call_helper;
char_at_generator.GenerateSlow(masm(), call_helper);
if (index_out_of_range.is_linked()) {
__ bind(&index_out_of_range);
__ LoadRoot(r0, Heap::kEmptyStringRootIndex);
__ Drop(argc + 1);
__ Ret();
}
__ bind(&miss);
// Restore function name in r2.
__ Move(r2, Handle<String>(name));
__ bind(&name_miss);
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileStringFromCharCodeCall(
Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- r2 : function name
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) return Heap::undefined_value();
Label miss;
GenerateNameCheck(name, &miss);
if (cell == NULL) {
__ ldr(r1, MemOperand(sp, 1 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &miss);
CheckPrototypes(JSObject::cast(object), r1, holder, r0, r3, r4, name,
&miss);
} else {
ASSERT(cell->value() == function);
GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the char code argument.
Register code = r1;
__ ldr(code, MemOperand(sp, 0 * kPointerSize));
// Check the code is a smi.
Label slow;
STATIC_ASSERT(kSmiTag == 0);
__ tst(code, Operand(kSmiTagMask));
__ b(ne, &slow);
// Convert the smi code to uint16.
__ and_(code, code, Operand(Smi::FromInt(0xffff)));
StringCharFromCodeGenerator char_from_code_generator(code, r0);
char_from_code_generator.GenerateFast(masm());
__ Drop(argc + 1);
__ Ret();
StubRuntimeCallHelper call_helper;
char_from_code_generator.GenerateSlow(masm(), call_helper);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
__ InvokeFunction(function, arguments(), JUMP_FUNCTION);
__ bind(&miss);
// r2: function name.
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name);
}
MaybeObject* CallStubCompiler::CompileMathFloorCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- r2 : function name
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
if (!CpuFeatures::IsSupported(VFP3)) return Heap::undefined_value();
CpuFeatures::Scope scope_vfp3(VFP3);
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) return Heap::undefined_value();
Label miss, slow;
GenerateNameCheck(name, &miss);
if (cell == NULL) {
__ ldr(r1, MemOperand(sp, 1 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(r1, &miss);
CheckPrototypes(JSObject::cast(object), r1, holder, r0, r3, r4, name,
&miss);
} else {
ASSERT(cell->value() == function);
GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the (only) argument into r0.
__ ldr(r0, MemOperand(sp, 0 * kPointerSize));
// If the argument is a smi, just return.
STATIC_ASSERT(kSmiTag == 0);
__ tst(r0, Operand(kSmiTagMask));
__ Drop(argc + 1, eq);
__ Ret(eq);
__ CheckMap(r0, r1, Heap::kHeapNumberMapRootIndex, &slow, true);
Label wont_fit_smi, no_vfp_exception, restore_fpscr_and_return;
// If vfp3 is enabled, we use the fpu rounding with the RM (round towards
// minus infinity) mode.
// Load the HeapNumber value.
// We will need access to the value in the core registers, so we load it
// with ldrd and move it to the fpu. It also spares a sub instruction for
// updating the HeapNumber value address, as vldr expects a multiple
// of 4 offset.
__ Ldrd(r4, r5, FieldMemOperand(r0, HeapNumber::kValueOffset));
__ vmov(d1, r4, r5);
// Backup FPSCR.
__ vmrs(r3);
// Set custom FPCSR:
// - Set rounding mode to "Round towards Minus Infinity"
// (ie bits [23:22] = 0b10).
// - Clear vfp cumulative exception flags (bits [3:0]).
// - Make sure Flush-to-zero mode control bit is unset (bit 22).
__ bic(r9, r3,
Operand(kVFPExceptionMask | kVFPRoundingModeMask | kVFPFlushToZeroMask));
__ orr(r9, r9, Operand(kRoundToMinusInf));
__ vmsr(r9);
// Convert the argument to an integer.
__ vcvt_s32_f64(s0, d1, kFPSCRRounding);
// Use vcvt latency to start checking for special cases.
// Get the argument exponent and clear the sign bit.
__ bic(r6, r5, Operand(HeapNumber::kSignMask));
__ mov(r6, Operand(r6, LSR, HeapNumber::kMantissaBitsInTopWord));
// Retrieve FPSCR and check for vfp exceptions.
__ vmrs(r9);
__ tst(r9, Operand(kVFPExceptionMask));
__ b(&no_vfp_exception, eq);
// Check for NaN, Infinity, and -Infinity.
// They are invariant through a Math.Floor call, so just
// return the original argument.
__ sub(r7, r6, Operand(HeapNumber::kExponentMask
>> HeapNumber::kMantissaBitsInTopWord), SetCC);
__ b(&restore_fpscr_and_return, eq);
// We had an overflow or underflow in the conversion. Check if we
// have a big exponent.
__ cmp(r7, Operand(HeapNumber::kMantissaBits));
// If greater or equal, the argument is already round and in r0.
__ b(&restore_fpscr_and_return, ge);
__ b(&wont_fit_smi);
__ bind(&no_vfp_exception);
// Move the result back to general purpose register r0.
__ vmov(r0, s0);
// Check if the result fits into a smi.
__ add(r1, r0, Operand(0x40000000), SetCC);
__ b(&wont_fit_smi, mi);
// Tag the result.
STATIC_ASSERT(kSmiTag == 0);
__ mov(r0, Operand(r0, LSL, kSmiTagSize));
// Check for -0.
__ cmp(r0, Operand(0, RelocInfo::NONE));
__ b(&restore_fpscr_and_return, ne);
// r5 already holds the HeapNumber exponent.
__ tst(r5, Operand(HeapNumber::kSignMask));
// If our HeapNumber is negative it was -0, so load its address and return.
// Else r0 is loaded with 0, so we can also just return.
__ ldr(r0, MemOperand(sp, 0 * kPointerSize), ne);
__ bind(&restore_fpscr_and_return);
// Restore FPSCR and return.
__ vmsr(r3);
__ Drop(argc + 1);
__ Ret();
__ bind(&wont_fit_smi);
// Restore FPCSR and fall to slow case.
__ vmsr(r3);
__ bind(&slow);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ InvokeFunction(function, arguments(), JUMP_FUNCTION);
__ bind(&miss);
// r2: function name.
MaybeObject* obj = GenerateMissBranch();
if (obj->IsFailure()) return obj;
// Return the generated code.
return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name);
}
MaybeObject* CallStubCompiler::CompileMathAbsCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- r2 : function name
// -- lr : return address
// -- sp[(argc - n - 1) * 4] : arg[n] (zero-based)
// -- ...
// -- sp[argc * 4] : receiver
// -----------------------------------
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) return Heap::undefined_value();
Label miss;
GenerateNameCheck(name, &miss);
if (cell == NULL) {
__ ldr(r1, MemOperand(sp, 1 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &miss);
CheckPrototypes(JSObject::cast(object), r1, holder, r0, r3, r4, name,
&miss);
} else {
ASSERT(cell->value() == function);
GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the (only) argument into r0.
__ ldr(r0, MemOperand(sp, 0 * kPointerSize));
// Check if the argument is a smi.
Label not_smi;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(r0, &not_smi);
// Do bitwise not or do nothing depending on the sign of the
// argument.
__ eor(r1, r0, Operand(r0, ASR, kBitsPerInt - 1));
// Add 1 or do nothing depending on the sign of the argument.
__ sub(r0, r1, Operand(r0, ASR, kBitsPerInt - 1), SetCC);
// If the result is still negative, go to the slow case.
// This only happens for the most negative smi.
Label slow;
__ b(mi, &slow);
// Smi case done.
__ Drop(argc + 1);
__ Ret();
// Check if the argument is a heap number and load its exponent and
// sign.
__ bind(&not_smi);
__ CheckMap(r0, r1, Heap::kHeapNumberMapRootIndex, &slow, true);
__ ldr(r1, FieldMemOperand(r0, HeapNumber::kExponentOffset));
// Check the sign of the argument. If the argument is positive,
// just return it.
Label negative_sign;
__ tst(r1, Operand(HeapNumber::kSignMask));
__ b(ne, &negative_sign);
__ Drop(argc + 1);
__ Ret();
// If the argument is negative, clear the sign, and return a new
// number.
__ bind(&negative_sign);
__ eor(r1, r1, Operand(HeapNumber::kSignMask));
__ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r0, r4, r5, r6, &slow);
__ str(r1, FieldMemOperand(r0, HeapNumber::kExponentOffset));
__ str(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset));
__ Drop(argc + 1);
__ Ret();
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
__ InvokeFunction(function, arguments(), JUMP_FUNCTION);
__ bind(&miss);
// r2: function name.
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name);
}
MaybeObject* CallStubCompiler::CompileCallConstant(Object* object,
JSObject* holder,
JSFunction* function,
String* name,
CheckType check) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
SharedFunctionInfo* function_info = function->shared();
if (function_info->HasBuiltinFunctionId()) {
BuiltinFunctionId id = function_info->builtin_function_id();
MaybeObject* maybe_result = CompileCustomCall(
id, object, holder, NULL, function, name);
Object* result;
if (!maybe_result->ToObject(&result)) return maybe_result;
// undefined means bail out to regular compiler.
if (!result->IsUndefined()) {
return result;
}
}
Label miss_in_smi_check;
GenerateNameCheck(name, &miss_in_smi_check);
// Get the receiver from the stack
const int argc = arguments().immediate();
__ ldr(r1, MemOperand(sp, argc * kPointerSize));
// Check that the receiver isn't a smi.
if (check != NUMBER_CHECK) {
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &miss_in_smi_check);
}
// Make sure that it's okay not to patch the on stack receiver
// unless we're doing a receiver map check.
ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK);
CallOptimization optimization(function);
int depth = kInvalidProtoDepth;
Label miss;
switch (check) {
case RECEIVER_MAP_CHECK:
__ IncrementCounter(&Counters::call_const, 1, r0, r3);
if (optimization.is_simple_api_call() && !object->IsGlobalObject()) {
depth = optimization.GetPrototypeDepthOfExpectedType(
JSObject::cast(object), holder);
}
if (depth != kInvalidProtoDepth) {
__ IncrementCounter(&Counters::call_const_fast_api, 1, r0, r3);
ReserveSpaceForFastApiCall(masm(), r0);
}
// Check that the maps haven't changed.
CheckPrototypes(JSObject::cast(object), r1, holder, r0, r3, r4, name,
depth, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
ASSERT(depth == kInvalidProtoDepth);
__ ldr(r3, FieldMemOperand(r1, GlobalObject::kGlobalReceiverOffset));
__ str(r3, MemOperand(sp, argc * kPointerSize));
}
break;
case STRING_CHECK:
if (!function->IsBuiltin()) {
// Calling non-builtins with a value as receiver requires boxing.
__ jmp(&miss);
} else {
// Check that the object is a two-byte string or a symbol.
__ CompareObjectType(r1, r3, r3, FIRST_NONSTRING_TYPE);
__ b(hs, &miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::STRING_FUNCTION_INDEX, r0, &miss);
CheckPrototypes(JSObject::cast(object->GetPrototype()), r0, holder, r3,
r1, r4, name, &miss);
}
break;
case NUMBER_CHECK: {
if (!function->IsBuiltin()) {
// Calling non-builtins with a value as receiver requires boxing.
__ jmp(&miss);
} else {
Label fast;
// Check that the object is a smi or a heap number.
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &fast);
__ CompareObjectType(r1, r0, r0, HEAP_NUMBER_TYPE);
__ b(ne, &miss);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::NUMBER_FUNCTION_INDEX, r0, &miss);
CheckPrototypes(JSObject::cast(object->GetPrototype()), r0, holder, r3,
r1, r4, name, &miss);
}
break;
}
case BOOLEAN_CHECK: {
if (!function->IsBuiltin()) {
// Calling non-builtins with a value as receiver requires boxing.
__ jmp(&miss);
} else {
Label fast;
// Check that the object is a boolean.
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(r1, ip);
__ b(eq, &fast);
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ cmp(r1, ip);
__ b(ne, &miss);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::BOOLEAN_FUNCTION_INDEX, r0, &miss);
CheckPrototypes(JSObject::cast(object->GetPrototype()), r0, holder, r3,
r1, r4, name, &miss);
}
break;
}
default:
UNREACHABLE();
}
if (depth != kInvalidProtoDepth) {
MaybeObject* result = GenerateFastApiDirectCall(masm(), optimization, argc);
if (result->IsFailure()) return result;
} else {
__ InvokeFunction(function, arguments(), JUMP_FUNCTION);
}
// Handle call cache miss.
__ bind(&miss);
if (depth != kInvalidProtoDepth) {
FreeSpaceForFastApiCall(masm());
}
__ bind(&miss_in_smi_check);
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileCallInterceptor(JSObject* object,
JSObject* holder,
String* name) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
// Get the number of arguments.
const int argc = arguments().immediate();
LookupResult lookup;
LookupPostInterceptor(holder, name, &lookup);
// Get the receiver from the stack.
__ ldr(r1, MemOperand(sp, argc * kPointerSize));
CallInterceptorCompiler compiler(this, arguments(), r2);
MaybeObject* result = compiler.Compile(masm(),
object,
holder,
name,
&lookup,
r1,
r3,
r4,
r0,
&miss);
if (result->IsFailure()) {
return result;
}
// Move returned value, the function to call, to r1.
__ mov(r1, r0);
// Restore receiver.
__ ldr(r0, MemOperand(sp, argc * kPointerSize));
GenerateCallFunction(masm(), object, arguments(), &miss);
// Handle call cache miss.
__ bind(&miss);
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
MaybeObject* CallStubCompiler::CompileCallGlobal(JSObject* object,
GlobalObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
SharedFunctionInfo* function_info = function->shared();
if (function_info->HasBuiltinFunctionId()) {
BuiltinFunctionId id = function_info->builtin_function_id();
MaybeObject* maybe_result = CompileCustomCall(
id, object, holder, cell, function, name);
Object* result;
if (!maybe_result->ToObject(&result)) return maybe_result;
// undefined means bail out to regular compiler.
if (!result->IsUndefined()) return result;
}
Label miss;
GenerateNameCheck(name, &miss);
// Get the number of arguments.
const int argc = arguments().immediate();
GenerateGlobalReceiverCheck(object, holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ ldr(r3, FieldMemOperand(r0, GlobalObject::kGlobalReceiverOffset));
__ str(r3, MemOperand(sp, argc * kPointerSize));
}
// Setup the context (function already in r1).
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
// Jump to the cached code (tail call).
__ IncrementCounter(&Counters::call_global_inline, 1, r3, r4);
ASSERT(function->is_compiled());
Handle<Code> code(function->code());
ParameterCount expected(function->shared()->formal_parameter_count());
if (V8::UseCrankshaft()) {
// TODO(kasperl): For now, we always call indirectly through the
// code field in the function to allow recompilation to take effect
// without changing any of the call sites.
__ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
__ InvokeCode(r3, expected, arguments(), JUMP_FUNCTION);
} else {
__ InvokeCode(code, expected, arguments(),
RelocInfo::CODE_TARGET, JUMP_FUNCTION);
}
// Handle call cache miss.
__ bind(&miss);
__ IncrementCounter(&Counters::call_global_inline_miss, 1, r1, r3);
Object* obj;
{ MaybeObject* maybe_obj = GenerateMissBranch();
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
}
// Return the generated code.
return GetCode(NORMAL, name);
}
MaybeObject* StoreStubCompiler::CompileStoreField(JSObject* object,
int index,
Map* transition,
String* name) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
GenerateStoreField(masm(),
object,
index,
transition,
r1, r2, r3,
&miss);
__ bind(&miss);
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Miss));
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(transition == NULL ? FIELD : MAP_TRANSITION, name);
}
MaybeObject* StoreStubCompiler::CompileStoreCallback(JSObject* object,
AccessorInfo* callback,
String* name) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
// Check that the object isn't a smi.
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &miss);
// Check that the map of the object hasn't changed.
__ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r3, Operand(Handle<Map>(object->map())));
__ b(ne, &miss);
// Perform global security token check if needed.
if (object->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(r1, r3, &miss);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
__ push(r1); // receiver
__ mov(ip, Operand(Handle<AccessorInfo>(callback))); // callback info
__ Push(ip, r2, r0);
// Do tail-call to the runtime system.
ExternalReference store_callback_property =
ExternalReference(IC_Utility(IC::kStoreCallbackProperty));
__ TailCallExternalReference(store_callback_property, 4, 1);
// Handle store cache miss.
__ bind(&miss);
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Miss));
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
MaybeObject* StoreStubCompiler::CompileStoreInterceptor(JSObject* receiver,
String* name) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
// Check that the object isn't a smi.
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &miss);
// Check that the map of the object hasn't changed.
__ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r3, Operand(Handle<Map>(receiver->map())));
__ b(ne, &miss);
// Perform global security token check if needed.
if (receiver->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(r1, r3, &miss);
}
// Stub is never generated for non-global objects that require access
// checks.
ASSERT(receiver->IsJSGlobalProxy() || !receiver->IsAccessCheckNeeded());
__ Push(r1, r2, r0); // Receiver, name, value.
// Do tail-call to the runtime system.
ExternalReference store_ic_property =
ExternalReference(IC_Utility(IC::kStoreInterceptorProperty));
__ TailCallExternalReference(store_ic_property, 3, 1);
// Handle store cache miss.
__ bind(&miss);
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Miss));
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
MaybeObject* StoreStubCompiler::CompileStoreGlobal(GlobalObject* object,
JSGlobalPropertyCell* cell,
String* name) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
// Check that the map of the global has not changed.
__ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r3, Operand(Handle<Map>(object->map())));
__ b(ne, &miss);
// Check that the value in the cell is not the hole. If it is, this
// cell could have been deleted and reintroducing the global needs
// to update the property details in the property dictionary of the
// global object. We bail out to the runtime system to do that.
__ mov(r4, Operand(Handle<JSGlobalPropertyCell>(cell)));
__ LoadRoot(r5, Heap::kTheHoleValueRootIndex);
__ ldr(r6, FieldMemOperand(r4, JSGlobalPropertyCell::kValueOffset));
__ cmp(r5, r6);
__ b(eq, &miss);
// Store the value in the cell.
__ str(r0, FieldMemOperand(r4, JSGlobalPropertyCell::kValueOffset));
__ IncrementCounter(&Counters::named_store_global_inline, 1, r4, r3);
__ Ret();
// Handle store cache miss.
__ bind(&miss);
__ IncrementCounter(&Counters::named_store_global_inline_miss, 1, r4, r3);
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Miss));
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, name);
}
MaybeObject* LoadStubCompiler::CompileLoadNonexistent(String* name,
JSObject* object,
JSObject* last) {
// ----------- S t a t e -------------
// -- r0 : receiver
// -- lr : return address
// -----------------------------------
Label miss;
// Check that receiver is not a smi.
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &miss);
// Check the maps of the full prototype chain.
CheckPrototypes(object, r0, last, r3, r1, r4, name, &miss);
// If the last object in the prototype chain is a global object,
// check that the global property cell is empty.
if (last->IsGlobalObject()) {
MaybeObject* cell = GenerateCheckPropertyCell(masm(),
GlobalObject::cast(last),
name,
r1,
&miss);
if (cell->IsFailure()) {
miss.Unuse();
return cell;
}
}
// Return undefined if maps of the full prototype chain are still the
// same and no global property with this name contains a value.
__ LoadRoot(r0, Heap::kUndefinedValueRootIndex);
__ Ret();
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(NONEXISTENT, Heap::empty_string());
}
MaybeObject* LoadStubCompiler::CompileLoadField(JSObject* object,
JSObject* holder,
int index,
String* name) {
// ----------- S t a t e -------------
// -- r0 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
GenerateLoadField(object, holder, r0, r3, r1, r4, index, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(FIELD, name);
}
MaybeObject* LoadStubCompiler::CompileLoadCallback(String* name,
JSObject* object,
JSObject* holder,
AccessorInfo* callback) {
// ----------- S t a t e -------------
// -- r0 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
MaybeObject* result = GenerateLoadCallback(object, holder, r0, r2, r3, r1, r4,
callback, name, &miss);
if (result->IsFailure()) {
miss.Unuse();
return result;
}
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
MaybeObject* LoadStubCompiler::CompileLoadConstant(JSObject* object,
JSObject* holder,
Object* value,
String* name) {
// ----------- S t a t e -------------
// -- r0 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
GenerateLoadConstant(object, holder, r0, r3, r1, r4, value, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(CONSTANT_FUNCTION, name);
}
MaybeObject* LoadStubCompiler::CompileLoadInterceptor(JSObject* object,
JSObject* holder,
String* name) {
// ----------- S t a t e -------------
// -- r0 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
LookupResult lookup;
LookupPostInterceptor(holder, name, &lookup);
GenerateLoadInterceptor(object,
holder,
&lookup,
r0,
r2,
r3,
r1,
r4,
name,
&miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
MaybeObject* LoadStubCompiler::CompileLoadGlobal(JSObject* object,
GlobalObject* holder,
JSGlobalPropertyCell* cell,
String* name,
bool is_dont_delete) {
// ----------- S t a t e -------------
// -- r0 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
// If the object is the holder then we know that it's a global
// object which can only happen for contextual calls. In this case,
// the receiver cannot be a smi.
if (object != holder) {
__ tst(r0, Operand(kSmiTagMask));
__ b(eq, &miss);
}
// Check that the map of the global has not changed.
CheckPrototypes(object, r0, holder, r3, r4, r1, name, &miss);
// Get the value from the cell.
__ mov(r3, Operand(Handle<JSGlobalPropertyCell>(cell)));
__ ldr(r4, FieldMemOperand(r3, JSGlobalPropertyCell::kValueOffset));
// Check for deleted property if property can actually be deleted.
if (!is_dont_delete) {
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(r4, ip);
__ b(eq, &miss);
}
__ mov(r0, r4);
__ IncrementCounter(&Counters::named_load_global_stub, 1, r1, r3);
__ Ret();
__ bind(&miss);
__ IncrementCounter(&Counters::named_load_global_stub_miss, 1, r1, r3);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(NORMAL, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadField(String* name,
JSObject* receiver,
JSObject* holder,
int index) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
// Check the key is the cached one.
__ cmp(r0, Operand(Handle<String>(name)));
__ b(ne, &miss);
GenerateLoadField(receiver, holder, r1, r2, r3, r4, index, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(FIELD, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadCallback(
String* name,
JSObject* receiver,
JSObject* holder,
AccessorInfo* callback) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
// Check the key is the cached one.
__ cmp(r0, Operand(Handle<String>(name)));
__ b(ne, &miss);
MaybeObject* result = GenerateLoadCallback(receiver, holder, r1, r0, r2, r3,
r4, callback, name, &miss);
if (result->IsFailure()) {
miss.Unuse();
return result;
}
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(CALLBACKS, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadConstant(String* name,
JSObject* receiver,
JSObject* holder,
Object* value) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
// Check the key is the cached one.
__ cmp(r0, Operand(Handle<String>(name)));
__ b(ne, &miss);
GenerateLoadConstant(receiver, holder, r1, r2, r3, r4, value, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CONSTANT_FUNCTION, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadInterceptor(JSObject* receiver,
JSObject* holder,
String* name) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
// Check the key is the cached one.
__ cmp(r0, Operand(Handle<String>(name)));
__ b(ne, &miss);
LookupResult lookup;
LookupPostInterceptor(holder, name, &lookup);
GenerateLoadInterceptor(receiver,
holder,
&lookup,
r1,
r0,
r2,
r3,
r4,
name,
&miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(INTERCEPTOR, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadArrayLength(String* name) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
// Check the key is the cached one.
__ cmp(r0, Operand(Handle<String>(name)));
__ b(ne, &miss);
GenerateLoadArrayLength(masm(), r1, r2, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(CALLBACKS, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadStringLength(String* name) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
__ IncrementCounter(&Counters::keyed_load_string_length, 1, r2, r3);
// Check the key is the cached one.
__ cmp(r0, Operand(Handle<String>(name)));
__ b(ne, &miss);
GenerateLoadStringLength(masm(), r1, r2, r3, &miss, true);
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_load_string_length, 1, r2, r3);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(CALLBACKS, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadFunctionPrototype(String* name) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
__ IncrementCounter(&Counters::keyed_load_function_prototype, 1, r2, r3);
// Check the name hasn't changed.
__ cmp(r0, Operand(Handle<String>(name)));
__ b(ne, &miss);
GenerateLoadFunctionPrototype(masm(), r1, r2, r3, &miss);
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_load_function_prototype, 1, r2, r3);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
return GetCode(CALLBACKS, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadSpecialized(JSObject* receiver) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
// Check that the receiver isn't a smi.
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &miss);
// Check that the map matches.
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
__ cmp(r2, Operand(Handle<Map>(receiver->map())));
__ b(ne, &miss);
// Check that the key is a smi.
__ tst(r0, Operand(kSmiTagMask));
__ b(ne, &miss);
// Get the elements array.
__ ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset));
__ AssertFastElements(r2);
// Check that the key is within bounds.
__ ldr(r3, FieldMemOperand(r2, FixedArray::kLengthOffset));
__ cmp(r0, Operand(r3));
__ b(hs, &miss);
// Load the result and make sure it's not the hole.
__ add(r3, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
__ ldr(r4,
MemOperand(r3, r0, LSL, kPointerSizeLog2 - kSmiTagSize));
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(r4, ip);
__ b(eq, &miss);
__ mov(r0, r4);
__ Ret();
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(NORMAL, NULL);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadPixelArray(JSObject* receiver) {
// ----------- S t a t e -------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label miss;
// Check that the map matches.
__ CheckMap(r1, r2, Handle<Map>(receiver->map()), &miss, false);
GenerateFastPixelArrayLoad(masm(),
r1,
r0,
r2,
r3,
r4,
r5,
r0,
&miss,
&miss,
&miss);
__ bind(&miss);
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Miss));
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, NULL);
}
MaybeObject* KeyedStoreStubCompiler::CompileStoreField(JSObject* object,
int index,
Map* transition,
String* name) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : name
// -- r2 : receiver
// -- lr : return address
// -----------------------------------
Label miss;
__ IncrementCounter(&Counters::keyed_store_field, 1, r3, r4);
// Check that the name has not changed.
__ cmp(r1, Operand(Handle<String>(name)));
__ b(ne, &miss);
// r3 is used as scratch register. r1 and r2 keep their values if a jump to
// the miss label is generated.
GenerateStoreField(masm(),
object,
index,
transition,
r2, r1, r3,
&miss);
__ bind(&miss);
__ DecrementCounter(&Counters::keyed_store_field, 1, r3, r4);
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Miss));
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(transition == NULL ? FIELD : MAP_TRANSITION, name);
}
MaybeObject* KeyedStoreStubCompiler::CompileStoreSpecialized(
JSObject* receiver) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -- r3 : scratch
// -- r4 : scratch (elements)
// -----------------------------------
Label miss;
Register value_reg = r0;
Register key_reg = r1;
Register receiver_reg = r2;
Register scratch = r3;
Register elements_reg = r4;
// Check that the receiver isn't a smi.
__ tst(receiver_reg, Operand(kSmiTagMask));
__ b(eq, &miss);
// Check that the map matches.
__ ldr(scratch, FieldMemOperand(receiver_reg, HeapObject::kMapOffset));
__ cmp(scratch, Operand(Handle<Map>(receiver->map())));
__ b(ne, &miss);
// Check that the key is a smi.
__ tst(key_reg, Operand(kSmiTagMask));
__ b(ne, &miss);
// Get the elements array and make sure it is a fast element array, not 'cow'.
__ ldr(elements_reg,
FieldMemOperand(receiver_reg, JSObject::kElementsOffset));
__ ldr(scratch, FieldMemOperand(elements_reg, HeapObject::kMapOffset));
__ cmp(scratch, Operand(Handle<Map>(Factory::fixed_array_map())));
__ b(ne, &miss);
// Check that the key is within bounds.
if (receiver->IsJSArray()) {
__ ldr(scratch, FieldMemOperand(receiver_reg, JSArray::kLengthOffset));
} else {
__ ldr(scratch, FieldMemOperand(elements_reg, FixedArray::kLengthOffset));
}
// Compare smis.
__ cmp(key_reg, scratch);
__ b(hs, &miss);
__ add(scratch,
elements_reg, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
__ str(value_reg,
MemOperand(scratch, key_reg, LSL, kPointerSizeLog2 - kSmiTagSize));
__ RecordWrite(scratch,
Operand(key_reg, LSL, kPointerSizeLog2 - kSmiTagSize),
receiver_reg , elements_reg);
// value_reg (r0) is preserved.
// Done.
__ Ret();
__ bind(&miss);
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Miss));
__ Jump(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, NULL);
}
MaybeObject* ConstructStubCompiler::CompileConstructStub(JSFunction* function) {
// ----------- S t a t e -------------
// -- r0 : argc
// -- r1 : constructor
// -- lr : return address
// -- [sp] : last argument
// -----------------------------------
Label generic_stub_call;
// Use r7 for holding undefined which is used in several places below.
__ LoadRoot(r7, Heap::kUndefinedValueRootIndex);
#ifdef ENABLE_DEBUGGER_SUPPORT
// Check to see whether there are any break points in the function code. If
// there are jump to the generic constructor stub which calls the actual
// code for the function thereby hitting the break points.
__ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
__ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kDebugInfoOffset));
__ cmp(r2, r7);
__ b(ne, &generic_stub_call);
#endif
// Load the initial map and verify that it is in fact a map.
// r1: constructor function
// r7: undefined
__ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset));
__ tst(r2, Operand(kSmiTagMask));
__ b(eq, &generic_stub_call);
__ CompareObjectType(r2, r3, r4, MAP_TYPE);
__ b(ne, &generic_stub_call);
#ifdef DEBUG
// Cannot construct functions this way.
// r0: argc
// r1: constructor function
// r2: initial map
// r7: undefined
__ CompareInstanceType(r2, r3, JS_FUNCTION_TYPE);
__ Check(ne, "Function constructed by construct stub.");
#endif
// Now allocate the JSObject in new space.
// r0: argc
// r1: constructor function
// r2: initial map
// r7: undefined
__ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset));
__ AllocateInNewSpace(r3,
r4,
r5,
r6,
&generic_stub_call,
SIZE_IN_WORDS);
// Allocated the JSObject, now initialize the fields. Map is set to initial
// map and properties and elements are set to empty fixed array.
// r0: argc
// r1: constructor function
// r2: initial map
// r3: object size (in words)
// r4: JSObject (not tagged)
// r7: undefined
__ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex);
__ mov(r5, r4);
ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
__ str(r2, MemOperand(r5, kPointerSize, PostIndex));
ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
__ str(r6, MemOperand(r5, kPointerSize, PostIndex));
ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
__ str(r6, MemOperand(r5, kPointerSize, PostIndex));
// Calculate the location of the first argument. The stack contains only the
// argc arguments.
__ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2));
// Fill all the in-object properties with undefined.
// r0: argc
// r1: first argument
// r3: object size (in words)
// r4: JSObject (not tagged)
// r5: First in-object property of JSObject (not tagged)
// r7: undefined
// Fill the initialized properties with a constant value or a passed argument
// depending on the this.x = ...; assignment in the function.
SharedFunctionInfo* shared = function->shared();
for (int i = 0; i < shared->this_property_assignments_count(); i++) {
if (shared->IsThisPropertyAssignmentArgument(i)) {
Label not_passed, next;
// Check if the argument assigned to the property is actually passed.
int arg_number = shared->GetThisPropertyAssignmentArgument(i);
__ cmp(r0, Operand(arg_number));
__ b(le, &not_passed);
// Argument passed - find it on the stack.
__ ldr(r2, MemOperand(r1, (arg_number + 1) * -kPointerSize));
__ str(r2, MemOperand(r5, kPointerSize, PostIndex));
__ b(&next);
__ bind(&not_passed);
// Set the property to undefined.
__ str(r7, MemOperand(r5, kPointerSize, PostIndex));
__ bind(&next);
} else {
// Set the property to the constant value.
Handle<Object> constant(shared->GetThisPropertyAssignmentConstant(i));
__ mov(r2, Operand(constant));
__ str(r2, MemOperand(r5, kPointerSize, PostIndex));
}
}
// Fill the unused in-object property fields with undefined.
ASSERT(function->has_initial_map());
for (int i = shared->this_property_assignments_count();
i < function->initial_map()->inobject_properties();
i++) {
__ str(r7, MemOperand(r5, kPointerSize, PostIndex));
}
// r0: argc
// r4: JSObject (not tagged)
// Move argc to r1 and the JSObject to return to r0 and tag it.
__ mov(r1, r0);
__ mov(r0, r4);
__ orr(r0, r0, Operand(kHeapObjectTag));
// r0: JSObject
// r1: argc
// Remove caller arguments and receiver from the stack and return.
__ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2));
__ add(sp, sp, Operand(kPointerSize));
__ IncrementCounter(&Counters::constructed_objects, 1, r1, r2);
__ IncrementCounter(&Counters::constructed_objects_stub, 1, r1, r2);
__ Jump(lr);
// Jump to the generic stub in case the specialized code cannot handle the
// construction.
__ bind(&generic_stub_call);
Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric);
Handle<Code> generic_construct_stub(code);
__ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode();
}
static bool IsElementTypeSigned(ExternalArrayType array_type) {
switch (array_type) {
case kExternalByteArray:
case kExternalShortArray:
case kExternalIntArray:
return true;
case kExternalUnsignedByteArray:
case kExternalUnsignedShortArray:
case kExternalUnsignedIntArray:
return false;
default:
UNREACHABLE();
return false;
}
}
MaybeObject* ExternalArrayStubCompiler::CompileKeyedLoadStub(
ExternalArrayType array_type, Code::Flags flags) {
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label slow, failed_allocation;
Register key = r0;
Register receiver = r1;
// Check that the object isn't a smi
__ JumpIfSmi(receiver, &slow);
// Check that the key is a smi.
__ JumpIfNotSmi(key, &slow);
// Check that the object is a JS object. Load map into r2.
__ CompareObjectType(receiver, r2, r3, FIRST_JS_OBJECT_TYPE);
__ b(lt, &slow);
// Check that the receiver does not require access checks. We need
// to check this explicitly since this generic stub does not perform
// map checks.
__ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset));
__ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded));
__ b(ne, &slow);
// Check that the elements array is the appropriate type of
// ExternalArray.
__ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
__ cmp(r2, ip);
__ b(ne, &slow);
// Check that the index is in range.
__ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
__ cmp(ip, Operand(key, ASR, kSmiTagSize));
// Unsigned comparison catches both negative and too-large values.
__ b(lo, &slow);
// r3: elements array
__ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
// r3: base pointer of external storage
// We are not untagging smi key and instead work with it
// as if it was premultiplied by 2.
ASSERT((kSmiTag == 0) && (kSmiTagSize == 1));
Register value = r2;
switch (array_type) {
case kExternalByteArray:
__ ldrsb(value, MemOperand(r3, key, LSR, 1));
break;
case kExternalUnsignedByteArray:
__ ldrb(value, MemOperand(r3, key, LSR, 1));
break;
case kExternalShortArray:
__ ldrsh(value, MemOperand(r3, key, LSL, 0));
break;
case kExternalUnsignedShortArray:
__ ldrh(value, MemOperand(r3, key, LSL, 0));
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ ldr(value, MemOperand(r3, key, LSL, 1));
break;
case kExternalFloatArray:
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
__ add(r2, r3, Operand(key, LSL, 1));
__ vldr(s0, r2, 0);
} else {
__ ldr(value, MemOperand(r3, key, LSL, 1));
}
break;
default:
UNREACHABLE();
break;
}
// For integer array types:
// r2: value
// For floating-point array type
// s0: value (if VFP3 is supported)
// r2: value (if VFP3 is not supported)
if (array_type == kExternalIntArray) {
// For the Int and UnsignedInt array types, we need to see whether
// the value can be represented in a Smi. If not, we need to convert
// it to a HeapNumber.
Label box_int;
__ cmp(value, Operand(0xC0000000));
__ b(mi, &box_int);
// Tag integer as smi and return it.
__ mov(r0, Operand(value, LSL, kSmiTagSize));
__ Ret();
__ bind(&box_int);
// Allocate a HeapNumber for the result and perform int-to-double
// conversion. Don't touch r0 or r1 as they are needed if allocation
// fails.
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r5, r3, r4, r6, &slow);
// Now we can use r0 for the result as key is not needed any more.
__ mov(r0, r5);
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
__ vmov(s0, value);
__ vcvt_f64_s32(d0, s0);
__ sub(r3, r0, Operand(kHeapObjectTag));
__ vstr(d0, r3, HeapNumber::kValueOffset);
__ Ret();
} else {
WriteInt32ToHeapNumberStub stub(value, r0, r3);
__ TailCallStub(&stub);
}
} else if (array_type == kExternalUnsignedIntArray) {
// The test is different for unsigned int values. Since we need
// the value to be in the range of a positive smi, we can't
// handle either of the top two bits being set in the value.
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
Label box_int, done;
__ tst(value, Operand(0xC0000000));
__ b(ne, &box_int);
// Tag integer as smi and return it.
__ mov(r0, Operand(value, LSL, kSmiTagSize));
__ Ret();
__ bind(&box_int);
__ vmov(s0, value);
// Allocate a HeapNumber for the result and perform int-to-double
// conversion. Don't use r0 and r1 as AllocateHeapNumber clobbers all
// registers - also when jumping due to exhausted young space.
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r2, r3, r4, r6, &slow);
__ vcvt_f64_u32(d0, s0);
__ sub(r1, r2, Operand(kHeapObjectTag));
__ vstr(d0, r1, HeapNumber::kValueOffset);
__ mov(r0, r2);
__ Ret();
} else {
// Check whether unsigned integer fits into smi.
Label box_int_0, box_int_1, done;
__ tst(value, Operand(0x80000000));
__ b(ne, &box_int_0);
__ tst(value, Operand(0x40000000));
__ b(ne, &box_int_1);
// Tag integer as smi and return it.
__ mov(r0, Operand(value, LSL, kSmiTagSize));
__ Ret();
Register hiword = value; // r2.
Register loword = r3;
__ bind(&box_int_0);
// Integer does not have leading zeros.
GenerateUInt2Double(masm(), hiword, loword, r4, 0);
__ b(&done);
__ bind(&box_int_1);
// Integer has one leading zero.
GenerateUInt2Double(masm(), hiword, loword, r4, 1);
__ bind(&done);
// Integer was converted to double in registers hiword:loword.
// Wrap it into a HeapNumber. Don't use r0 and r1 as AllocateHeapNumber
// clobbers all registers - also when jumping due to exhausted young
// space.
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r4, r5, r7, r6, &slow);
__ str(hiword, FieldMemOperand(r4, HeapNumber::kExponentOffset));
__ str(loword, FieldMemOperand(r4, HeapNumber::kMantissaOffset));
__ mov(r0, r4);
__ Ret();
}
} else if (array_type == kExternalFloatArray) {
// For the floating-point array type, we need to always allocate a
// HeapNumber.
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
// Allocate a HeapNumber for the result. Don't use r0 and r1 as
// AllocateHeapNumber clobbers all registers - also when jumping due to
// exhausted young space.
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r2, r3, r4, r6, &slow);
__ vcvt_f64_f32(d0, s0);
__ sub(r1, r2, Operand(kHeapObjectTag));
__ vstr(d0, r1, HeapNumber::kValueOffset);
__ mov(r0, r2);
__ Ret();
} else {
// Allocate a HeapNumber for the result. Don't use r0 and r1 as
// AllocateHeapNumber clobbers all registers - also when jumping due to
// exhausted young space.
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r3, r4, r5, r6, &slow);
// VFP is not available, do manual single to double conversion.
// r2: floating point value (binary32)
// r3: heap number for result
// Extract mantissa to r0. OK to clobber r0 now as there are no jumps to
// the slow case from here.
__ and_(r0, value, Operand(kBinary32MantissaMask));
// Extract exponent to r1. OK to clobber r1 now as there are no jumps to
// the slow case from here.
__ mov(r1, Operand(value, LSR, kBinary32MantissaBits));
__ and_(r1, r1, Operand(kBinary32ExponentMask >> kBinary32MantissaBits));
Label exponent_rebiased;
__ teq(r1, Operand(0x00));
__ b(eq, &exponent_rebiased);
__ teq(r1, Operand(0xff));
__ mov(r1, Operand(0x7ff), LeaveCC, eq);
__ b(eq, &exponent_rebiased);
// Rebias exponent.
__ add(r1,
r1,
Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias));
__ bind(&exponent_rebiased);
__ and_(r2, value, Operand(kBinary32SignMask));
value = no_reg;
__ orr(r2, r2, Operand(r1, LSL, HeapNumber::kMantissaBitsInTopWord));
// Shift mantissa.
static const int kMantissaShiftForHiWord =
kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
static const int kMantissaShiftForLoWord =
kBitsPerInt - kMantissaShiftForHiWord;
__ orr(r2, r2, Operand(r0, LSR, kMantissaShiftForHiWord));
__ mov(r0, Operand(r0, LSL, kMantissaShiftForLoWord));
__ str(r2, FieldMemOperand(r3, HeapNumber::kExponentOffset));
__ str(r0, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
__ mov(r0, r3);
__ Ret();
}
} else {
// Tag integer as smi and return it.
__ mov(r0, Operand(value, LSL, kSmiTagSize));
__ Ret();
}
// Slow case, key and receiver still in r0 and r1.
__ bind(&slow);
__ IncrementCounter(&Counters::keyed_load_external_array_slow, 1, r2, r3);
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
__ Push(r1, r0);
__ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
return GetCode(flags);
}
MaybeObject* ExternalArrayStubCompiler::CompileKeyedStoreStub(
ExternalArrayType array_type, Code::Flags flags) {
// ---------- S t a t e --------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -----------------------------------
Label slow, check_heap_number;
// Register usage.
Register value = r0;
Register key = r1;
Register receiver = r2;
// r3 mostly holds the elements array or the destination external array.
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, &slow);
// Check that the object is a JS object. Load map into r3.
__ CompareObjectType(receiver, r3, r4, FIRST_JS_OBJECT_TYPE);
__ b(le, &slow);
// Check that the receiver does not require access checks. We need
// to do this because this generic stub does not perform map checks.
__ ldrb(ip, FieldMemOperand(r3, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded));
__ b(ne, &slow);
// Check that the key is a smi.
__ JumpIfNotSmi(key, &slow);
// Check that the elements array is the appropriate type of ExternalArray.
__ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ ldr(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
__ cmp(r4, ip);
__ b(ne, &slow);
// Check that the index is in range.
__ mov(r4, Operand(key, ASR, kSmiTagSize)); // Untag the index.
__ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
__ cmp(r4, ip);
// Unsigned comparison catches both negative and too-large values.
__ b(hs, &slow);
// Handle both smis and HeapNumbers in the fast path. Go to the
// runtime for all other kinds of values.
// r3: external array.
// r4: key (integer).
__ JumpIfNotSmi(value, &check_heap_number);
__ mov(r5, Operand(value, ASR, kSmiTagSize)); // Untag the value.
__ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
// r3: base pointer of external storage.
// r4: key (integer).
// r5: value (integer).
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ strb(r5, MemOperand(r3, r4, LSL, 0));
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ strh(r5, MemOperand(r3, r4, LSL, 1));
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ str(r5, MemOperand(r3, r4, LSL, 2));
break;
case kExternalFloatArray:
// Perform int-to-float conversion and store to memory.
StoreIntAsFloat(masm(), r3, r4, r5, r6, r7, r9);
break;
default:
UNREACHABLE();
break;
}
// Entry registers are intact, r0 holds the value which is the return value.
__ Ret();
// r3: external array.
// r4: index (integer).
__ bind(&check_heap_number);
__ CompareObjectType(value, r5, r6, HEAP_NUMBER_TYPE);
__ b(ne, &slow);
__ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
// r3: base pointer of external storage.
// r4: key (integer).
// The WebGL specification leaves the behavior of storing NaN and
// +/-Infinity into integer arrays basically undefined. For more
// reproducible behavior, convert these to zero.
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
if (array_type == kExternalFloatArray) {
// vldr requires offset to be a multiple of 4 so we can not
// include -kHeapObjectTag into it.
__ sub(r5, r0, Operand(kHeapObjectTag));
__ vldr(d0, r5, HeapNumber::kValueOffset);
__ add(r5, r3, Operand(r4, LSL, 2));
__ vcvt_f32_f64(s0, d0);
__ vstr(s0, r5, 0);
} else {
// Need to perform float-to-int conversion.
// Test for NaN or infinity (both give zero).
__ ldr(r6, FieldMemOperand(value, HeapNumber::kExponentOffset));
// Hoisted load. vldr requires offset to be a multiple of 4 so we can not
// include -kHeapObjectTag into it.
__ sub(r5, value, Operand(kHeapObjectTag));
__ vldr(d0, r5, HeapNumber::kValueOffset);
__ Sbfx(r6, r6, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
// NaNs and Infinities have all-one exponents so they sign extend to -1.
__ cmp(r6, Operand(-1));
__ mov(r5, Operand(0), LeaveCC, eq);
// Not infinity or NaN simply convert to int.
if (IsElementTypeSigned(array_type)) {
__ vcvt_s32_f64(s0, d0, kDefaultRoundToZero, ne);
} else {
__ vcvt_u32_f64(s0, d0, kDefaultRoundToZero, ne);
}
__ vmov(r5, s0, ne);
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ strb(r5, MemOperand(r3, r4, LSL, 0));
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ strh(r5, MemOperand(r3, r4, LSL, 1));
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ str(r5, MemOperand(r3, r4, LSL, 2));
break;
default:
UNREACHABLE();
break;
}
}
// Entry registers are intact, r0 holds the value which is the return value.
__ Ret();
} else {
// VFP3 is not available do manual conversions.
__ ldr(r5, FieldMemOperand(value, HeapNumber::kExponentOffset));
__ ldr(r6, FieldMemOperand(value, HeapNumber::kMantissaOffset));
if (array_type == kExternalFloatArray) {
Label done, nan_or_infinity_or_zero;
static const int kMantissaInHiWordShift =
kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
static const int kMantissaInLoWordShift =
kBitsPerInt - kMantissaInHiWordShift;
// Test for all special exponent values: zeros, subnormal numbers, NaNs
// and infinities. All these should be converted to 0.
__ mov(r7, Operand(HeapNumber::kExponentMask));
__ and_(r9, r5, Operand(r7), SetCC);
__ b(eq, &nan_or_infinity_or_zero);
__ teq(r9, Operand(r7));
__ mov(r9, Operand(kBinary32ExponentMask), LeaveCC, eq);
__ b(eq, &nan_or_infinity_or_zero);
// Rebias exponent.
__ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
__ add(r9,
r9,
Operand(kBinary32ExponentBias - HeapNumber::kExponentBias));
__ cmp(r9, Operand(kBinary32MaxExponent));
__ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, gt);
__ orr(r5, r5, Operand(kBinary32ExponentMask), LeaveCC, gt);
__ b(gt, &done);
__ cmp(r9, Operand(kBinary32MinExponent));
__ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, lt);
__ b(lt, &done);
__ and_(r7, r5, Operand(HeapNumber::kSignMask));
__ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
__ orr(r7, r7, Operand(r5, LSL, kMantissaInHiWordShift));
__ orr(r7, r7, Operand(r6, LSR, kMantissaInLoWordShift));
__ orr(r5, r7, Operand(r9, LSL, kBinary32ExponentShift));
__ bind(&done);
__ str(r5, MemOperand(r3, r4, LSL, 2));
// Entry registers are intact, r0 holds the value which is the return
// value.
__ Ret();
__ bind(&nan_or_infinity_or_zero);
__ and_(r7, r5, Operand(HeapNumber::kSignMask));
__ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
__ orr(r9, r9, r7);
__ orr(r9, r9, Operand(r5, LSL, kMantissaInHiWordShift));
__ orr(r5, r9, Operand(r6, LSR, kMantissaInLoWordShift));
__ b(&done);
} else {
bool is_signed_type = IsElementTypeSigned(array_type);
int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt;
int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000;
Label done, sign;
// Test for all special exponent values: zeros, subnormal numbers, NaNs
// and infinities. All these should be converted to 0.
__ mov(r7, Operand(HeapNumber::kExponentMask));
__ and_(r9, r5, Operand(r7), SetCC);
__ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
__ b(eq, &done);
__ teq(r9, Operand(r7));
__ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
__ b(eq, &done);
// Unbias exponent.
__ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
__ sub(r9, r9, Operand(HeapNumber::kExponentBias), SetCC);
// If exponent is negative then result is 0.
__ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, mi);
__ b(mi, &done);
// If exponent is too big then result is minimal value.
__ cmp(r9, Operand(meaningfull_bits - 1));
__ mov(r5, Operand(min_value), LeaveCC, ge);
__ b(ge, &done);
__ and_(r7, r5, Operand(HeapNumber::kSignMask), SetCC);
__ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
__ orr(r5, r5, Operand(1u << HeapNumber::kMantissaBitsInTopWord));
__ rsb(r9, r9, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
__ mov(r5, Operand(r5, LSR, r9), LeaveCC, pl);
__ b(pl, &sign);
__ rsb(r9, r9, Operand(0, RelocInfo::NONE));
__ mov(r5, Operand(r5, LSL, r9));
__ rsb(r9, r9, Operand(meaningfull_bits));
__ orr(r5, r5, Operand(r6, LSR, r9));
__ bind(&sign);
__ teq(r7, Operand(0, RelocInfo::NONE));
__ rsb(r5, r5, Operand(0, RelocInfo::NONE), LeaveCC, ne);
__ bind(&done);
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ strb(r5, MemOperand(r3, r4, LSL, 0));
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ strh(r5, MemOperand(r3, r4, LSL, 1));
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ str(r5, MemOperand(r3, r4, LSL, 2));
break;
default:
UNREACHABLE();
break;
}
}
}
// Slow case: call runtime.
__ bind(&slow);
// Entry registers are intact.
// ---------- S t a t e --------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -----------------------------------
// Push receiver, key and value for runtime call.
__ Push(r2, r1, r0);
__ TailCallRuntime(Runtime::kSetProperty, 3, 1);
return GetCode(flags);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM