blob: 4b4531eb689dbb5b78709a7ecede24e3b303c0dc [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_X64)
#include "bootstrapper.h"
#include "code-stubs.h"
#include "regexp-macro-assembler.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
void ToNumberStub::Generate(MacroAssembler* masm) {
// The ToNumber stub takes one argument in eax.
NearLabel check_heap_number, call_builtin;
__ SmiTest(rax);
__ j(not_zero, &check_heap_number);
__ Ret();
__ bind(&check_heap_number);
__ Move(rbx, Factory::heap_number_map());
__ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
__ j(not_equal, &call_builtin);
__ Ret();
__ bind(&call_builtin);
__ pop(rcx); // Pop return address.
__ push(rax);
__ push(rcx); // Push return address.
__ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION);
}
void FastNewClosureStub::Generate(MacroAssembler* masm) {
// Create a new closure from the given function info in new
// space. Set the context to the current context in rsi.
Label gc;
__ AllocateInNewSpace(JSFunction::kSize, rax, rbx, rcx, &gc, TAG_OBJECT);
// Get the function info from the stack.
__ movq(rdx, Operand(rsp, 1 * kPointerSize));
// Compute the function map in the current global context and set that
// as the map of the allocated object.
__ movq(rcx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset));
__ movq(rcx, Operand(rcx, Context::SlotOffset(Context::FUNCTION_MAP_INDEX)));
__ movq(FieldOperand(rax, JSObject::kMapOffset), rcx);
// Initialize the rest of the function. We don't have to update the
// write barrier because the allocated object is in new space.
__ LoadRoot(rbx, Heap::kEmptyFixedArrayRootIndex);
__ LoadRoot(rcx, Heap::kTheHoleValueRootIndex);
__ LoadRoot(rdi, Heap::kUndefinedValueRootIndex);
__ movq(FieldOperand(rax, JSObject::kPropertiesOffset), rbx);
__ movq(FieldOperand(rax, JSObject::kElementsOffset), rbx);
__ movq(FieldOperand(rax, JSFunction::kPrototypeOrInitialMapOffset), rcx);
__ movq(FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset), rdx);
__ movq(FieldOperand(rax, JSFunction::kContextOffset), rsi);
__ movq(FieldOperand(rax, JSFunction::kLiteralsOffset), rbx);
__ movq(FieldOperand(rax, JSFunction::kNextFunctionLinkOffset), rdi);
// Initialize the code pointer in the function to be the one
// found in the shared function info object.
__ movq(rdx, FieldOperand(rdx, SharedFunctionInfo::kCodeOffset));
__ lea(rdx, FieldOperand(rdx, Code::kHeaderSize));
__ movq(FieldOperand(rax, JSFunction::kCodeEntryOffset), rdx);
// Return and remove the on-stack parameter.
__ ret(1 * kPointerSize);
// Create a new closure through the slower runtime call.
__ bind(&gc);
__ pop(rcx); // Temporarily remove return address.
__ pop(rdx);
__ push(rsi);
__ push(rdx);
__ Push(Factory::false_value());
__ push(rcx); // Restore return address.
__ TailCallRuntime(Runtime::kNewClosure, 3, 1);
}
void FastNewContextStub::Generate(MacroAssembler* masm) {
// Try to allocate the context in new space.
Label gc;
int length = slots_ + Context::MIN_CONTEXT_SLOTS;
__ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize,
rax, rbx, rcx, &gc, TAG_OBJECT);
// Get the function from the stack.
__ movq(rcx, Operand(rsp, 1 * kPointerSize));
// Setup the object header.
__ LoadRoot(kScratchRegister, Heap::kContextMapRootIndex);
__ movq(FieldOperand(rax, HeapObject::kMapOffset), kScratchRegister);
__ Move(FieldOperand(rax, FixedArray::kLengthOffset), Smi::FromInt(length));
// Setup the fixed slots.
__ Set(rbx, 0); // Set to NULL.
__ movq(Operand(rax, Context::SlotOffset(Context::CLOSURE_INDEX)), rcx);
__ movq(Operand(rax, Context::SlotOffset(Context::FCONTEXT_INDEX)), rax);
__ movq(Operand(rax, Context::SlotOffset(Context::PREVIOUS_INDEX)), rbx);
__ movq(Operand(rax, Context::SlotOffset(Context::EXTENSION_INDEX)), rbx);
// Copy the global object from the surrounding context.
__ movq(rbx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ movq(Operand(rax, Context::SlotOffset(Context::GLOBAL_INDEX)), rbx);
// Initialize the rest of the slots to undefined.
__ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) {
__ movq(Operand(rax, Context::SlotOffset(i)), rbx);
}
// Return and remove the on-stack parameter.
__ movq(rsi, rax);
__ ret(1 * kPointerSize);
// Need to collect. Call into runtime system.
__ bind(&gc);
__ TailCallRuntime(Runtime::kNewContext, 1, 1);
}
void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) {
// Stack layout on entry:
//
// [rsp + kPointerSize]: constant elements.
// [rsp + (2 * kPointerSize)]: literal index.
// [rsp + (3 * kPointerSize)]: literals array.
// All sizes here are multiples of kPointerSize.
int elements_size = (length_ > 0) ? FixedArray::SizeFor(length_) : 0;
int size = JSArray::kSize + elements_size;
// Load boilerplate object into rcx and check if we need to create a
// boilerplate.
Label slow_case;
__ movq(rcx, Operand(rsp, 3 * kPointerSize));
__ movq(rax, Operand(rsp, 2 * kPointerSize));
SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
__ movq(rcx,
FieldOperand(rcx, index.reg, index.scale, FixedArray::kHeaderSize));
__ CompareRoot(rcx, Heap::kUndefinedValueRootIndex);
__ j(equal, &slow_case);
if (FLAG_debug_code) {
const char* message;
Heap::RootListIndex expected_map_index;
if (mode_ == CLONE_ELEMENTS) {
message = "Expected (writable) fixed array";
expected_map_index = Heap::kFixedArrayMapRootIndex;
} else {
ASSERT(mode_ == COPY_ON_WRITE_ELEMENTS);
message = "Expected copy-on-write fixed array";
expected_map_index = Heap::kFixedCOWArrayMapRootIndex;
}
__ push(rcx);
__ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset));
__ CompareRoot(FieldOperand(rcx, HeapObject::kMapOffset),
expected_map_index);
__ Assert(equal, message);
__ pop(rcx);
}
// Allocate both the JS array and the elements array in one big
// allocation. This avoids multiple limit checks.
__ AllocateInNewSpace(size, rax, rbx, rdx, &slow_case, TAG_OBJECT);
// Copy the JS array part.
for (int i = 0; i < JSArray::kSize; i += kPointerSize) {
if ((i != JSArray::kElementsOffset) || (length_ == 0)) {
__ movq(rbx, FieldOperand(rcx, i));
__ movq(FieldOperand(rax, i), rbx);
}
}
if (length_ > 0) {
// Get hold of the elements array of the boilerplate and setup the
// elements pointer in the resulting object.
__ movq(rcx, FieldOperand(rcx, JSArray::kElementsOffset));
__ lea(rdx, Operand(rax, JSArray::kSize));
__ movq(FieldOperand(rax, JSArray::kElementsOffset), rdx);
// Copy the elements array.
for (int i = 0; i < elements_size; i += kPointerSize) {
__ movq(rbx, FieldOperand(rcx, i));
__ movq(FieldOperand(rdx, i), rbx);
}
}
// Return and remove the on-stack parameters.
__ ret(3 * kPointerSize);
__ bind(&slow_case);
__ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1);
}
void ToBooleanStub::Generate(MacroAssembler* masm) {
NearLabel false_result, true_result, not_string;
__ movq(rax, Operand(rsp, 1 * kPointerSize));
// 'null' => false.
__ CompareRoot(rax, Heap::kNullValueRootIndex);
__ j(equal, &false_result);
// Get the map and type of the heap object.
// We don't use CmpObjectType because we manipulate the type field.
__ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
__ movzxbq(rcx, FieldOperand(rdx, Map::kInstanceTypeOffset));
// Undetectable => false.
__ movzxbq(rbx, FieldOperand(rdx, Map::kBitFieldOffset));
__ and_(rbx, Immediate(1 << Map::kIsUndetectable));
__ j(not_zero, &false_result);
// JavaScript object => true.
__ cmpq(rcx, Immediate(FIRST_JS_OBJECT_TYPE));
__ j(above_equal, &true_result);
// String value => false iff empty.
__ cmpq(rcx, Immediate(FIRST_NONSTRING_TYPE));
__ j(above_equal, &not_string);
__ movq(rdx, FieldOperand(rax, String::kLengthOffset));
__ SmiTest(rdx);
__ j(zero, &false_result);
__ jmp(&true_result);
__ bind(&not_string);
__ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &true_result);
// HeapNumber => false iff +0, -0, or NaN.
// These three cases set the zero flag when compared to zero using ucomisd.
__ xorpd(xmm0, xmm0);
__ ucomisd(xmm0, FieldOperand(rax, HeapNumber::kValueOffset));
__ j(zero, &false_result);
// Fall through to |true_result|.
// Return 1/0 for true/false in rax.
__ bind(&true_result);
__ movq(rax, Immediate(1));
__ ret(1 * kPointerSize);
__ bind(&false_result);
__ Set(rax, 0);
__ ret(1 * kPointerSize);
}
const char* GenericBinaryOpStub::GetName() {
if (name_ != NULL) return name_;
const int kMaxNameLength = 100;
name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
if (name_ == NULL) return "OOM";
const char* op_name = Token::Name(op_);
const char* overwrite_name;
switch (mode_) {
case NO_OVERWRITE: overwrite_name = "Alloc"; break;
case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
default: overwrite_name = "UnknownOverwrite"; break;
}
OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
"GenericBinaryOpStub_%s_%s%s_%s%s_%s_%s",
op_name,
overwrite_name,
(flags_ & NO_SMI_CODE_IN_STUB) ? "_NoSmiInStub" : "",
args_in_registers_ ? "RegArgs" : "StackArgs",
args_reversed_ ? "_R" : "",
static_operands_type_.ToString(),
BinaryOpIC::GetName(runtime_operands_type_));
return name_;
}
void GenericBinaryOpStub::GenerateCall(
MacroAssembler* masm,
Register left,
Register right) {
if (!ArgsInRegistersSupported()) {
// Pass arguments on the stack.
__ push(left);
__ push(right);
} else {
// The calling convention with registers is left in rdx and right in rax.
Register left_arg = rdx;
Register right_arg = rax;
if (!(left.is(left_arg) && right.is(right_arg))) {
if (left.is(right_arg) && right.is(left_arg)) {
if (IsOperationCommutative()) {
SetArgsReversed();
} else {
__ xchg(left, right);
}
} else if (left.is(left_arg)) {
__ movq(right_arg, right);
} else if (right.is(right_arg)) {
__ movq(left_arg, left);
} else if (left.is(right_arg)) {
if (IsOperationCommutative()) {
__ movq(left_arg, right);
SetArgsReversed();
} else {
// Order of moves important to avoid destroying left argument.
__ movq(left_arg, left);
__ movq(right_arg, right);
}
} else if (right.is(left_arg)) {
if (IsOperationCommutative()) {
__ movq(right_arg, left);
SetArgsReversed();
} else {
// Order of moves important to avoid destroying right argument.
__ movq(right_arg, right);
__ movq(left_arg, left);
}
} else {
// Order of moves is not important.
__ movq(left_arg, left);
__ movq(right_arg, right);
}
}
// Update flags to indicate that arguments are in registers.
SetArgsInRegisters();
__ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
}
// Call the stub.
__ CallStub(this);
}
void GenericBinaryOpStub::GenerateCall(
MacroAssembler* masm,
Register left,
Smi* right) {
if (!ArgsInRegistersSupported()) {
// Pass arguments on the stack.
__ push(left);
__ Push(right);
} else {
// The calling convention with registers is left in rdx and right in rax.
Register left_arg = rdx;
Register right_arg = rax;
if (left.is(left_arg)) {
__ Move(right_arg, right);
} else if (left.is(right_arg) && IsOperationCommutative()) {
__ Move(left_arg, right);
SetArgsReversed();
} else {
// For non-commutative operations, left and right_arg might be
// the same register. Therefore, the order of the moves is
// important here in order to not overwrite left before moving
// it to left_arg.
__ movq(left_arg, left);
__ Move(right_arg, right);
}
// Update flags to indicate that arguments are in registers.
SetArgsInRegisters();
__ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
}
// Call the stub.
__ CallStub(this);
}
void GenericBinaryOpStub::GenerateCall(
MacroAssembler* masm,
Smi* left,
Register right) {
if (!ArgsInRegistersSupported()) {
// Pass arguments on the stack.
__ Push(left);
__ push(right);
} else {
// The calling convention with registers is left in rdx and right in rax.
Register left_arg = rdx;
Register right_arg = rax;
if (right.is(right_arg)) {
__ Move(left_arg, left);
} else if (right.is(left_arg) && IsOperationCommutative()) {
__ Move(right_arg, left);
SetArgsReversed();
} else {
// For non-commutative operations, right and left_arg might be
// the same register. Therefore, the order of the moves is
// important here in order to not overwrite right before moving
// it to right_arg.
__ movq(right_arg, right);
__ Move(left_arg, left);
}
// Update flags to indicate that arguments are in registers.
SetArgsInRegisters();
__ IncrementCounter(&Counters::generic_binary_stub_calls_regs, 1);
}
// Call the stub.
__ CallStub(this);
}
class FloatingPointHelper : public AllStatic {
public:
// Load the operands from rdx and rax into xmm0 and xmm1, as doubles.
// If the operands are not both numbers, jump to not_numbers.
// Leaves rdx and rax unchanged. SmiOperands assumes both are smis.
// NumberOperands assumes both are smis or heap numbers.
static void LoadSSE2SmiOperands(MacroAssembler* masm);
static void LoadSSE2NumberOperands(MacroAssembler* masm);
static void LoadSSE2UnknownOperands(MacroAssembler* masm,
Label* not_numbers);
// Takes the operands in rdx and rax and loads them as integers in rax
// and rcx.
static void LoadAsIntegers(MacroAssembler* masm,
Label* operand_conversion_failure,
Register heap_number_map);
// As above, but we know the operands to be numbers. In that case,
// conversion can't fail.
static void LoadNumbersAsIntegers(MacroAssembler* masm);
};
void GenericBinaryOpStub::GenerateSmiCode(MacroAssembler* masm, Label* slow) {
// 1. Move arguments into rdx, rax except for DIV and MOD, which need the
// dividend in rax and rdx free for the division. Use rax, rbx for those.
Comment load_comment(masm, "-- Load arguments");
Register left = rdx;
Register right = rax;
if (op_ == Token::DIV || op_ == Token::MOD) {
left = rax;
right = rbx;
if (HasArgsInRegisters()) {
__ movq(rbx, rax);
__ movq(rax, rdx);
}
}
if (!HasArgsInRegisters()) {
__ movq(right, Operand(rsp, 1 * kPointerSize));
__ movq(left, Operand(rsp, 2 * kPointerSize));
}
Label not_smis;
// 2. Smi check both operands.
if (static_operands_type_.IsSmi()) {
// Skip smi check if we know that both arguments are smis.
if (FLAG_debug_code) {
__ AbortIfNotSmi(left);
__ AbortIfNotSmi(right);
}
if (op_ == Token::BIT_OR) {
// Handle OR here, since we do extra smi-checking in the or code below.
__ SmiOr(right, right, left);
GenerateReturn(masm);
return;
}
} else {
if (op_ != Token::BIT_OR) {
// Skip the check for OR as it is better combined with the
// actual operation.
Comment smi_check_comment(masm, "-- Smi check arguments");
__ JumpIfNotBothSmi(left, right, &not_smis);
}
}
// 3. Operands are both smis (except for OR), perform the operation leaving
// the result in rax and check the result if necessary.
Comment perform_smi(masm, "-- Perform smi operation");
Label use_fp_on_smis;
switch (op_) {
case Token::ADD: {
ASSERT(right.is(rax));
__ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative.
break;
}
case Token::SUB: {
__ SmiSub(left, left, right, &use_fp_on_smis);
__ movq(rax, left);
break;
}
case Token::MUL:
ASSERT(right.is(rax));
__ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative.
break;
case Token::DIV:
ASSERT(left.is(rax));
__ SmiDiv(left, left, right, &use_fp_on_smis);
break;
case Token::MOD:
ASSERT(left.is(rax));
__ SmiMod(left, left, right, slow);
break;
case Token::BIT_OR:
ASSERT(right.is(rax));
__ movq(rcx, right); // Save the right operand.
__ SmiOr(right, right, left); // BIT_OR is commutative.
__ testb(right, Immediate(kSmiTagMask));
__ j(not_zero, &not_smis);
break;
case Token::BIT_AND:
ASSERT(right.is(rax));
__ SmiAnd(right, right, left); // BIT_AND is commutative.
break;
case Token::BIT_XOR:
ASSERT(right.is(rax));
__ SmiXor(right, right, left); // BIT_XOR is commutative.
break;
case Token::SHL:
case Token::SHR:
case Token::SAR:
switch (op_) {
case Token::SAR:
__ SmiShiftArithmeticRight(left, left, right);
break;
case Token::SHR:
__ SmiShiftLogicalRight(left, left, right, slow);
break;
case Token::SHL:
__ SmiShiftLeft(left, left, right);
break;
default:
UNREACHABLE();
}
__ movq(rax, left);
break;
default:
UNREACHABLE();
break;
}
// 4. Emit return of result in rax.
GenerateReturn(masm);
// 5. For some operations emit inline code to perform floating point
// operations on known smis (e.g., if the result of the operation
// overflowed the smi range).
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV: {
ASSERT(use_fp_on_smis.is_linked());
__ bind(&use_fp_on_smis);
if (op_ == Token::DIV) {
__ movq(rdx, rax);
__ movq(rax, rbx);
}
// left is rdx, right is rax.
__ AllocateHeapNumber(rbx, rcx, slow);
FloatingPointHelper::LoadSSE2SmiOperands(masm);
switch (op_) {
case Token::ADD: __ addsd(xmm0, xmm1); break;
case Token::SUB: __ subsd(xmm0, xmm1); break;
case Token::MUL: __ mulsd(xmm0, xmm1); break;
case Token::DIV: __ divsd(xmm0, xmm1); break;
default: UNREACHABLE();
}
__ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0);
__ movq(rax, rbx);
GenerateReturn(masm);
}
default:
break;
}
// 6. Non-smi operands, fall out to the non-smi code with the operands in
// rdx and rax.
Comment done_comment(masm, "-- Enter non-smi code");
__ bind(&not_smis);
switch (op_) {
case Token::DIV:
case Token::MOD:
// Operands are in rax, rbx at this point.
__ movq(rdx, rax);
__ movq(rax, rbx);
break;
case Token::BIT_OR:
// Right operand is saved in rcx and rax was destroyed by the smi
// operation.
__ movq(rax, rcx);
break;
default:
break;
}
}
void GenericBinaryOpStub::Generate(MacroAssembler* masm) {
Label call_runtime;
if (ShouldGenerateSmiCode()) {
GenerateSmiCode(masm, &call_runtime);
} else if (op_ != Token::MOD) {
if (!HasArgsInRegisters()) {
GenerateLoadArguments(masm);
}
}
// Floating point case.
if (ShouldGenerateFPCode()) {
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV: {
if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
HasSmiCodeInStub()) {
// Execution reaches this point when the first non-smi argument occurs
// (and only if smi code is generated). This is the right moment to
// patch to HEAP_NUMBERS state. The transition is attempted only for
// the four basic operations. The stub stays in the DEFAULT state
// forever for all other operations (also if smi code is skipped).
GenerateTypeTransition(masm);
break;
}
Label not_floats;
// rax: y
// rdx: x
if (static_operands_type_.IsNumber()) {
if (FLAG_debug_code) {
// Assert at runtime that inputs are only numbers.
__ AbortIfNotNumber(rdx);
__ AbortIfNotNumber(rax);
}
FloatingPointHelper::LoadSSE2NumberOperands(masm);
} else {
FloatingPointHelper::LoadSSE2UnknownOperands(masm, &call_runtime);
}
switch (op_) {
case Token::ADD: __ addsd(xmm0, xmm1); break;
case Token::SUB: __ subsd(xmm0, xmm1); break;
case Token::MUL: __ mulsd(xmm0, xmm1); break;
case Token::DIV: __ divsd(xmm0, xmm1); break;
default: UNREACHABLE();
}
// Allocate a heap number, if needed.
Label skip_allocation;
OverwriteMode mode = mode_;
if (HasArgsReversed()) {
if (mode == OVERWRITE_RIGHT) {
mode = OVERWRITE_LEFT;
} else if (mode == OVERWRITE_LEFT) {
mode = OVERWRITE_RIGHT;
}
}
switch (mode) {
case OVERWRITE_LEFT:
__ JumpIfNotSmi(rdx, &skip_allocation);
__ AllocateHeapNumber(rbx, rcx, &call_runtime);
__ movq(rdx, rbx);
__ bind(&skip_allocation);
__ movq(rax, rdx);
break;
case OVERWRITE_RIGHT:
// If the argument in rax is already an object, we skip the
// allocation of a heap number.
__ JumpIfNotSmi(rax, &skip_allocation);
// Fall through!
case NO_OVERWRITE:
// Allocate a heap number for the result. Keep rax and rdx intact
// for the possible runtime call.
__ AllocateHeapNumber(rbx, rcx, &call_runtime);
__ movq(rax, rbx);
__ bind(&skip_allocation);
break;
default: UNREACHABLE();
}
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
GenerateReturn(masm);
__ bind(&not_floats);
if (runtime_operands_type_ == BinaryOpIC::DEFAULT &&
!HasSmiCodeInStub()) {
// Execution reaches this point when the first non-number argument
// occurs (and only if smi code is skipped from the stub, otherwise
// the patching has already been done earlier in this case branch).
// A perfect moment to try patching to STRINGS for ADD operation.
if (op_ == Token::ADD) {
GenerateTypeTransition(masm);
}
}
break;
}
case Token::MOD: {
// For MOD we go directly to runtime in the non-smi case.
break;
}
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SAR:
case Token::SHL:
case Token::SHR: {
Label skip_allocation, non_smi_shr_result;
Register heap_number_map = r9;
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
if (static_operands_type_.IsNumber()) {
if (FLAG_debug_code) {
// Assert at runtime that inputs are only numbers.
__ AbortIfNotNumber(rdx);
__ AbortIfNotNumber(rax);
}
FloatingPointHelper::LoadNumbersAsIntegers(masm);
} else {
FloatingPointHelper::LoadAsIntegers(masm,
&call_runtime,
heap_number_map);
}
switch (op_) {
case Token::BIT_OR: __ orl(rax, rcx); break;
case Token::BIT_AND: __ andl(rax, rcx); break;
case Token::BIT_XOR: __ xorl(rax, rcx); break;
case Token::SAR: __ sarl_cl(rax); break;
case Token::SHL: __ shll_cl(rax); break;
case Token::SHR: {
__ shrl_cl(rax);
// Check if result is negative. This can only happen for a shift
// by zero.
__ testl(rax, rax);
__ j(negative, &non_smi_shr_result);
break;
}
default: UNREACHABLE();
}
STATIC_ASSERT(kSmiValueSize == 32);
// Tag smi result and return.
__ Integer32ToSmi(rax, rax);
GenerateReturn(masm);
// All bit-ops except SHR return a signed int32 that can be
// returned immediately as a smi.
// We might need to allocate a HeapNumber if we shift a negative
// number right by zero (i.e., convert to UInt32).
if (op_ == Token::SHR) {
ASSERT(non_smi_shr_result.is_linked());
__ bind(&non_smi_shr_result);
// Allocate a heap number if needed.
__ movl(rbx, rax); // rbx holds result value (uint32 value as int64).
switch (mode_) {
case OVERWRITE_LEFT:
case OVERWRITE_RIGHT:
// If the operand was an object, we skip the
// allocation of a heap number.
__ movq(rax, Operand(rsp, mode_ == OVERWRITE_RIGHT ?
1 * kPointerSize : 2 * kPointerSize));
__ JumpIfNotSmi(rax, &skip_allocation);
// Fall through!
case NO_OVERWRITE:
// Allocate heap number in new space.
// Not using AllocateHeapNumber macro in order to reuse
// already loaded heap_number_map.
__ AllocateInNewSpace(HeapNumber::kSize,
rax,
rcx,
no_reg,
&call_runtime,
TAG_OBJECT);
// Set the map.
if (FLAG_debug_code) {
__ AbortIfNotRootValue(heap_number_map,
Heap::kHeapNumberMapRootIndex,
"HeapNumberMap register clobbered.");
}
__ movq(FieldOperand(rax, HeapObject::kMapOffset),
heap_number_map);
__ bind(&skip_allocation);
break;
default: UNREACHABLE();
}
// Store the result in the HeapNumber and return.
__ cvtqsi2sd(xmm0, rbx);
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
GenerateReturn(masm);
}
break;
}
default: UNREACHABLE(); break;
}
}
// If all else fails, use the runtime system to get the correct
// result. If arguments was passed in registers now place them on the
// stack in the correct order below the return address.
__ bind(&call_runtime);
if (HasArgsInRegisters()) {
GenerateRegisterArgsPush(masm);
}
switch (op_) {
case Token::ADD: {
// Registers containing left and right operands respectively.
Register lhs, rhs;
if (HasArgsReversed()) {
lhs = rax;
rhs = rdx;
} else {
lhs = rdx;
rhs = rax;
}
// Test for string arguments before calling runtime.
Label not_strings, both_strings, not_string1, string1, string1_smi2;
// If this stub has already generated FP-specific code then the arguments
// are already in rdx and rax.
if (!ShouldGenerateFPCode() && !HasArgsInRegisters()) {
GenerateLoadArguments(masm);
}
Condition is_smi;
is_smi = masm->CheckSmi(lhs);
__ j(is_smi, &not_string1);
__ CmpObjectType(lhs, FIRST_NONSTRING_TYPE, r8);
__ j(above_equal, &not_string1);
// First argument is a a string, test second.
is_smi = masm->CheckSmi(rhs);
__ j(is_smi, &string1_smi2);
__ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, r9);
__ j(above_equal, &string1);
// First and second argument are strings.
StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
__ TailCallStub(&string_add_stub);
__ bind(&string1_smi2);
// First argument is a string, second is a smi. Try to lookup the number
// string for the smi in the number string cache.
NumberToStringStub::GenerateLookupNumberStringCache(
masm, rhs, rbx, rcx, r8, true, &string1);
// Replace second argument on stack and tailcall string add stub to make
// the result.
__ movq(Operand(rsp, 1 * kPointerSize), rbx);
__ TailCallStub(&string_add_stub);
// Only first argument is a string.
__ bind(&string1);
__ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION);
// First argument was not a string, test second.
__ bind(&not_string1);
is_smi = masm->CheckSmi(rhs);
__ j(is_smi, &not_strings);
__ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, rhs);
__ j(above_equal, &not_strings);
// Only second argument is a string.
__ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION);
__ bind(&not_strings);
// Neither argument is a string.
__ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
break;
}
case Token::SUB:
__ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
break;
case Token::MUL:
__ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
break;
case Token::DIV:
__ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
break;
case Token::MOD:
__ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
break;
case Token::BIT_OR:
__ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
break;
case Token::BIT_AND:
__ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
break;
case Token::BIT_XOR:
__ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
break;
case Token::SAR:
__ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
break;
case Token::SHL:
__ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
break;
case Token::SHR:
__ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
break;
default:
UNREACHABLE();
}
}
void GenericBinaryOpStub::GenerateLoadArguments(MacroAssembler* masm) {
ASSERT(!HasArgsInRegisters());
__ movq(rax, Operand(rsp, 1 * kPointerSize));
__ movq(rdx, Operand(rsp, 2 * kPointerSize));
}
void GenericBinaryOpStub::GenerateReturn(MacroAssembler* masm) {
// If arguments are not passed in registers remove them from the stack before
// returning.
if (!HasArgsInRegisters()) {
__ ret(2 * kPointerSize); // Remove both operands
} else {
__ ret(0);
}
}
void GenericBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
ASSERT(HasArgsInRegisters());
__ pop(rcx);
if (HasArgsReversed()) {
__ push(rax);
__ push(rdx);
} else {
__ push(rdx);
__ push(rax);
}
__ push(rcx);
}
void GenericBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
Label get_result;
// Ensure the operands are on the stack.
if (HasArgsInRegisters()) {
GenerateRegisterArgsPush(masm);
}
// Left and right arguments are already on stack.
__ pop(rcx); // Save the return address.
// Push this stub's key.
__ Push(Smi::FromInt(MinorKey()));
// Although the operation and the type info are encoded into the key,
// the encoding is opaque, so push them too.
__ Push(Smi::FromInt(op_));
__ Push(Smi::FromInt(runtime_operands_type_));
__ push(rcx); // The return address.
// Perform patching to an appropriate fast case and return the result.
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kBinaryOp_Patch)),
5,
1);
}
Handle<Code> GetBinaryOpStub(int key, BinaryOpIC::TypeInfo type_info) {
GenericBinaryOpStub stub(key, type_info);
return stub.GetCode();
}
Handle<Code> GetTypeRecordingBinaryOpStub(int key,
TRBinaryOpIC::TypeInfo type_info,
TRBinaryOpIC::TypeInfo result_type_info) {
TypeRecordingBinaryOpStub stub(key, type_info, result_type_info);
return stub.GetCode();
}
void TypeRecordingBinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) {
__ pop(rcx); // Save return address.
__ push(rdx);
__ push(rax);
// Left and right arguments are now on top.
// Push this stub's key. Although the operation and the type info are
// encoded into the key, the encoding is opaque, so push them too.
__ Push(Smi::FromInt(MinorKey()));
__ Push(Smi::FromInt(op_));
__ Push(Smi::FromInt(operands_type_));
__ push(rcx); // Push return address.
// Patch the caller to an appropriate specialized stub and return the
// operation result to the caller of the stub.
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kTypeRecordingBinaryOp_Patch)),
5,
1);
}
void TypeRecordingBinaryOpStub::Generate(MacroAssembler* masm) {
switch (operands_type_) {
case TRBinaryOpIC::UNINITIALIZED:
GenerateTypeTransition(masm);
break;
case TRBinaryOpIC::SMI:
GenerateSmiStub(masm);
break;
case TRBinaryOpIC::INT32:
UNREACHABLE();
// The int32 case is identical to the Smi case. We avoid creating this
// ic state on x64.
break;
case TRBinaryOpIC::HEAP_NUMBER:
GenerateHeapNumberStub(masm);
break;
case TRBinaryOpIC::STRING:
GenerateStringStub(masm);
break;
case TRBinaryOpIC::GENERIC:
GenerateGeneric(masm);
break;
default:
UNREACHABLE();
}
}
const char* TypeRecordingBinaryOpStub::GetName() {
if (name_ != NULL) return name_;
const int kMaxNameLength = 100;
name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
if (name_ == NULL) return "OOM";
const char* op_name = Token::Name(op_);
const char* overwrite_name;
switch (mode_) {
case NO_OVERWRITE: overwrite_name = "Alloc"; break;
case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break;
case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break;
default: overwrite_name = "UnknownOverwrite"; break;
}
OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
"TypeRecordingBinaryOpStub_%s_%s_%s",
op_name,
overwrite_name,
TRBinaryOpIC::GetName(operands_type_));
return name_;
}
void TypeRecordingBinaryOpStub::GenerateSmiCode(MacroAssembler* masm,
Label* slow,
SmiCodeGenerateHeapNumberResults allow_heapnumber_results) {
// We only generate heapnumber answers for overflowing calculations
// for the four basic arithmetic operations.
bool generate_inline_heapnumber_results =
(allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS) &&
(op_ == Token::ADD || op_ == Token::SUB ||
op_ == Token::MUL || op_ == Token::DIV);
// Arguments to TypeRecordingBinaryOpStub are in rdx and rax.
Register left = rdx;
Register right = rax;
// Smi check of both operands. If op is BIT_OR, the check is delayed
// until after the OR operation.
Label not_smis;
Label use_fp_on_smis;
Label restore_MOD_registers; // Only used if op_ == Token::MOD.
if (op_ != Token::BIT_OR) {
Comment smi_check_comment(masm, "-- Smi check arguments");
__ JumpIfNotBothSmi(left, right, &not_smis);
}
// Perform the operation.
Comment perform_smi(masm, "-- Perform smi operation");
switch (op_) {
case Token::ADD:
ASSERT(right.is(rax));
__ SmiAdd(right, right, left, &use_fp_on_smis); // ADD is commutative.
break;
case Token::SUB:
__ SmiSub(left, left, right, &use_fp_on_smis);
__ movq(rax, left);
break;
case Token::MUL:
ASSERT(right.is(rax));
__ SmiMul(right, right, left, &use_fp_on_smis); // MUL is commutative.
break;
case Token::DIV:
// SmiDiv will not accept left in rdx or right in rax.
left = rcx;
right = rbx;
__ movq(rbx, rax);
__ movq(rcx, rdx);
__ SmiDiv(rax, left, right, &use_fp_on_smis);
break;
case Token::MOD:
// SmiMod will not accept left in rdx or right in rax.
left = rcx;
right = rbx;
__ movq(rbx, rax);
__ movq(rcx, rdx);
__ SmiMod(rax, left, right, &use_fp_on_smis);
break;
case Token::BIT_OR: {
ASSERT(right.is(rax));
__ movq(rcx, right); // Save the right operand.
__ SmiOr(right, right, left); // BIT_OR is commutative.
__ JumpIfNotSmi(right, &not_smis); // Test delayed until after BIT_OR.
break;
}
case Token::BIT_XOR:
ASSERT(right.is(rax));
__ SmiXor(right, right, left); // BIT_XOR is commutative.
break;
case Token::BIT_AND:
ASSERT(right.is(rax));
__ SmiAnd(right, right, left); // BIT_AND is commutative.
break;
case Token::SHL:
__ SmiShiftLeft(left, left, right);
__ movq(rax, left);
break;
case Token::SAR:
__ SmiShiftArithmeticRight(left, left, right);
__ movq(rax, left);
break;
case Token::SHR:
__ SmiShiftLogicalRight(left, left, right, &not_smis);
__ movq(rax, left);
break;
default:
UNREACHABLE();
}
// 5. Emit return of result in rax. Some operations have registers pushed.
__ ret(0);
// 6. For some operations emit inline code to perform floating point
// operations on known smis (e.g., if the result of the operation
// overflowed the smi range).
__ bind(&use_fp_on_smis);
if (op_ == Token::DIV || op_ == Token::MOD) {
// Restore left and right to rdx and rax.
__ movq(rdx, rcx);
__ movq(rax, rbx);
}
if (generate_inline_heapnumber_results) {
__ AllocateHeapNumber(rcx, rbx, slow);
Comment perform_float(masm, "-- Perform float operation on smis");
FloatingPointHelper::LoadSSE2SmiOperands(masm);
switch (op_) {
case Token::ADD: __ addsd(xmm0, xmm1); break;
case Token::SUB: __ subsd(xmm0, xmm1); break;
case Token::MUL: __ mulsd(xmm0, xmm1); break;
case Token::DIV: __ divsd(xmm0, xmm1); break;
default: UNREACHABLE();
}
__ movsd(FieldOperand(rcx, HeapNumber::kValueOffset), xmm0);
__ movq(rax, rcx);
__ ret(0);
}
// 7. Non-smi operands reach the end of the code generated by
// GenerateSmiCode, and fall through to subsequent code,
// with the operands in rdx and rax.
Comment done_comment(masm, "-- Enter non-smi code");
__ bind(&not_smis);
if (op_ == Token::BIT_OR) {
__ movq(right, rcx);
}
}
void TypeRecordingBinaryOpStub::GenerateFloatingPointCode(
MacroAssembler* masm,
Label* allocation_failure,
Label* non_numeric_failure) {
switch (op_) {
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV: {
FloatingPointHelper::LoadSSE2UnknownOperands(masm, non_numeric_failure);
switch (op_) {
case Token::ADD: __ addsd(xmm0, xmm1); break;
case Token::SUB: __ subsd(xmm0, xmm1); break;
case Token::MUL: __ mulsd(xmm0, xmm1); break;
case Token::DIV: __ divsd(xmm0, xmm1); break;
default: UNREACHABLE();
}
GenerateHeapResultAllocation(masm, allocation_failure);
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
__ ret(0);
break;
}
case Token::MOD: {
// For MOD we jump to the allocation_failure label, to call runtime.
__ jmp(allocation_failure);
break;
}
case Token::BIT_OR:
case Token::BIT_AND:
case Token::BIT_XOR:
case Token::SAR:
case Token::SHL:
case Token::SHR: {
Label non_smi_shr_result;
Register heap_number_map = r9;
__ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
FloatingPointHelper::LoadAsIntegers(masm, non_numeric_failure,
heap_number_map);
switch (op_) {
case Token::BIT_OR: __ orl(rax, rcx); break;
case Token::BIT_AND: __ andl(rax, rcx); break;
case Token::BIT_XOR: __ xorl(rax, rcx); break;
case Token::SAR: __ sarl_cl(rax); break;
case Token::SHL: __ shll_cl(rax); break;
case Token::SHR: {
__ shrl_cl(rax);
// Check if result is negative. This can only happen for a shift
// by zero.
__ testl(rax, rax);
__ j(negative, &non_smi_shr_result);
break;
}
default: UNREACHABLE();
}
STATIC_ASSERT(kSmiValueSize == 32);
// Tag smi result and return.
__ Integer32ToSmi(rax, rax);
__ Ret();
// Logical shift right can produce an unsigned int32 that is not
// an int32, and so is not in the smi range. Allocate a heap number
// in that case.
if (op_ == Token::SHR) {
__ bind(&non_smi_shr_result);
Label allocation_failed;
__ movl(rbx, rax); // rbx holds result value (uint32 value as int64).
// Allocate heap number in new space.
// Not using AllocateHeapNumber macro in order to reuse
// already loaded heap_number_map.
__ AllocateInNewSpace(HeapNumber::kSize,
rax,
rcx,
no_reg,
&allocation_failed,
TAG_OBJECT);
// Set the map.
if (FLAG_debug_code) {
__ AbortIfNotRootValue(heap_number_map,
Heap::kHeapNumberMapRootIndex,
"HeapNumberMap register clobbered.");
}
__ movq(FieldOperand(rax, HeapObject::kMapOffset),
heap_number_map);
__ cvtqsi2sd(xmm0, rbx);
__ movsd(FieldOperand(rax, HeapNumber::kValueOffset), xmm0);
__ Ret();
__ bind(&allocation_failed);
// We need tagged values in rdx and rax for the following code,
// not int32 in rax and rcx.
__ Integer32ToSmi(rax, rcx);
__ Integer32ToSmi(rdx, rax);
__ jmp(allocation_failure);
}
break;
}
default: UNREACHABLE(); break;
}
// No fall-through from this generated code.
if (FLAG_debug_code) {
__ Abort("Unexpected fall-through in "
"TypeRecordingBinaryStub::GenerateFloatingPointCode.");
}
}
void TypeRecordingBinaryOpStub::GenerateStringAddCode(MacroAssembler* masm) {
GenerateRegisterArgsPush(masm);
// Registers containing left and right operands respectively.
Register lhs = rdx;
Register rhs = rax;
// Test for string arguments before calling runtime.
Label not_strings, both_strings, not_string1, string1, string1_smi2;
__ JumpIfNotString(lhs, r8, &not_string1);
// First argument is a a string, test second.
__ JumpIfSmi(rhs, &string1_smi2);
__ CmpObjectType(rhs, FIRST_NONSTRING_TYPE, r9);
__ j(above_equal, &string1);
// First and second argument are strings.
StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB);
__ TailCallStub(&string_add_stub);
__ bind(&string1_smi2);
// First argument is a string, second is a smi. Try to lookup the number
// string for the smi in the number string cache.
NumberToStringStub::GenerateLookupNumberStringCache(
masm, rhs, rbx, rcx, r8, true, &string1);
// Replace second argument on stack and tailcall string add stub to make
// the result.
__ movq(Operand(rsp, 1 * kPointerSize), rbx);
__ TailCallStub(&string_add_stub);
// Only first argument is a string.
__ bind(&string1);
__ InvokeBuiltin(Builtins::STRING_ADD_LEFT, JUMP_FUNCTION);
// First argument was not a string, test second.
__ bind(&not_string1);
__ JumpIfNotString(rhs, rhs, &not_strings);
// Only second argument is a string.
__ InvokeBuiltin(Builtins::STRING_ADD_RIGHT, JUMP_FUNCTION);
__ bind(&not_strings);
// Neither argument is a string.
// Pop arguments, because CallRuntimeCode wants to push them again.
__ pop(rcx);
__ pop(rax);
__ pop(rdx);
__ push(rcx);
}
void TypeRecordingBinaryOpStub::GenerateCallRuntimeCode(MacroAssembler* masm) {
GenerateRegisterArgsPush(masm);
switch (op_) {
case Token::ADD:
__ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION);
break;
case Token::SUB:
__ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION);
break;
case Token::MUL:
__ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION);
break;
case Token::DIV:
__ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION);
break;
case Token::MOD:
__ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION);
break;
case Token::BIT_OR:
__ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION);
break;
case Token::BIT_AND:
__ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION);
break;
case Token::BIT_XOR:
__ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION);
break;
case Token::SAR:
__ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION);
break;
case Token::SHL:
__ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION);
break;
case Token::SHR:
__ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION);
break;
default:
UNREACHABLE();
}
}
void TypeRecordingBinaryOpStub::GenerateSmiStub(MacroAssembler* masm) {
Label not_smi;
GenerateSmiCode(masm, &not_smi, NO_HEAPNUMBER_RESULTS);
__ bind(&not_smi);
GenerateTypeTransition(masm);
}
void TypeRecordingBinaryOpStub::GenerateStringStub(MacroAssembler* masm) {
ASSERT(op_ == Token::ADD);
GenerateStringAddCode(masm);
GenerateTypeTransition(masm);
}
void TypeRecordingBinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) {
Label gc_required, not_number;
GenerateFloatingPointCode(masm, &gc_required, &not_number);
__ bind(&not_number);
GenerateTypeTransition(masm);
__ bind(&gc_required);
GenerateCallRuntimeCode(masm);
}
void TypeRecordingBinaryOpStub::GenerateGeneric(MacroAssembler* masm) {
Label call_runtime, call_string_add_or_runtime;
GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS);
GenerateFloatingPointCode(masm, &call_runtime, &call_string_add_or_runtime);
__ bind(&call_string_add_or_runtime);
if (op_ == Token::ADD) {
GenerateStringAddCode(masm);
}
__ bind(&call_runtime);
GenerateCallRuntimeCode(masm);
}
void TypeRecordingBinaryOpStub::GenerateHeapResultAllocation(
MacroAssembler* masm,
Label* alloc_failure) {
Label skip_allocation;
OverwriteMode mode = mode_;
switch (mode) {
case OVERWRITE_LEFT: {
// If the argument in rdx is already an object, we skip the
// allocation of a heap number.
__ JumpIfNotSmi(rdx, &skip_allocation);
// Allocate a heap number for the result. Keep eax and edx intact
// for the possible runtime call.
__ AllocateHeapNumber(rbx, rcx, alloc_failure);
// Now rdx can be overwritten losing one of the arguments as we are
// now done and will not need it any more.
__ movq(rdx, rbx);
__ bind(&skip_allocation);
// Use object in rdx as a result holder
__ movq(rax, rdx);
break;
}
case OVERWRITE_RIGHT:
// If the argument in rax is already an object, we skip the
// allocation of a heap number.
__ JumpIfNotSmi(rax, &skip_allocation);
// Fall through!
case NO_OVERWRITE:
// Allocate a heap number for the result. Keep rax and rdx intact
// for the possible runtime call.
__ AllocateHeapNumber(rbx, rcx, alloc_failure);
// Now rax can be overwritten losing one of the arguments as we are
// now done and will not need it any more.
__ movq(rax, rbx);
__ bind(&skip_allocation);
break;
default: UNREACHABLE();
}
}
void TypeRecordingBinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) {
__ pop(rcx);
__ push(rdx);
__ push(rax);
__ push(rcx);
}
void TranscendentalCacheStub::Generate(MacroAssembler* masm) {
// Input on stack:
// rsp[8]: argument (should be number).
// rsp[0]: return address.
Label runtime_call;
Label runtime_call_clear_stack;
Label input_not_smi;
NearLabel loaded;
// Test that rax is a number.
__ movq(rax, Operand(rsp, kPointerSize));
__ JumpIfNotSmi(rax, &input_not_smi);
// Input is a smi. Untag and load it onto the FPU stack.
// Then load the bits of the double into rbx.
__ SmiToInteger32(rax, rax);
__ subq(rsp, Immediate(kPointerSize));
__ cvtlsi2sd(xmm1, rax);
__ movsd(Operand(rsp, 0), xmm1);
__ movq(rbx, xmm1);
__ movq(rdx, xmm1);
__ fld_d(Operand(rsp, 0));
__ addq(rsp, Immediate(kPointerSize));
__ jmp(&loaded);
__ bind(&input_not_smi);
// Check if input is a HeapNumber.
__ Move(rbx, Factory::heap_number_map());
__ cmpq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
__ j(not_equal, &runtime_call);
// Input is a HeapNumber. Push it on the FPU stack and load its
// bits into rbx.
__ fld_d(FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(rbx, FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(rdx, rbx);
__ bind(&loaded);
// ST[0] == double value
// rbx = bits of double value.
// rdx = also bits of double value.
// Compute hash (h is 32 bits, bits are 64 and the shifts are arithmetic):
// h = h0 = bits ^ (bits >> 32);
// h ^= h >> 16;
// h ^= h >> 8;
// h = h & (cacheSize - 1);
// or h = (h0 ^ (h0 >> 8) ^ (h0 >> 16) ^ (h0 >> 24)) & (cacheSize - 1)
__ sar(rdx, Immediate(32));
__ xorl(rdx, rbx);
__ movl(rcx, rdx);
__ movl(rax, rdx);
__ movl(rdi, rdx);
__ sarl(rdx, Immediate(8));
__ sarl(rcx, Immediate(16));
__ sarl(rax, Immediate(24));
__ xorl(rcx, rdx);
__ xorl(rax, rdi);
__ xorl(rcx, rax);
ASSERT(IsPowerOf2(TranscendentalCache::kCacheSize));
__ andl(rcx, Immediate(TranscendentalCache::kCacheSize - 1));
// ST[0] == double value.
// rbx = bits of double value.
// rcx = TranscendentalCache::hash(double value).
__ movq(rax, ExternalReference::transcendental_cache_array_address());
// rax points to cache array.
__ movq(rax, Operand(rax, type_ * sizeof(TranscendentalCache::caches_[0])));
// rax points to the cache for the type type_.
// If NULL, the cache hasn't been initialized yet, so go through runtime.
__ testq(rax, rax);
__ j(zero, &runtime_call_clear_stack);
#ifdef DEBUG
// Check that the layout of cache elements match expectations.
{ // NOLINT - doesn't like a single brace on a line.
TranscendentalCache::Element test_elem[2];
char* elem_start = reinterpret_cast<char*>(&test_elem[0]);
char* elem2_start = reinterpret_cast<char*>(&test_elem[1]);
char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0]));
char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1]));
char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output));
// Two uint_32's and a pointer per element.
CHECK_EQ(16, static_cast<int>(elem2_start - elem_start));
CHECK_EQ(0, static_cast<int>(elem_in0 - elem_start));
CHECK_EQ(kIntSize, static_cast<int>(elem_in1 - elem_start));
CHECK_EQ(2 * kIntSize, static_cast<int>(elem_out - elem_start));
}
#endif
// Find the address of the rcx'th entry in the cache, i.e., &rax[rcx*16].
__ addl(rcx, rcx);
__ lea(rcx, Operand(rax, rcx, times_8, 0));
// Check if cache matches: Double value is stored in uint32_t[2] array.
NearLabel cache_miss;
__ cmpq(rbx, Operand(rcx, 0));
__ j(not_equal, &cache_miss);
// Cache hit!
__ movq(rax, Operand(rcx, 2 * kIntSize));
__ fstp(0); // Clear FPU stack.
__ ret(kPointerSize);
__ bind(&cache_miss);
// Update cache with new value.
Label nan_result;
GenerateOperation(masm, &nan_result);
__ AllocateHeapNumber(rax, rdi, &runtime_call_clear_stack);
__ movq(Operand(rcx, 0), rbx);
__ movq(Operand(rcx, 2 * kIntSize), rax);
__ fstp_d(FieldOperand(rax, HeapNumber::kValueOffset));
__ ret(kPointerSize);
__ bind(&runtime_call_clear_stack);
__ fstp(0);
__ bind(&runtime_call);
__ TailCallExternalReference(ExternalReference(RuntimeFunction()), 1, 1);
__ bind(&nan_result);
__ fstp(0); // Remove argument from FPU stack.
__ LoadRoot(rax, Heap::kNanValueRootIndex);
__ movq(Operand(rcx, 0), rbx);
__ movq(Operand(rcx, 2 * kIntSize), rax);
__ ret(kPointerSize);
}
Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() {
switch (type_) {
// Add more cases when necessary.
case TranscendentalCache::SIN: return Runtime::kMath_sin;
case TranscendentalCache::COS: return Runtime::kMath_cos;
case TranscendentalCache::LOG: return Runtime::kMath_log;
default:
UNIMPLEMENTED();
return Runtime::kAbort;
}
}
void TranscendentalCacheStub::GenerateOperation(MacroAssembler* masm,
Label* on_nan_result) {
// Registers:
// rbx: Bits of input double. Must be preserved.
// rcx: Pointer to cache entry. Must be preserved.
// st(0): Input double
Label done;
if (type_ == TranscendentalCache::SIN || type_ == TranscendentalCache::COS) {
// Both fsin and fcos require arguments in the range +/-2^63 and
// return NaN for infinities and NaN. They can share all code except
// the actual fsin/fcos operation.
Label in_range;
// If argument is outside the range -2^63..2^63, fsin/cos doesn't
// work. We must reduce it to the appropriate range.
__ movq(rdi, rbx);
// Move exponent and sign bits to low bits.
__ shr(rdi, Immediate(HeapNumber::kMantissaBits));
// Remove sign bit.
__ andl(rdi, Immediate((1 << HeapNumber::kExponentBits) - 1));
int supported_exponent_limit = (63 + HeapNumber::kExponentBias);
__ cmpl(rdi, Immediate(supported_exponent_limit));
__ j(below, &in_range);
// Check for infinity and NaN. Both return NaN for sin.
__ cmpl(rdi, Immediate(0x7ff));
__ j(equal, on_nan_result);
// Use fpmod to restrict argument to the range +/-2*PI.
__ fldpi();
__ fadd(0);
__ fld(1);
// FPU Stack: input, 2*pi, input.
{
Label no_exceptions;
__ fwait();
__ fnstsw_ax();
// Clear if Illegal Operand or Zero Division exceptions are set.
__ testl(rax, Immediate(5)); // #IO and #ZD flags of FPU status word.
__ j(zero, &no_exceptions);
__ fnclex();
__ bind(&no_exceptions);
}
// Compute st(0) % st(1)
{
NearLabel partial_remainder_loop;
__ bind(&partial_remainder_loop);
__ fprem1();
__ fwait();
__ fnstsw_ax();
__ testl(rax, Immediate(0x400)); // Check C2 bit of FPU status word.
// If C2 is set, computation only has partial result. Loop to
// continue computation.
__ j(not_zero, &partial_remainder_loop);
}
// FPU Stack: input, 2*pi, input % 2*pi
__ fstp(2);
// FPU Stack: input % 2*pi, 2*pi,
__ fstp(0);
// FPU Stack: input % 2*pi
__ bind(&in_range);
switch (type_) {
case TranscendentalCache::SIN:
__ fsin();
break;
case TranscendentalCache::COS:
__ fcos();
break;
default:
UNREACHABLE();
}
__ bind(&done);
} else {
ASSERT(type_ == TranscendentalCache::LOG);
__ fldln2();
__ fxch();
__ fyl2x();
}
}
// Get the integer part of a heap number.
// Overwrites the contents of rdi, rbx and rcx. Result cannot be rdi or rbx.
void IntegerConvert(MacroAssembler* masm,
Register result,
Register source) {
// Result may be rcx. If result and source are the same register, source will
// be overwritten.
ASSERT(!result.is(rdi) && !result.is(rbx));
// TODO(lrn): When type info reaches here, if value is a 32-bit integer, use
// cvttsd2si (32-bit version) directly.
Register double_exponent = rbx;
Register double_value = rdi;
NearLabel done, exponent_63_plus;
// Get double and extract exponent.
__ movq(double_value, FieldOperand(source, HeapNumber::kValueOffset));
// Clear result preemptively, in case we need to return zero.
__ xorl(result, result);
__ movq(xmm0, double_value); // Save copy in xmm0 in case we need it there.
// Double to remove sign bit, shift exponent down to least significant bits.
// and subtract bias to get the unshifted, unbiased exponent.
__ lea(double_exponent, Operand(double_value, double_value, times_1, 0));
__ shr(double_exponent, Immediate(64 - HeapNumber::kExponentBits));
__ subl(double_exponent, Immediate(HeapNumber::kExponentBias));
// Check whether the exponent is too big for a 63 bit unsigned integer.
__ cmpl(double_exponent, Immediate(63));
__ j(above_equal, &exponent_63_plus);
// Handle exponent range 0..62.
__ cvttsd2siq(result, xmm0);
__ jmp(&done);
__ bind(&exponent_63_plus);
// Exponent negative or 63+.
__ cmpl(double_exponent, Immediate(83));
// If exponent negative or above 83, number contains no significant bits in
// the range 0..2^31, so result is zero, and rcx already holds zero.
__ j(above, &done);
// Exponent in rage 63..83.
// Mantissa * 2^exponent contains bits in the range 2^0..2^31, namely
// the least significant exponent-52 bits.
// Negate low bits of mantissa if value is negative.
__ addq(double_value, double_value); // Move sign bit to carry.
__ sbbl(result, result); // And convert carry to -1 in result register.
// if scratch2 is negative, do (scratch2-1)^-1, otherwise (scratch2-0)^0.
__ addl(double_value, result);
// Do xor in opposite directions depending on where we want the result
// (depending on whether result is rcx or not).
if (result.is(rcx)) {
__ xorl(double_value, result);
// Left shift mantissa by (exponent - mantissabits - 1) to save the
// bits that have positional values below 2^32 (the extra -1 comes from the
// doubling done above to move the sign bit into the carry flag).
__ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1));
__ shll_cl(double_value);
__ movl(result, double_value);
} else {
// As the then-branch, but move double-value to result before shifting.
__ xorl(result, double_value);
__ leal(rcx, Operand(double_exponent, -HeapNumber::kMantissaBits - 1));
__ shll_cl(result);
}
__ bind(&done);
}
// Input: rdx, rax are the left and right objects of a bit op.
// Output: rax, rcx are left and right integers for a bit op.
void FloatingPointHelper::LoadNumbersAsIntegers(MacroAssembler* masm) {
// Check float operands.
Label done;
Label rax_is_smi;
Label rax_is_object;
Label rdx_is_object;
__ JumpIfNotSmi(rdx, &rdx_is_object);
__ SmiToInteger32(rdx, rdx);
__ JumpIfSmi(rax, &rax_is_smi);
__ bind(&rax_is_object);
IntegerConvert(masm, rcx, rax); // Uses rdi, rcx and rbx.
__ jmp(&done);
__ bind(&rdx_is_object);
IntegerConvert(masm, rdx, rdx); // Uses rdi, rcx and rbx.
__ JumpIfNotSmi(rax, &rax_is_object);
__ bind(&rax_is_smi);
__ SmiToInteger32(rcx, rax);
__ bind(&done);
__ movl(rax, rdx);
}
// Input: rdx, rax are the left and right objects of a bit op.
// Output: rax, rcx are left and right integers for a bit op.
// Jump to conversion_failure: rdx and rax are unchanged.
void FloatingPointHelper::LoadAsIntegers(MacroAssembler* masm,
Label* conversion_failure,
Register heap_number_map) {
// Check float operands.
Label arg1_is_object, check_undefined_arg1;
Label arg2_is_object, check_undefined_arg2;
Label load_arg2, done;
__ JumpIfNotSmi(rdx, &arg1_is_object);
__ SmiToInteger32(r8, rdx);
__ jmp(&load_arg2);
// If the argument is undefined it converts to zero (ECMA-262, section 9.5).
__ bind(&check_undefined_arg1);
__ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
__ j(not_equal, conversion_failure);
__ movl(r8, Immediate(0));
__ jmp(&load_arg2);
__ bind(&arg1_is_object);
__ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), heap_number_map);
__ j(not_equal, &check_undefined_arg1);
// Get the untagged integer version of the rdx heap number in rcx.
IntegerConvert(masm, r8, rdx);
// Here r8 has the untagged integer, rax has a Smi or a heap number.
__ bind(&load_arg2);
// Test if arg2 is a Smi.
__ JumpIfNotSmi(rax, &arg2_is_object);
__ SmiToInteger32(rcx, rax);
__ jmp(&done);
// If the argument is undefined it converts to zero (ECMA-262, section 9.5).
__ bind(&check_undefined_arg2);
__ CompareRoot(rax, Heap::kUndefinedValueRootIndex);
__ j(not_equal, conversion_failure);
__ movl(rcx, Immediate(0));
__ jmp(&done);
__ bind(&arg2_is_object);
__ cmpq(FieldOperand(rax, HeapObject::kMapOffset), heap_number_map);
__ j(not_equal, &check_undefined_arg2);
// Get the untagged integer version of the rax heap number in rcx.
IntegerConvert(masm, rcx, rax);
__ bind(&done);
__ movl(rax, r8);
}
void FloatingPointHelper::LoadSSE2SmiOperands(MacroAssembler* masm) {
__ SmiToInteger32(kScratchRegister, rdx);
__ cvtlsi2sd(xmm0, kScratchRegister);
__ SmiToInteger32(kScratchRegister, rax);
__ cvtlsi2sd(xmm1, kScratchRegister);
}
void FloatingPointHelper::LoadSSE2NumberOperands(MacroAssembler* masm) {
Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, done;
// Load operand in rdx into xmm0.
__ JumpIfSmi(rdx, &load_smi_rdx);
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
// Load operand in rax into xmm1.
__ JumpIfSmi(rax, &load_smi_rax);
__ bind(&load_nonsmi_rax);
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
__ jmp(&done);
__ bind(&load_smi_rdx);
__ SmiToInteger32(kScratchRegister, rdx);
__ cvtlsi2sd(xmm0, kScratchRegister);
__ JumpIfNotSmi(rax, &load_nonsmi_rax);
__ bind(&load_smi_rax);
__ SmiToInteger32(kScratchRegister, rax);
__ cvtlsi2sd(xmm1, kScratchRegister);
__ bind(&done);
}
void FloatingPointHelper::LoadSSE2UnknownOperands(MacroAssembler* masm,
Label* not_numbers) {
Label load_smi_rdx, load_nonsmi_rax, load_smi_rax, load_float_rax, done;
// Load operand in rdx into xmm0, or branch to not_numbers.
__ LoadRoot(rcx, Heap::kHeapNumberMapRootIndex);
__ JumpIfSmi(rdx, &load_smi_rdx);
__ cmpq(FieldOperand(rdx, HeapObject::kMapOffset), rcx);
__ j(not_equal, not_numbers); // Argument in rdx is not a number.
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
// Load operand in rax into xmm1, or branch to not_numbers.
__ JumpIfSmi(rax, &load_smi_rax);
__ bind(&load_nonsmi_rax);
__ cmpq(FieldOperand(rax, HeapObject::kMapOffset), rcx);
__ j(not_equal, not_numbers);
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
__ jmp(&done);
__ bind(&load_smi_rdx);
__ SmiToInteger32(kScratchRegister, rdx);
__ cvtlsi2sd(xmm0, kScratchRegister);
__ JumpIfNotSmi(rax, &load_nonsmi_rax);
__ bind(&load_smi_rax);
__ SmiToInteger32(kScratchRegister, rax);
__ cvtlsi2sd(xmm1, kScratchRegister);
__ bind(&done);
}
void GenericUnaryOpStub::Generate(MacroAssembler* masm) {
Label slow, done;
if (op_ == Token::SUB) {
if (include_smi_code_) {
// Check whether the value is a smi.
Label try_float;
__ JumpIfNotSmi(rax, &try_float);
if (negative_zero_ == kIgnoreNegativeZero) {
__ SmiCompare(rax, Smi::FromInt(0));
__ j(equal, &done);
}
__ SmiNeg(rax, rax, &done);
__ jmp(&slow); // zero, if not handled above, and Smi::kMinValue.
// Try floating point case.
__ bind(&try_float);
} else if (FLAG_debug_code) {
__ AbortIfSmi(rax);
}
__ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
__ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &slow);
// Operand is a float, negate its value by flipping sign bit.
__ movq(rdx, FieldOperand(rax, HeapNumber::kValueOffset));
__ movq(kScratchRegister, Immediate(0x01));
__ shl(kScratchRegister, Immediate(63));
__ xor_(rdx, kScratchRegister); // Flip sign.
// rdx is value to store.
if (overwrite_ == UNARY_OVERWRITE) {
__ movq(FieldOperand(rax, HeapNumber::kValueOffset), rdx);
} else {
__ AllocateHeapNumber(rcx, rbx, &slow);
// rcx: allocated 'empty' number
__ movq(FieldOperand(rcx, HeapNumber::kValueOffset), rdx);
__ movq(rax, rcx);
}
} else if (op_ == Token::BIT_NOT) {
if (include_smi_code_) {
Label try_float;
__ JumpIfNotSmi(rax, &try_float);
__ SmiNot(rax, rax);
__ jmp(&done);
// Try floating point case.
__ bind(&try_float);
} else if (FLAG_debug_code) {
__ AbortIfSmi(rax);
}
// Check if the operand is a heap number.
__ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset));
__ CompareRoot(rdx, Heap::kHeapNumberMapRootIndex);
__ j(not_equal, &slow);
// Convert the heap number in rax to an untagged integer in rcx.
IntegerConvert(masm, rax, rax);
// Do the bitwise operation and smi tag the result.
__ notl(rax);
__ Integer32ToSmi(rax, rax);
}
// Return from the stub.
__ bind(&done);
__ StubReturn(1);
// Handle the slow case by jumping to the JavaScript builtin.
__ bind(&slow);
__ pop(rcx); // pop return address
__ push(rax);
__ push(rcx); // push return address
switch (op_) {
case Token::SUB:
__ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION);
break;
case Token::BIT_NOT:
__ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION);
break;
default:
UNREACHABLE();
}
}
void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) {
// The key is in rdx and the parameter count is in rax.
// The displacement is used for skipping the frame pointer on the
// stack. It is the offset of the last parameter (if any) relative
// to the frame pointer.
static const int kDisplacement = 1 * kPointerSize;
// Check that the key is a smi.
Label slow;
__ JumpIfNotSmi(rdx, &slow);
// Check if the calling frame is an arguments adaptor frame.
Label adaptor;
__ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ SmiCompare(Operand(rbx, StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(equal, &adaptor);
// Check index against formal parameters count limit passed in
// through register rax. Use unsigned comparison to get negative
// check for free.
__ cmpq(rdx, rax);
__ j(above_equal, &slow);
// Read the argument from the stack and return it.
SmiIndex index = masm->SmiToIndex(rax, rax, kPointerSizeLog2);
__ lea(rbx, Operand(rbp, index.reg, index.scale, 0));
index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
__ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
__ Ret();
// Arguments adaptor case: Check index against actual arguments
// limit found in the arguments adaptor frame. Use unsigned
// comparison to get negative check for free.
__ bind(&adaptor);
__ movq(rcx, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ cmpq(rdx, rcx);
__ j(above_equal, &slow);
// Read the argument from the stack and return it.
index = masm->SmiToIndex(rax, rcx, kPointerSizeLog2);
__ lea(rbx, Operand(rbx, index.reg, index.scale, 0));
index = masm->SmiToNegativeIndex(rdx, rdx, kPointerSizeLog2);
__ movq(rax, Operand(rbx, index.reg, index.scale, kDisplacement));
__ Ret();
// Slow-case: Handle non-smi or out-of-bounds access to arguments
// by calling the runtime system.
__ bind(&slow);
__ pop(rbx); // Return address.
__ push(rdx);
__ push(rbx);
__ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1);
}
void ArgumentsAccessStub::GenerateNewObject(MacroAssembler* masm) {
// rsp[0] : return address
// rsp[8] : number of parameters
// rsp[16] : receiver displacement
// rsp[24] : function
// The displacement is used for skipping the return address and the
// frame pointer on the stack. It is the offset of the last
// parameter (if any) relative to the frame pointer.
static const int kDisplacement = 2 * kPointerSize;
// Check if the calling frame is an arguments adaptor frame.
Label adaptor_frame, try_allocate, runtime;
__ movq(rdx, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
__ SmiCompare(Operand(rdx, StandardFrameConstants::kContextOffset),
Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
__ j(equal, &adaptor_frame);
// Get the length from the frame.
__ SmiToInteger32(rcx, Operand(rsp, 1 * kPointerSize));
__ jmp(&try_allocate);
// Patch the arguments.length and the parameters pointer.
__ bind(&adaptor_frame);
__ SmiToInteger32(rcx,
Operand(rdx,
ArgumentsAdaptorFrameConstants::kLengthOffset));
// Space on stack must already hold a smi.
__ Integer32ToSmiField(Operand(rsp, 1 * kPointerSize), rcx);
// Do not clobber the length index for the indexing operation since
// it is used compute the size for allocation later.
__ lea(rdx, Operand(rdx, rcx, times_pointer_size, kDisplacement));
__ movq(Operand(rsp, 2 * kPointerSize), rdx);
// Try the new space allocation. Start out with computing the size of
// the arguments object and the elements array.
Label add_arguments_object;
__ bind(&try_allocate);
__ testl(rcx, rcx);
__ j(zero, &add_arguments_object);
__ leal(rcx, Operand(rcx, times_pointer_size, FixedArray::kHeaderSize));
__ bind(&add_arguments_object);
__ addl(rcx, Immediate(Heap::kArgumentsObjectSize));
// Do the allocation of both objects in one go.
__ AllocateInNewSpace(rcx, rax, rdx, rbx, &runtime, TAG_OBJECT);
// Get the arguments boilerplate from the current (global) context.
int offset = Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX);
__ movq(rdi, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
__ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset));
__ movq(rdi, Operand(rdi, offset));
// Copy the JS object part.
STATIC_ASSERT(JSObject::kHeaderSize == 3 * kPointerSize);
__ movq(kScratchRegister, FieldOperand(rdi, 0 * kPointerSize));
__ movq(rdx, FieldOperand(rdi, 1 * kPointerSize));
__ movq(rbx, FieldOperand(rdi, 2 * kPointerSize));
__ movq(FieldOperand(rax, 0 * kPointerSize), kScratchRegister);
__ movq(FieldOperand(rax, 1 * kPointerSize), rdx);
__ movq(FieldOperand(rax, 2 * kPointerSize), rbx);
// Setup the callee in-object property.
ASSERT(Heap::arguments_callee_index == 0);
__ movq(kScratchRegister, Operand(rsp, 3 * kPointerSize));
__ movq(FieldOperand(rax, JSObject::kHeaderSize), kScratchRegister);
// Get the length (smi tagged) and set that as an in-object property too.
ASSERT(Heap::arguments_length_index == 1);
__ movq(rcx, Operand(rsp, 1 * kPointerSize));
__ movq(FieldOperand(rax, JSObject::kHeaderSize + kPointerSize), rcx);
// If there are no actual arguments, we're done.
Label done;
__ SmiTest(rcx);
__ j(zero, &done);
// Get the parameters pointer from the stack and untag the length.
__ movq(rdx, Operand(rsp, 2 * kPointerSize));
// Setup the elements pointer in the allocated arguments object and
// initialize the header in the elements fixed array.
__ lea(rdi, Operand(rax, Heap::kArgumentsObjectSize));
__ movq(FieldOperand(rax, JSObject::kElementsOffset), rdi);
__ LoadRoot(kScratchRegister, Heap::kFixedArrayMapRootIndex);
__ movq(FieldOperand(rdi, FixedArray::kMapOffset), kScratchRegister);
__ movq(FieldOperand(rdi, FixedArray::kLengthOffset), rcx);
__ SmiToInteger32(rcx, rcx); // Untag length for the loop below.
// Copy the fixed array slots.
Label loop;
__ bind(&loop);
__ movq(kScratchRegister, Operand(rdx, -1 * kPointerSize)); // Skip receiver.
__ movq(FieldOperand(rdi, FixedArray::kHeaderSize), kScratchRegister);
__ addq(rdi, Immediate(kPointerSize));
__ subq(rdx, Immediate(kPointerSize));
__ decl(rcx);
__ j(not_zero, &loop);
// Return and remove the on-stack parameters.
__ bind(&done);
__ ret(3 * kPointerSize);
// Do the runtime call to allocate the arguments object.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1);
}
void RegExpExecStub::Generate(MacroAssembler* masm) {
// Just jump directly to runtime if native RegExp is not selected at compile
// time or if regexp entry in generated code is turned off runtime switch or
// at compilation.
#ifdef V8_INTERPRETED_REGEXP
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
#else // V8_INTERPRETED_REGEXP
if (!FLAG_regexp_entry_native) {
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
return;
}
// Stack frame on entry.
// rsp[0]: return address
// rsp[8]: last_match_info (expected JSArray)
// rsp[16]: previous index
// rsp[24]: subject string
// rsp[32]: JSRegExp object
static const int kLastMatchInfoOffset = 1 * kPointerSize;
static const int kPreviousIndexOffset = 2 * kPointerSize;
static const int kSubjectOffset = 3 * kPointerSize;
static const int kJSRegExpOffset = 4 * kPointerSize;
Label runtime;
// Ensure that a RegExp stack is allocated.
ExternalReference address_of_regexp_stack_memory_address =
ExternalReference::address_of_regexp_stack_memory_address();
ExternalReference address_of_regexp_stack_memory_size =
ExternalReference::address_of_regexp_stack_memory_size();
__ movq(kScratchRegister, address_of_regexp_stack_memory_size);
__ movq(kScratchRegister, Operand(kScratchRegister, 0));
__ testq(kScratchRegister, kScratchRegister);
__ j(zero, &runtime);
// Check that the first argument is a JSRegExp object.
__ movq(rax, Operand(rsp, kJSRegExpOffset));
__ JumpIfSmi(rax, &runtime);
__ CmpObjectType(rax, JS_REGEXP_TYPE, kScratchRegister);
__ j(not_equal, &runtime);
// Check that the RegExp has been compiled (data contains a fixed array).
__ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
if (FLAG_debug_code) {
Condition is_smi = masm->CheckSmi(rcx);
__ Check(NegateCondition(is_smi),
"Unexpected type for RegExp data, FixedArray expected");
__ CmpObjectType(rcx, FIXED_ARRAY_TYPE, kScratchRegister);
__ Check(equal, "Unexpected type for RegExp data, FixedArray expected");
}
// rcx: RegExp data (FixedArray)
// Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP.
__ SmiToInteger32(rbx, FieldOperand(rcx, JSRegExp::kDataTagOffset));
__ cmpl(rbx, Immediate(JSRegExp::IRREGEXP));
__ j(not_equal, &runtime);
// rcx: RegExp data (FixedArray)
// Check that the number of captures fit in the static offsets vector buffer.
__ SmiToInteger32(rdx,
FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
__ leal(rdx, Operand(rdx, rdx, times_1, 2));
// Check that the static offsets vector buffer is large enough.
__ cmpl(rdx, Immediate(OffsetsVector::kStaticOffsetsVectorSize));
__ j(above, &runtime);
// rcx: RegExp data (FixedArray)
// rdx: Number of capture registers
// Check that the second argument is a string.
__ movq(rax, Operand(rsp, kSubjectOffset));
__ JumpIfSmi(rax, &runtime);
Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
__ j(NegateCondition(is_string), &runtime);
// rax: Subject string.
// rcx: RegExp data (FixedArray).
// rdx: Number of capture registers.
// Check that the third argument is a positive smi less than the string
// length. A negative value will be greater (unsigned comparison).
__ movq(rbx, Operand(rsp, kPreviousIndexOffset));
__ JumpIfNotSmi(rbx, &runtime);
__ SmiCompare(rbx, FieldOperand(rax, String::kLengthOffset));
__ j(above_equal, &runtime);
// rcx: RegExp data (FixedArray)
// rdx: Number of capture registers
// Check that the fourth object is a JSArray object.
__ movq(rax, Operand(rsp, kLastMatchInfoOffset));
__ JumpIfSmi(rax, &runtime);
__ CmpObjectType(rax, JS_ARRAY_TYPE, kScratchRegister);
__ j(not_equal, &runtime);
// Check that the JSArray is in fast case.
__ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));
__ movq(rax, FieldOperand(rbx, HeapObject::kMapOffset));
__ Cmp(rax, Factory::fixed_array_map());
__ j(not_equal, &runtime);
// Check that the last match info has space for the capture registers and the
// additional information. Ensure no overflow in add.
STATIC_ASSERT(FixedArray::kMaxLength < kMaxInt - FixedArray::kLengthOffset);
__ SmiToInteger32(rax, FieldOperand(rbx, FixedArray::kLengthOffset));
__ addl(rdx, Immediate(RegExpImpl::kLastMatchOverhead));
__ cmpl(rdx, rax);
__ j(greater, &runtime);
// rcx: RegExp data (FixedArray)
// Check the representation and encoding of the subject string.
NearLabel seq_ascii_string, seq_two_byte_string, check_code;
__ movq(rax, Operand(rsp, kSubjectOffset));
__ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
// First check for flat two byte string.
__ andb(rbx, Immediate(
kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask));
STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0);
__ j(zero, &seq_two_byte_string);
// Any other flat string must be a flat ascii string.
__ testb(rbx, Immediate(kIsNotStringMask | kStringRepresentationMask));
__ j(zero, &seq_ascii_string);
// Check for flat cons string.
// A flat cons string is a cons string where the second part is the empty
// string. In that case the subject string is just the first part of the cons
// string. Also in this case the first part of the cons string is known to be
// a sequential string or an external string.
STATIC_ASSERT(kExternalStringTag !=0);
STATIC_ASSERT((kConsStringTag & kExternalStringTag) == 0);
__ testb(rbx, Immediate(kIsNotStringMask | kExternalStringTag));
__ j(not_zero, &runtime);
// String is a cons string.
__ movq(rdx, FieldOperand(rax, ConsString::kSecondOffset));
__ Cmp(rdx, Factory::empty_string());
__ j(not_equal, &runtime);
__ movq(rax, FieldOperand(rax, ConsString::kFirstOffset));
__ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
// String is a cons string with empty second part.
// rax: first part of cons string.
// rbx: map of first part of cons string.
// Is first part a flat two byte string?
__ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
Immediate(kStringRepresentationMask | kStringEncodingMask));
STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0);
__ j(zero, &seq_two_byte_string);
// Any other flat string must be ascii.
__ testb(FieldOperand(rbx, Map::kInstanceTypeOffset),
Immediate(kStringRepresentationMask));
__ j(not_zero, &runtime);
__ bind(&seq_ascii_string);
// rax: subject string (sequential ascii)
// rcx: RegExp data (FixedArray)
__ movq(r11, FieldOperand(rcx, JSRegExp::kDataAsciiCodeOffset));
__ Set(rdi, 1); // Type is ascii.
__ jmp(&check_code);
__ bind(&seq_two_byte_string);
// rax: subject string (flat two-byte)
// rcx: RegExp data (FixedArray)
__ movq(r11, FieldOperand(rcx, JSRegExp::kDataUC16CodeOffset));
__ Set(rdi, 0); // Type is two byte.
__ bind(&check_code);
// Check that the irregexp code has been generated for the actual string
// encoding. If it has, the field contains a code object otherwise it contains
// the hole.
__ CmpObjectType(r11, CODE_TYPE, kScratchRegister);
__ j(not_equal, &runtime);
// rax: subject string
// rdi: encoding of subject string (1 if ascii, 0 if two_byte);
// r11: code
// Load used arguments before starting to push arguments for call to native
// RegExp code to avoid handling changing stack height.
__ SmiToInteger64(rbx, Operand(rsp, kPreviousIndexOffset));
// rax: subject string
// rbx: previous index
// rdi: encoding of subject string (1 if ascii 0 if two_byte);
// r11: code
// All checks done. Now push arguments for native regexp code.
__ IncrementCounter(&Counters::regexp_entry_native, 1);
// rsi is caller save on Windows and used to pass parameter on Linux.
__ push(rsi);
static const int kRegExpExecuteArguments = 7;
__ PrepareCallCFunction(kRegExpExecuteArguments);
int argument_slots_on_stack =
masm->ArgumentStackSlotsForCFunctionCall(kRegExpExecuteArguments);
// Argument 7: Indicate that this is a direct call from JavaScript.
__ movq(Operand(rsp, (argument_slots_on_stack - 1) * kPointerSize),
Immediate(1));
// Argument 6: Start (high end) of backtracking stack memory area.
__ movq(kScratchRegister, address_of_regexp_stack_memory_address);
__ movq(r9, Operand(kScratchRegister, 0));
__ movq(kScratchRegister, address_of_regexp_stack_memory_size);
__ addq(r9, Operand(kScratchRegister, 0));
// Argument 6 passed in r9 on Linux and on the stack on Windows.
#ifdef _WIN64
__ movq(Operand(rsp, (argument_slots_on_stack - 2) * kPointerSize), r9);
#endif
// Argument 5: static offsets vector buffer.
__ movq(r8, ExternalReference::address_of_static_offsets_vector());
// Argument 5 passed in r8 on Linux and on the stack on Windows.
#ifdef _WIN64
__ movq(Operand(rsp, (argument_slots_on_stack - 3) * kPointerSize), r8);
#endif
// First four arguments are passed in registers on both Linux and Windows.
#ifdef _WIN64
Register arg4 = r9;
Register arg3 = r8;
Register arg2 = rdx;
Register arg1 = rcx;
#else
Register arg4 = rcx;
Register arg3 = rdx;
Register arg2 = rsi;
Register arg1 = rdi;
#endif
// Keep track on aliasing between argX defined above and the registers used.
// rax: subject string
// rbx: previous index
// rdi: encoding of subject string (1 if ascii 0 if two_byte);
// r11: code
// Argument 4: End of string data
// Argument 3: Start of string data
NearLabel setup_two_byte, setup_rest;
__ testb(rdi, rdi);
__ j(zero, &setup_two_byte);
__ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
__ lea(arg4, FieldOperand(rax, rdi, times_1, SeqAsciiString::kHeaderSize));
__ lea(arg3, FieldOperand(rax, rbx, times_1, SeqAsciiString::kHeaderSize));
__ jmp(&setup_rest);
__ bind(&setup_two_byte);
__ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
__ lea(arg4, FieldOperand(rax, rdi, times_2, SeqTwoByteString::kHeaderSize));
__ lea(arg3, FieldOperand(rax, rbx, times_2, SeqTwoByteString::kHeaderSize));
__ bind(&setup_rest);
// Argument 2: Previous index.
__ movq(arg2, rbx);
// Argument 1: Subject string.
__ movq(arg1, rax);
// Locate the code entry and call it.
__ addq(r11, Immediate(Code::kHeaderSize - kHeapObjectTag));
__ CallCFunction(r11, kRegExpExecuteArguments);
// rsi is caller save, as it is used to pass parameter.
__ pop(rsi);
// Check the result.
NearLabel success;
__ cmpl(rax, Immediate(NativeRegExpMacroAssembler::SUCCESS));
__ j(equal, &success);
NearLabel failure;
__ cmpl(rax, Immediate(NativeRegExpMacroAssembler::FAILURE));
__ j(equal, &failure);
__ cmpl(rax, Immediate(NativeRegExpMacroAssembler::EXCEPTION));
// If not exception it can only be retry. Handle that in the runtime system.
__ j(not_equal, &runtime);
// Result must now be exception. If there is no pending exception already a
// stack overflow (on the backtrack stack) was detected in RegExp code but
// haven't created the exception yet. Handle that in the runtime system.
// TODO(592): Rerunning the RegExp to get the stack overflow exception.
ExternalReference pending_exception_address(Top::k_pending_exception_address);
__ movq(kScratchRegister, pending_exception_address);
__ Cmp(kScratchRegister, Factory::the_hole_value());
__ j(equal, &runtime);
__ bind(&failure);
// For failure and exception return null.
__ Move(rax, Factory::null_value());
__ ret(4 * kPointerSize);
// Load RegExp data.
__ bind(&success);
__ movq(rax, Operand(rsp, kJSRegExpOffset));
__ movq(rcx, FieldOperand(rax, JSRegExp::kDataOffset));
__ SmiToInteger32(rax,
FieldOperand(rcx, JSRegExp::kIrregexpCaptureCountOffset));
// Calculate number of capture registers (number_of_captures + 1) * 2.
__ leal(rdx, Operand(rax, rax, times_1, 2));
// rdx: Number of capture registers
// Load last_match_info which is still known to be a fast case JSArray.
__ movq(rax, Operand(rsp, kLastMatchInfoOffset));
__ movq(rbx, FieldOperand(rax, JSArray::kElementsOffset));
// rbx: last_match_info backing store (FixedArray)
// rdx: number of capture registers
// Store the capture count.
__ Integer32ToSmi(kScratchRegister, rdx);
__ movq(FieldOperand(rbx, RegExpImpl::kLastCaptureCountOffset),
kScratchRegister);
// Store last subject and last input.
__ movq(rax, Operand(rsp, kSubjectOffset));
__ movq(FieldOperand(rbx, RegExpImpl::kLastSubjectOffset), rax);
__ movq(rcx, rbx);
__ RecordWrite(rcx, RegExpImpl::kLastSubjectOffset, rax, rdi);
__ movq(rax, Operand(rsp, kSubjectOffset));
__ movq(FieldOperand(rbx, RegExpImpl::kLastInputOffset), rax);
__ movq(rcx, rbx);
__ RecordWrite(rcx, RegExpImpl::kLastInputOffset, rax, rdi);
// Get the static offsets vector filled by the native regexp code.
__ movq(rcx, ExternalReference::address_of_static_offsets_vector());
// rbx: last_match_info backing store (FixedArray)
// rcx: offsets vector
// rdx: number of capture registers
NearLabel next_capture, done;
// Capture register counter starts from number of capture registers and
// counts down until wraping after zero.
__ bind(&next_capture);
__ subq(rdx, Immediate(1));
__ j(negative, &done);
// Read the value from the static offsets vector buffer and make it a smi.
__ movl(rdi, Operand(rcx, rdx, times_int_size, 0));
__ Integer32ToSmi(rdi, rdi);
// Store the smi value in the last match info.
__ movq(FieldOperand(rbx,
rdx,
times_pointer_size,
RegExpImpl::kFirstCaptureOffset),
rdi);
__ jmp(&next_capture);
__ bind(&done);
// Return last match info.
__ movq(rax, Operand(rsp, kLastMatchInfoOffset));
__ ret(4 * kPointerSize);
// Do the runtime call to execute the regexp.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kRegExpExec, 4, 1);
#endif // V8_INTERPRETED_REGEXP
}
void RegExpConstructResultStub::Generate(MacroAssembler* masm) {
const int kMaxInlineLength = 100;
Label slowcase;
Label done;
__ movq(r8, Operand(rsp, kPointerSize * 3));
__ JumpIfNotSmi(r8, &slowcase);
__ SmiToInteger32(rbx, r8);
__ cmpl(rbx, Immediate(kMaxInlineLength));
__ j(above, &slowcase);
// Smi-tagging is equivalent to multiplying by 2.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1);
// Allocate RegExpResult followed by FixedArray with size in rbx.
// JSArray: [Map][empty properties][Elements][Length-smi][index][input]
// Elements: [Map][Length][..elements..]
__ AllocateInNewSpace(JSRegExpResult::kSize + FixedArray::kHeaderSize,
times_pointer_size,
rbx, // In: Number of elements.
rax, // Out: Start of allocation (tagged).
rcx, // Out: End of allocation.
rdx, // Scratch register
&slowcase,
TAG_OBJECT);
// rax: Start of allocated area, object-tagged.
// rbx: Number of array elements as int32.
// r8: Number of array elements as smi.
// Set JSArray map to global.regexp_result_map().
__ movq(rdx, ContextOperand(rsi, Context::GLOBAL_INDEX));
__ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalContextOffset));
__ movq(rdx, ContextOperand(rdx, Context::REGEXP_RESULT_MAP_INDEX));
__ movq(FieldOperand(rax, HeapObject::kMapOffset), rdx);
// Set empty properties FixedArray.
__ Move(FieldOperand(rax, JSObject::kPropertiesOffset),
Factory::empty_fixed_array());
// Set elements to point to FixedArray allocated right after the JSArray.
__ lea(rcx, Operand(rax, JSRegExpResult::kSize));
__ movq(FieldOperand(rax, JSObject::kElementsOffset), rcx);
// Set input, index and length fields from arguments.
__ movq(r8, Operand(rsp, kPointerSize * 1));
__ movq(FieldOperand(rax, JSRegExpResult::kInputOffset), r8);
__ movq(r8, Operand(rsp, kPointerSize * 2));
__ movq(FieldOperand(rax, JSRegExpResult::kIndexOffset), r8);
__ movq(r8, Operand(rsp, kPointerSize * 3));
__ movq(FieldOperand(rax, JSArray::kLengthOffset), r8);
// Fill out the elements FixedArray.
// rax: JSArray.
// rcx: FixedArray.
// rbx: Number of elements in array as int32.
// Set map.
__ Move(FieldOperand(rcx, HeapObject::kMapOffset),
Factory::fixed_array_map());
// Set length.
__ Integer32ToSmi(rdx, rbx);
__ movq(FieldOperand(rcx, FixedArray::kLengthOffset), rdx);
// Fill contents of fixed-array with the-hole.
__ Move(rdx, Factory::the_hole_value());
__ lea(rcx, FieldOperand(rcx, FixedArray::kHeaderSize));
// Fill fixed array elements with hole.
// rax: JSArray.
// rbx: Number of elements in array that remains to be filled, as int32.
// rcx: Start of elements in FixedArray.
// rdx: the hole.
Label loop;
__ testl(rbx, rbx);
__ bind(&loop);
__ j(less_equal, &done); // Jump if rcx is negative or zero.
__ subl(rbx, Immediate(1));
__ movq(Operand(rcx, rbx, times_pointer_size, 0), rdx);
__ jmp(&loop);
__ bind(&done);
__ ret(3 * kPointerSize);
__ bind(&slowcase);
__ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1);
}
void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm,
Register object,
Register result,
Register scratch1,
Register scratch2,
bool object_is_smi,
Label* not_found) {
// Use of registers. Register result is used as a temporary.
Register number_string_cache = result;
Register mask = scratch1;
Register scratch = scratch2;
// Load the number string cache.
__ LoadRoot(number_string_cache, Heap::kNumberStringCacheRootIndex);
// Make the hash mask from the length of the number string cache. It
// contains two elements (number and string) for each cache entry.
__ SmiToInteger32(
mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset));
__ shrl(mask, Immediate(1));
__ subq(mask, Immediate(1)); // Make mask.
// Calculate the entry in the number string cache. The hash value in the
// number string cache for smis is just the smi value, and the hash for
// doubles is the xor of the upper and lower words. See
// Heap::GetNumberStringCache.
Label is_smi;
Label load_result_from_cache;
if (!object_is_smi) {
__ JumpIfSmi(object, &is_smi);
__ CheckMap(object, Factory::heap_number_map(), not_found, true);
STATIC_ASSERT(8 == kDoubleSize);
__ movl(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4));
__ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset));
GenerateConvertHashCodeToIndex(masm, scratch, mask);
Register index = scratch;
Register probe = mask;
__ movq(probe,
FieldOperand(number_string_cache,
index,
times_1,
FixedArray::kHeaderSize));
__ JumpIfSmi(probe, not_found);
ASSERT(CpuFeatures::IsSupported(SSE2));
CpuFeatures::Scope fscope(SSE2);
__ movsd(xmm0, FieldOperand(object, HeapNumber::kValueOffset));
__ movsd(xmm1, FieldOperand(probe, HeapNumber::kValueOffset));
__ ucomisd(xmm0, xmm1);
__ j(parity_even, not_found); // Bail out if NaN is involved.
__ j(not_equal, not_found); // The cache did not contain this value.
__ jmp(&load_result_from_cache);
}
__ bind(&is_smi);
__ SmiToInteger32(scratch, object);
GenerateConvertHashCodeToIndex(masm, scratch, mask);
Register index = scratch;
// Check if the entry is the smi we are looking for.
__ cmpq(object,
FieldOperand(number_string_cache,
index,
times_1,
FixedArray::kHeaderSize));
__ j(not_equal, not_found);
// Get the result from the cache.
__ bind(&load_result_from_cache);
__ movq(result,
FieldOperand(number_string_cache,
index,
times_1,
FixedArray::kHeaderSize + kPointerSize));
__ IncrementCounter(&Counters::number_to_string_native, 1);
}
void NumberToStringStub::GenerateConvertHashCodeToIndex(MacroAssembler* masm,
Register hash,
Register mask) {
__ and_(hash, mask);
// Each entry in string cache consists of two pointer sized fields,
// but times_twice_pointer_size (multiplication by 16) scale factor
// is not supported by addrmode on x64 platform.
// So we have to premultiply entry index before lookup.
__ shl(hash, Immediate(kPointerSizeLog2 + 1));
}
void NumberToStringStub::Generate(MacroAssembler* masm) {
Label runtime;
__ movq(rbx, Operand(rsp, kPointerSize));
// Generate code to lookup number in the number string cache.
GenerateLookupNumberStringCache(masm, rbx, rax, r8, r9, false, &runtime);
__ ret(1 * kPointerSize);
__ bind(&runtime);
// Handle number to string in the runtime system if not found in the cache.
__ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1);
}
static int NegativeComparisonResult(Condition cc) {
ASSERT(cc != equal);
ASSERT((cc == less) || (cc == less_equal)
|| (cc == greater) || (cc == greater_equal));
return (cc == greater || cc == greater_equal) ? LESS : GREATER;
}
void CompareStub::Generate(MacroAssembler* masm) {
ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
Label check_unequal_objects, done;
// Compare two smis if required.
if (include_smi_compare_) {
Label non_smi, smi_done;
__ JumpIfNotBothSmi(rax, rdx, &non_smi);
__ subq(rdx, rax);
__ j(no_overflow, &smi_done);
__ not_(rdx); // Correct sign in case of overflow. rdx cannot be 0 here.
__ bind(&smi_done);
__ movq(rax, rdx);
__ ret(0);
__ bind(&non_smi);
} else if (FLAG_debug_code) {
Label ok;
__ JumpIfNotSmi(rdx, &ok);
__ JumpIfNotSmi(rax, &ok);
__ Abort("CompareStub: smi operands");
__ bind(&ok);
}
// The compare stub returns a positive, negative, or zero 64-bit integer
// value in rax, corresponding to result of comparing the two inputs.
// NOTICE! This code is only reached after a smi-fast-case check, so
// it is certain that at least one operand isn't a smi.
// Two identical objects are equal unless they are both NaN or undefined.
{
NearLabel not_identical;
__ cmpq(rax, rdx);
__ j(not_equal, &not_identical);
if (cc_ != equal) {
// Check for undefined. undefined OP undefined is false even though
// undefined == undefined.
NearLabel check_for_nan;
__ CompareRoot(rdx, Heap::kUndefinedValueRootIndex);
__ j(not_equal, &check_for_nan);
__ Set(rax, NegativeComparisonResult(cc_));
__ ret(0);
__ bind(&check_for_nan);
}
// Test for NaN. Sadly, we can't just compare to Factory::nan_value(),
// so we do the second best thing - test it ourselves.
// Note: if cc_ != equal, never_nan_nan_ is not used.
// We cannot set rax to EQUAL until just before return because
// rax must be unchanged on jump to not_identical.
if (never_nan_nan_ && (cc_ == equal)) {
__ Set(rax, EQUAL);
__ ret(0);
} else {
NearLabel heap_number;
// If it's not a heap number, then return equal for (in)equality operator.
__ Cmp(FieldOperand(rdx, HeapObject::kMapOffset),
Factory::heap_number_map());
__ j(equal, &heap_number);
if (cc_ != equal) {
// Call runtime on identical JSObjects. Otherwise return equal.
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
__ j(above_equal, &not_identical);
}
__ Set(rax, EQUAL);
__ ret(0);
__ bind(&heap_number);
// It is a heap number, so return equal if it's not NaN.
// For NaN, return 1 for every condition except greater and
// greater-equal. Return -1 for them, so the comparison yields
// false for all conditions except not-equal.
__ Set(rax, EQUAL);
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
__ ucomisd(xmm0, xmm0);
__ setcc(parity_even, rax);
// rax is 0 for equal non-NaN heapnumbers, 1 for NaNs.
if (cc_ == greater_equal || cc_ == greater) {
__ neg(rax);
}
__ ret(0);
}
__ bind(&not_identical);
}
if (cc_ == equal) { // Both strict and non-strict.
Label slow; // Fallthrough label.
// If we're doing a strict equality comparison, we don't have to do
// type conversion, so we generate code to do fast comparison for objects
// and oddballs. Non-smi numbers and strings still go through the usual
// slow-case code.
if (strict_) {
// If either is a Smi (we know that not both are), then they can only
// be equal if the other is a HeapNumber. If so, use the slow case.
{
Label not_smis;
__ SelectNonSmi(rbx, rax, rdx, &not_smis);
// Check if the non-smi operand is a heap number.
__ Cmp(FieldOperand(rbx, HeapObject::kMapOffset),
Factory::heap_number_map());
// If heap number, handle it in the slow case.
__ j(equal, &slow);
// Return non-equal. ebx (the lower half of rbx) is not zero.
__ movq(rax, rbx);
__ ret(0);
__ bind(&not_smis);
}
// If either operand is a JSObject or an oddball value, then they are not
// equal since their pointers are different
// There is no test for undetectability in strict equality.
// If the first object is a JS object, we have done pointer comparison.
STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
NearLabel first_non_object;
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx);
__ j(below, &first_non_object);
// Return non-zero (eax (not rax) is not zero)
Label return_not_equal;
STATIC_ASSERT(kHeapObjectTag != 0);
__ bind(&return_not_equal);
__ ret(0);
__ bind(&first_non_object);
// Check for oddballs: true, false, null, undefined.
__ CmpInstanceType(rcx, ODDBALL_TYPE);
__ j(equal, &return_not_equal);
__ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx);
__ j(above_equal, &return_not_equal);
// Check for oddballs: true, false, null, undefined.
__ CmpInstanceType(rcx, ODDBALL_TYPE);
__ j(equal, &return_not_equal);
// Fall through to the general case.
}
__ bind(&slow);
}
// Generate the number comparison code.
if (include_number_compare_) {
Label non_number_comparison;
NearLabel unordered;
FloatingPointHelper::LoadSSE2UnknownOperands(masm, &non_number_comparison);
__ xorl(rax, rax);
__ xorl(rcx, rcx);
__ ucomisd(xmm0, xmm1);
// Don't base result on EFLAGS when a NaN is involved.
__ j(parity_even, &unordered);
// Return a result of -1, 0, or 1, based on EFLAGS.
__ setcc(above, rax);
__ setcc(below, rcx);
__ subq(rax, rcx);
__ ret(0);
// If one of the numbers was NaN, then the result is always false.
// The cc is never not-equal.
__ bind(&unordered);
ASSERT(cc_ != not_equal);
if (cc_ == less || cc_ == less_equal) {
__ Set(rax, 1);
} else {
__ Set(rax, -1);
}
__ ret(0);
// The number comparison code did not provide a valid result.
__ bind(&non_number_comparison);
}
// Fast negative check for symbol-to-symbol equality.
Label check_for_strings;
if (cc_ == equal) {
BranchIfNonSymbol(masm, &check_for_strings, rax, kScratchRegister);
BranchIfNonSymbol(masm, &check_for_strings, rdx, kScratchRegister);
// We've already checked for object identity, so if both operands
// are symbols they aren't equal. Register eax (not rax) already holds a
// non-zero value, which indicates not equal, so just return.
__ ret(0);
}
__ bind(&check_for_strings);
__ JumpIfNotBothSequentialAsciiStrings(
rdx, rax, rcx, rbx, &check_unequal_objects);
// Inline comparison of ascii strings.
StringCompareStub::GenerateCompareFlatAsciiStrings(masm,
rdx,
rax,
rcx,
rbx,
rdi,
r8);
#ifdef DEBUG
__ Abort("Unexpected fall-through from string comparison");
#endif
__ bind(&check_unequal_objects);
if (cc_ == equal && !strict_) {
// Not strict equality. Objects are unequal if
// they are both JSObjects and not undetectable,
// and their pointers are different.
NearLabel not_both_objects, return_unequal;
// At most one is a smi, so we can test for smi by adding the two.
// A smi plus a heap object has the low bit set, a heap object plus
// a heap object has the low bit clear.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagMask == 1);
__ lea(rcx, Operand(rax, rdx, times_1, 0));
__ testb(rcx, Immediate(kSmiTagMask));
__ j(not_zero, &not_both_objects);
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rbx);
__ j(below, &not_both_objects);
__ CmpObjectType(rdx, FIRST_JS_OBJECT_TYPE, rcx);
__ j(below, &not_both_objects);
__ testb(FieldOperand(rbx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(zero, &return_unequal);
__ testb(FieldOperand(rcx, Map::kBitFieldOffset),
Immediate(1 << Map::kIsUndetectable));
__ j(zero, &return_unequal);
// The objects are both undetectable, so they both compare as the value
// undefined, and are equal.
__ Set(rax, EQUAL);
__ bind(&return_unequal);
// Return non-equal by returning the non-zero object pointer in rax,
// or return equal if we fell through to here.
__ ret(0);
__ bind(&not_both_objects);
}
// Push arguments below the return address to prepare jump to builtin.
__ pop(rcx);
__ push(rdx);
__ push(rax);
// Figure out which native to call and setup the arguments.
Builtins::JavaScript builtin;
if (cc_ == equal) {
builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS;
} else {
builtin = Builtins::COMPARE;
__ Push(Smi::FromInt(NegativeComparisonResult(cc_)));
}
// Restore return address on the stack.
__ push(rcx);
// Call the native; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ InvokeBuiltin(builtin, JUMP_FUNCTION);
}
void CompareStub::BranchIfNonSymbol(MacroAssembler* masm,
Label* label,
Register object,
Register scratch) {
__ JumpIfSmi(object, label);
__ movq(scratch, FieldOperand(object, HeapObject::kMapOffset));
__ movzxbq(scratch,
FieldOperand(scratch, Map::kInstanceTypeOffset));
// Ensure that no non-strings have the symbol bit set.
STATIC_ASSERT(LAST_TYPE < kNotStringTag + kIsSymbolMask);
STATIC_ASSERT(kSymbolTag != 0);
__ testb(scratch, Immediate(kIsSymbolMask));
__ j(zero, label);
}
void StackCheckStub::Generate(MacroAssembler* masm) {
__ TailCallRuntime(Runtime::kStackGuard, 0, 1);
}
void CallFunctionStub::Generate(MacroAssembler* masm) {
Label slow;
// If the receiver might be a value (string, number or boolean) check for this
// and box it if it is.
if (ReceiverMightBeValue()) {
// Get the receiver from the stack.
// +1 ~ return address
Label receiver_is_value, receiver_is_js_object;
__ movq(rax, Operand(rsp, (argc_ + 1) * kPointerSize));
// Check if receiver is a smi (which is a number value).
__ JumpIfSmi(rax, &receiver_is_value);
// Check if the receiver is a valid JS object.
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rdi);
__ j(above_equal, &receiver_is_js_object);
// Call the runtime to box the value.
__ bind(&receiver_is_value);
__ EnterInternalFrame();
__ push(rax);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ LeaveInternalFrame();
__ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rax);
__ bind(&receiver_is_js_object);
}
// Get the function to call from the stack.
// +2 ~ receiver, return address
__ movq(rdi, Operand(rsp, (argc_ + 2) * kPointerSize));
// Check that the function really is a JavaScript function.
__ JumpIfSmi(rdi, &slow);
// Goto slow case if we do not have a function.
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx);
__ j(not_equal, &slow);
// Fast-case: Just invoke the function.
ParameterCount actual(argc_);
__ InvokeFunction(rdi, actual, JUMP_FUNCTION);
// Slow-case: Non-function called.
__ bind(&slow);
// CALL_NON_FUNCTION expects the non-function callee as receiver (instead
// of the original receiver from the call site).
__ movq(Operand(rsp, (argc_ + 1) * kPointerSize), rdi);
__ Set(rax, argc_);
__ Set(rbx, 0);
__ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION);
Handle<Code> adaptor(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline));
__ Jump(adaptor, RelocInfo::CODE_TARGET);
}
void CEntryStub::GenerateThrowTOS(MacroAssembler* masm) {
// Check that stack should contain next handler, frame pointer, state and
// return address in that order.
STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize ==
StackHandlerConstants::kStateOffset);
STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize ==
StackHandlerConstants::kPCOffset);
ExternalReference handler_address(Top::k_handler_address);
__ movq(kScratchRegister, handler_address);
__ movq(rsp, Operand(kScratchRegister, 0));
// get next in chain
__ pop(rcx);
__ movq(Operand(kScratchRegister, 0), rcx);
__ pop(rbp); // pop frame pointer
__ pop(rdx); // remove state
// Before returning we restore the context from the frame pointer if not NULL.
// The frame pointer is NULL in the exception handler of a JS entry frame.
__ Set(rsi, 0); // Tentatively set context pointer to NULL
NearLabel skip;
__ cmpq(rbp, Immediate(0));
__ j(equal, &skip);
__ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
__ bind(&skip);
__ ret(0);
}
void CEntryStub::GenerateCore(MacroAssembler* masm,
Label* throw_normal_exception,
Label* throw_termination_exception,
Label* throw_out_of_memory_exception,
bool do_gc,
bool always_allocate_scope) {
// rax: result parameter for PerformGC, if any.
// rbx: pointer to C function (C callee-saved).
// rbp: frame pointer (restored after C call).
// rsp: stack pointer (restored after C call).
// r14: number of arguments including receiver (C callee-saved).
// r12: pointer to the first argument (C callee-saved).
// This pointer is reused in LeaveExitFrame(), so it is stored in a
// callee-saved register.
// Simple results returned in rax (both AMD64 and Win64 calling conventions).
// Complex results must be written to address passed as first argument.
// AMD64 calling convention: a struct of two pointers in rax+rdx
// Check stack alignment.
if (FLAG_debug_code) {
__ CheckStackAlignment();
}
if (do_gc) {
// Pass failure code returned from last attempt as first argument to
// PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the
// stack is known to be aligned. This function takes one argument which is
// passed in register.
#ifdef _WIN64
__ movq(rcx, rax);
#else // _WIN64
__ movq(rdi, rax);
#endif
__ movq(kScratchRegister,
FUNCTION_ADDR(Runtime::PerformGC),
RelocInfo::RUNTIME_ENTRY);
__ call(kScratchRegister);
}
ExternalReference scope_depth =
ExternalReference::heap_always_allocate_scope_depth();
if (always_allocate_scope) {
__ movq(kScratchRegister, scope_depth);
__ incl(Operand(kScratchRegister, 0));
}
// Call C function.
#ifdef _WIN64
// Windows 64-bit ABI passes arguments in rcx, rdx, r8, r9
// Store Arguments object on stack, below the 4 WIN64 ABI parameter slots.
__ movq(StackSpaceOperand(0), r14); // argc.
__ movq(StackSpaceOperand(1), r12); // argv.
if (result_size_ < 2) {
// Pass a pointer to the Arguments object as the first argument.
// Return result in single register (rax).
__ lea(rcx, StackSpaceOperand(0));
} else {
ASSERT_EQ(2, result_size_);
// Pass a pointer to the result location as the first argument.
__ lea(rcx, StackSpaceOperand(2));
// Pass a pointer to the Arguments object as the second argument.
__ lea(rdx, StackSpaceOperand(0));
}
#else // _WIN64
// GCC passes arguments in rdi, rsi, rdx, rcx, r8, r9.
__ movq(rdi, r14); // argc.
__ movq(rsi, r12); // argv.
#endif
__ call(rbx);
// Result is in rax - do not destroy this register!
if (always_allocate_scope) {
__ movq(kScratchRegister, scope_depth);
__ decl(Operand(kScratchRegister, 0));
}
// Check for failure result.
Label failure_returned;
STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0);
#ifdef _WIN64
// If return value is on the stack, pop it to registers.
if (result_size_ > 1) {
ASSERT_EQ(2, result_size_);
// Read result values stored on stack. Result is stored
// above the four argument mirror slots and the two
// Arguments object slots.
__ movq(rax, Operand(rsp, 6 * kPointerSize));
__ movq(rdx, Operand(rsp, 7 * kPointerSize));
}
#endif
__ lea(rcx, Operand(rax, 1));
// Lower 2 bits of rcx are 0 iff rax has failure tag.
__ testl(rcx, Immediate(kFailureTagMask));
__ j(zero, &failure_returned);
// Exit the JavaScript to C++ exit frame.
__ LeaveExitFrame(save_doubles_);
__ ret(0);
// Handling of failure.
__ bind(&failure_returned);
NearLabel retry;
// If the returned exception is RETRY_AFTER_GC continue at retry label
STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0);
__ testl(rax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize));
__ j(zero, &retry);
// Special handling of out of memory exceptions.
__ movq(kScratchRegister, Failure::OutOfMemoryException(), RelocInfo::NONE);
__ cmpq(rax, kScratchRegister);
__ j(equal, throw_out_of_memory_exception);
// Retrieve the pending exception and clear the variable.
ExternalReference pending_exception_address(Top::k_pending_exception_address);
__ movq(kScratchRegister, pending_exception_address);
__ movq(rax, Operand(kScratchRegister, 0));
__ movq(rdx, ExternalReference::the_hole_value_location());
__ movq(rdx, Operand(rdx, 0));
__ movq(Operand(kScratchRegister, 0), rdx);
// Special handling of termination exceptions which are uncatchable
// by javascript code.
__ CompareRoot(rax, Heap::kTerminationExceptionRootIndex);
__ j(equal, throw_termination_exception);
// Handle normal exception.
__ jmp(throw_normal_exception);
// Retry.
__ bind(&retry);
}
void CEntryStub::GenerateThrowUncatchable(MacroAssembler* masm,
UncatchableExceptionType type) {
// Fetch top stack handler.
ExternalReference handler_address(Top::k_handler_address);
__ movq(kScratchRegister, handler_address);
__ movq(rsp, Operand(kScratchRegister, 0));
// Unwind the handlers until the ENTRY handler is found.
NearLabel loop, done;
__ bind(&loop);
// Load the type of the current stack handler.
const int kStateOffset = StackHandlerConstants::kStateOffset;
__ cmpq(Operand(rsp, kStateOffset), Immediate(StackHandler::ENTRY));
__ j(equal, &done);
// Fetch the next handler in the list.
const int kNextOffset = StackHandlerConstants::kNextOffset;
__ movq(rsp, Operand(rsp, kNextOffset));
__ jmp(&loop);
__ bind(&done);
// Set the top handler address to next handler past the current ENTRY handler.
__ movq(kScratchRegister, handler_address);
__ pop(Operand(kScratchRegister, 0));
if (type == OUT_OF_MEMORY) {
// Set external caught exception to false.
ExternalReference external_caught(Top::k_external_caught_exception_address);
__ movq(rax, Immediate(false));
__ store_rax(external_caught);
// Set pending exception and rax to out of memory exception.
ExternalReference pending_exception(Top::k_pending_exception_address);
__ movq(rax, Failure::OutOfMemoryException(), RelocInfo::NONE);
__ store_rax(pending_exception);
}
// Clear the context pointer.
__ Set(rsi, 0);
// Restore registers from handler.
STATIC_ASSERT(StackHandlerConstants::kNextOffset + kPointerSize ==
StackHandlerConstants::kFPOffset);
__ pop(rbp); // FP
STATIC_ASSERT(StackHandlerConstants::kFPOffset + kPointerSize ==
StackHandlerConstants::kStateOffset);
__ pop(rdx); // State
STATIC_ASSERT(StackHandlerConstants::kStateOffset + kPointerSize ==
StackHandlerConstants::kPCOffset);
__ ret(0);
}
void CEntryStub::Generate(MacroAssembler* masm) {
// rax: number of arguments including receiver
// rbx: pointer to C function (C callee-saved)
// rbp: frame pointer of calling JS frame (restored after C call)
// rsp: stack pointer (restored after C call)
// rsi: current context (restored)
// NOTE: Invocations of builtins may return failure objects
// instead of a proper result. The builtin entry handles
// this by performing a garbage collection and retrying the
// builtin once.
// Enter the exit frame that transitions from JavaScript to C++.
#ifdef _WIN64
int arg_stack_space = (result_size_ < 2 ? 2 : 4);
#else
int arg_stack_space = 0;
#endif
__ EnterExitFrame(arg_stack_space, save_doubles_);
// rax: Holds the context at this point, but should not be used.
// On entry to code generated by GenerateCore, it must hold
// a failure result if the collect_garbage argument to GenerateCore
// is true. This failure result can be the result of code
// generated by a previous call to GenerateCore. The value
// of rax is then passed to Runtime::PerformGC.
// rbx: pointer to builtin function (C callee-saved).
// rbp: frame pointer of exit frame (restored after C call).
// rsp: stack pointer (restored after C call).
// r14: number of arguments including receiver (C callee-saved).
// r12: argv pointer (C callee-saved).
Label throw_normal_exception;
Label throw_termination_exception;
Label throw_out_of_memory_exception;
// Call into the runtime system.
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
false,
false);
// Do space-specific GC and retry runtime call.
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
true,
false);
// Do full GC and retry runtime call one final time.
Failure* failure = Failure::InternalError();
__ movq(rax, failure, RelocInfo::NONE);
GenerateCore(masm,
&throw_normal_exception,
&throw_termination_exception,
&throw_out_of_memory_exception,
true,
true);
__ bind(&throw_out_of_memory_exception);
GenerateThrowUncatchable(masm, OUT_OF_MEMORY);
__ bind(&throw_termination_exception);
GenerateThrowUncatchable(masm, TERMINATION);
__ bind(&throw_normal_exception);
GenerateThrowTOS(masm);
}
void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) {
Label invoke, exit;
#ifdef ENABLE_LOGGING_AND_PROFILING
Label not_outermost_js, not_outermost_js_2;
#endif
// Setup frame.
__ push(rbp);
__ movq(rbp, rsp);
// Push the stack frame type marker twice.
int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY;
// Scratch register is neither callee-save, nor an argument register on any
// platform. It's free to use at this point.
// Cannot use smi-register for loading yet.
__ movq(kScratchRegister,
reinterpret_cast<uint64_t>(Smi::FromInt(marker)),
RelocInfo::NONE);
__ push(kScratchRegister); // context slot
__ push(kScratchRegister); // function slot
// Save callee-saved registers (X64/Win64 calling conventions).
__ push(r12);
__ push(r13);
__ push(r14);
__ push(r15);
#ifdef _WIN64
__ push(rdi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
__ push(rsi); // Only callee save in Win64 ABI, argument in AMD64 ABI.
#endif
__ push(rbx);
// TODO(X64): On Win64, if we ever use XMM6-XMM15, the low low 64 bits are
// callee save as well.
// Save copies of the top frame descriptor on the stack.
ExternalReference c_entry_fp(Top::k_c_entry_fp_address);
__ load_rax(c_entry_fp);
__ push(rax);
// Set up the roots and smi constant registers.
// Needs to be done before any further smi loads.
ExternalReference roots_address = ExternalReference::roots_address();
__ movq(kRootRegister, roots_address);
__ InitializeSmiConstantRegister();
#ifdef ENABLE_LOGGING_AND_PROFILING
// If this is the outermost JS call, set js_entry_sp value.
ExternalReference js_entry_sp(Top::k_js_entry_sp_address);
__ load_rax(js_entry_sp);
__ testq(rax, rax);
__ j(not_zero, &not_outermost_js);
__ movq(rax, rbp);
__ store_rax(js_entry_sp);
__ bind(&not_outermost_js);
#endif
// Call a faked try-block that does the invoke.
__ call(&invoke);
// Caught exception: Store result (exception) in the pending
// exception field in the JSEnv and return a failure sentinel.
ExternalReference pending_exception(Top::k_pending_exception_address);
__ store_rax(pending_exception);
__ movq(rax, Failure::Exception(), RelocInfo::NONE);
__ jmp(&exit);
// Invoke: Link this frame into the handler chain.
__ bind(&invoke);
__ PushTryHandler(IN_JS_ENTRY, JS_ENTRY_HANDLER);
// Clear any pending exceptions.
__ load_rax(ExternalReference::the_hole_value_location());
__ store_rax(pending_exception);
// Fake a receiver (NULL).
__ push(Immediate(0)); // receiver
// Invoke the function by calling through JS entry trampoline
// builtin and pop the faked function when we return. We load the address
// from an external reference instead of inlining the call target address
// directly in the code, because the builtin stubs may not have been
// generated yet at the time this code is generated.
if (is_construct) {
ExternalReference construct_entry(Builtins::JSConstructEntryTrampoline);
__ load_rax(construct_entry);
} else {
ExternalReference entry(Builtins::JSEntryTrampoline);
__ load_rax(entry);
}
__ lea(kScratchRegister, FieldOperand(rax, Code::kHeaderSize));
__ call(kScratchRegister);
// Unlink this frame from the handler chain.
__ movq(kScratchRegister, ExternalReference(Top::k_handler_address));
__ pop(Operand(kScratchRegister, 0));
// Pop next_sp.
__ addq(rsp, Immediate(StackHandlerConstants::kSize - kPointerSize));
#ifdef ENABLE_LOGGING_AND_PROFILING
// If current RBP value is the same as js_entry_sp value, it means that
// the current function is the outermost.
__ movq(kScratchRegister, js_entry_sp);
__ cmpq(rbp, Operand(kScratchRegister, 0));
__ j(not_equal, &not_outermost_js_2);
__ movq(Operand(kScratchRegister, 0), Immediate(0));
__ bind(&not_outermost_js_2);
#endif
// Restore the top frame descriptor from the stack.
__ bind(&exit);
__ movq(kScratchRegister, ExternalReference(Top::k_c_entry_fp_address));
__ pop(Operand(kScratchRegister, 0));
// Restore callee-saved registers (X64 conventions).
__ pop(rbx);
#ifdef _WIN64
// Callee save on in Win64 ABI, arguments/volatile in AMD64 ABI.
__ pop(rsi);
__ pop(rdi);
#endif
__ pop(r15);
__ pop(r14);
__ pop(r13);
__ pop(r12);
__ addq(rsp, Immediate(2 * kPointerSize)); // remove markers
// Restore frame pointer and return.
__ pop(rbp);
__ ret(0);
}
void InstanceofStub::Generate(MacroAssembler* masm) {
// Implements "value instanceof function" operator.
// Expected input state:
// rsp[0] : return address
// rsp[1] : function pointer
// rsp[2] : value
// Returns a bitwise zero to indicate that the value
// is and instance of the function and anything else to
// indicate that the value is not an instance.
// Get the object - go slow case if it's a smi.
Label slow;
__ movq(rax, Operand(rsp, 2 * kPointerSize));
__ JumpIfSmi(rax, &slow);
// Check that the left hand is a JS object. Leave its map in rax.
__ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rax);
__ j(below, &slow);
__ CmpInstanceType(rax, LAST_JS_OBJECT_TYPE);
__ j(above, &slow);
// Get the prototype of the function.
__ movq(rdx, Operand(rsp, 1 * kPointerSize));
// rdx is function, rax is map.
// Look up the function and the map in the instanceof cache.
NearLabel miss;
__ CompareRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
__ j(not_equal, &miss);
__ CompareRoot(rax, Heap::kInstanceofCacheMapRootIndex);
__ j(not_equal, &miss);
__ LoadRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
__ ret(2 * kPointerSize);
__ bind(&miss);
__ TryGetFunctionPrototype(rdx, rbx, &slow);
// Check that the function prototype is a JS object.
__ JumpIfSmi(rbx, &slow);
__ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, kScratchRegister);
__ j(below, &slow);
__ CmpInstanceType(kScratchRegister, LAST_JS_OBJECT_TYPE);
__ j(above, &slow);
// Register mapping:
// rax is object map.
// rdx is function.
// rbx is function prototype.
__ StoreRoot(rdx, Heap::kInstanceofCacheFunctionRootIndex);
__ StoreRoot(rax, Heap::kInstanceofCacheMapRootIndex);
__ movq(rcx, FieldOperand(rax, Map::kPrototypeOffset));
// Loop through the prototype chain looking for the function prototype.
NearLabel loop, is_instance, is_not_instance;
__ LoadRoot(kScratchRegister, Heap::kNullValueRootIndex);
__ bind(&loop);
__ cmpq(rcx, rbx);
__ j(equal, &is_instance);
__ cmpq(rcx, kScratchRegister);
// The code at is_not_instance assumes that kScratchRegister contains a
// non-zero GCable value (the null object in this case).
__ j(equal, &is_not_instance);
__ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset));
__ movq(rcx, FieldOperand(rcx, Map::kPrototypeOffset));
__ jmp(&loop);
__ bind(&is_instance);
__ xorl(rax, rax);
// Store bitwise zero in the cache. This is a Smi in GC terms.
STATIC_ASSERT(kSmiTag == 0);
__ StoreRoot(rax, Heap::kInstanceofCacheAnswerRootIndex);
__ ret(2 * kPointerSize);
__ bind(&is_not_instance);
// We have to store a non-zero value in the cache.
__ StoreRoot(kScratchRegister, Heap::kInstanceofCacheAnswerRootIndex);
__ ret(2 * kPointerSize);
// Slow-case: Go through the JavaScript implementation.
__ bind(&slow);
__ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION);
}
Register InstanceofStub::left() { return rax; }
Register InstanceofStub::right() { return rdx; }
int CompareStub::MinorKey() {
// Encode the three parameters in a unique 16 bit value. To avoid duplicate
// stubs the never NaN NaN condition is only taken into account if the
// condition is equals.
ASSERT(static_cast<unsigned>(cc_) < (1 << 12));
ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
return ConditionField::encode(static_cast<unsigned>(cc_))
| RegisterField::encode(false) // lhs_ and rhs_ are not used
| StrictField::encode(strict_)
| NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false)
| IncludeNumberCompareField::encode(include_number_compare_)
| IncludeSmiCompareField::encode(include_smi_compare_);
}
// Unfortunately you have to run without snapshots to see most of these
// names in the profile since most compare stubs end up in the snapshot.
const char* CompareStub::GetName() {
ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg));
if (name_ != NULL) return name_;
const int kMaxNameLength = 100;
name_ = Bootstrapper::AllocateAutoDeletedArray(kMaxNameLength);
if (name_ == NULL) return "OOM";
const char* cc_name;
switch (cc_) {
case less: cc_name = "LT"; break;
case greater: cc_name = "GT"; break;
case less_equal: cc_name = "LE"; break;
case greater_equal: cc_name = "GE"; break;
case equal: cc_name = "EQ"; break;
case not_equal: cc_name = "NE"; break;
default: cc_name = "UnknownCondition"; break;
}
const char* strict_name = "";
if (strict_ && (cc_ == equal || cc_ == not_equal)) {
strict_name = "_STRICT";
}
const char* never_nan_nan_name = "";
if (never_nan_nan_ && (cc_ == equal || cc_ == not_equal)) {
never_nan_nan_name = "_NO_NAN";
}
const char* include_number_compare_name = "";
if (!include_number_compare_) {
include_number_compare_name = "_NO_NUMBER";
}
const char* include_smi_compare_name = "";
if (!include_smi_compare_) {
include_smi_compare_name = "_NO_SMI";
}
OS::SNPrintF(Vector<char>(name_, kMaxNameLength),
"CompareStub_%s%s%s%s",
cc_name,
strict_name,
never_nan_nan_name,
include_number_compare_name,
include_smi_compare_name);
return name_;
}
// -------------------------------------------------------------------------
// StringCharCodeAtGenerator
void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) {
Label flat_string;
Label ascii_string;
Label got_char_code;
// If the receiver is a smi trigger the non-string case.
__ JumpIfSmi(object_, receiver_not_string_);
// Fetch the instance type of the receiver into result register.
__ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
// If the receiver is not a string trigger the non-string case.
__ testb(result_, Immediate(kIsNotStringMask));
__ j(not_zero, receiver_not_string_);
// If the index is non-smi trigger the non-smi case.
__ JumpIfNotSmi(index_, &index_not_smi_);
// Put smi-tagged index into scratch register.
__ movq(scratch_, index_);
__ bind(&got_smi_index_);
// Check for index out of range.
__ SmiCompare(scratch_, FieldOperand(object_, String::kLengthOffset));
__ j(above_equal, index_out_of_range_);
// We need special handling for non-flat strings.
STATIC_ASSERT(kSeqStringTag == 0);
__ testb(result_, Immediate(kStringRepresentationMask));
__ j(zero, &flat_string);
// Handle non-flat strings.
__ testb(result_, Immediate(kIsConsStringMask));
__ j(zero, &call_runtime_);
// ConsString.
// Check whether the right hand side is the empty string (i.e. if
// this is really a flat string in a cons string). If that is not
// the case we would rather go to the runtime system now to flatten
// the string.
__ CompareRoot(FieldOperand(object_, ConsString::kSecondOffset),
Heap::kEmptyStringRootIndex);
__ j(not_equal, &call_runtime_);
// Get the first of the two strings and load its instance type.
__ movq(object_, FieldOperand(object_, ConsString::kFirstOffset));
__ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
// If the first cons component is also non-flat, then go to runtime.
STATIC_ASSERT(kSeqStringTag == 0);
__ testb(result_, Immediate(kStringRepresentationMask));
__ j(not_zero, &call_runtime_);
// Check for 1-byte or 2-byte string.
__ bind(&flat_string);
STATIC_ASSERT(kAsciiStringTag != 0);
__ testb(result_, Immediate(kStringEncodingMask));
__ j(not_zero, &ascii_string);
// 2-byte string.
// Load the 2-byte character code into the result register.
__ SmiToInteger32(scratch_, scratch_);
__ movzxwl(result_, FieldOperand(object_,
scratch_, times_2,
SeqTwoByteString::kHeaderSize));
__ jmp(&got_char_code);
// ASCII string.
// Load the byte into the result register.
__ bind(&ascii_string);
__ SmiToInteger32(scratch_, scratch_);
__ movzxbl(result_, FieldOperand(object_,
scratch_, times_1,
SeqAsciiString::kHeaderSize));
__ bind(&got_char_code);
__ Integer32ToSmi(result_, result_);
__ bind(&exit_);
}
void StringCharCodeAtGenerator::GenerateSlow(
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
__ Abort("Unexpected fallthrough to CharCodeAt slow case");
// Index is not a smi.
__ bind(&index_not_smi_);
// If index is a heap number, try converting it to an integer.
__ CheckMap(index_, Factory::heap_number_map(), index_not_number_, true);
call_helper.BeforeCall(masm);
__ push(object_);
__ push(index_);
__ push(index_); // Consumed by runtime conversion function.
if (index_flags_ == STRING_INDEX_IS_NUMBER) {
__ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1);
} else {
ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX);
// NumberToSmi discards numbers that are not exact integers.
__ CallRuntime(Runtime::kNumberToSmi, 1);
}
if (!scratch_.is(rax)) {
// Save the conversion result before the pop instructions below
// have a chance to overwrite it.
__ movq(scratch_, rax);
}
__ pop(index_);
__ pop(object_);
// Reload the instance type.
__ movq(result_, FieldOperand(object_, HeapObject::kMapOffset));
__ movzxbl(result_, FieldOperand(result_, Map::kInstanceTypeOffset));
call_helper.AfterCall(masm);
// If index is still not a smi, it must be out of range.
__ JumpIfNotSmi(scratch_, index_out_of_range_);
// Otherwise, return to the fast path.
__ jmp(&got_smi_index_);
// Call runtime. We get here when the receiver is a string and the
// index is a number, but the code of getting the actual character
// is too complex (e.g., when the string needs to be flattened).
__ bind(&call_runtime_);
call_helper.BeforeCall(masm);
__ push(object_);
__ push(index_);
__ CallRuntime(Runtime::kStringCharCodeAt, 2);
if (!result_.is(rax)) {
__ movq(result_, rax);
}
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort("Unexpected fallthrough from CharCodeAt slow case");
}
// -------------------------------------------------------------------------
// StringCharFromCodeGenerator
void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) {
// Fast case of Heap::LookupSingleCharacterStringFromCode.
__ JumpIfNotSmi(code_, &slow_case_);
__ SmiCompare(code_, Smi::FromInt(String::kMaxAsciiCharCode));
__ j(above, &slow_case_);
__ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex);
SmiIndex index = masm->SmiToIndex(kScratchRegister, code_, kPointerSizeLog2);
__ movq(result_, FieldOperand(result_, index.reg, index.scale,
FixedArray::kHeaderSize));
__ CompareRoot(result_, Heap::kUndefinedValueRootIndex);
__ j(equal, &slow_case_);
__ bind(&exit_);
}
void StringCharFromCodeGenerator::GenerateSlow(
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
__ Abort("Unexpected fallthrough to CharFromCode slow case");
__ bind(&slow_case_);
call_helper.BeforeCall(masm);
__ push(code_);
__ CallRuntime(Runtime::kCharFromCode, 1);
if (!result_.is(rax)) {
__ movq(result_, rax);
}
call_helper.AfterCall(masm);
__ jmp(&exit_);
__ Abort("Unexpected fallthrough from CharFromCode slow case");
}
// -------------------------------------------------------------------------
// StringCharAtGenerator
void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) {
char_code_at_generator_.GenerateFast(masm);
char_from_code_generator_.GenerateFast(masm);
}
void StringCharAtGenerator::GenerateSlow(
MacroAssembler* masm, const RuntimeCallHelper& call_helper) {
char_code_at_generator_.GenerateSlow(masm, call_helper);
char_from_code_generator_.GenerateSlow(masm, call_helper);
}
void StringAddStub::Generate(MacroAssembler* masm) {
Label string_add_runtime;
// Load the two arguments.
__ movq(rax, Operand(rsp, 2 * kPointerSize)); // First argument.
__ movq(rdx, Operand(rsp, 1 * kPointerSize)); // Second argument.
// Make sure that both arguments are strings if not known in advance.
if (string_check_) {
Condition is_smi;
is_smi = masm->CheckSmi(rax);
__ j(is_smi, &string_add_runtime);
__ CmpObjectType(rax, FIRST_NONSTRING_TYPE, r8);
__ j(above_equal, &string_add_runtime);
// First argument is a a string, test second.
is_smi = masm->CheckSmi(rdx);
__ j(is_smi, &string_add_runtime);
__ CmpObjectType(rdx, FIRST_NONSTRING_TYPE, r9);
__ j(above_equal, &string_add_runtime);
}
// Both arguments are strings.
// rax: first string
// rdx: second string
// Check if either of the strings are empty. In that case return the other.
NearLabel second_not_zero_length, both_not_zero_length;
__ movq(rcx, FieldOperand(rdx, String::kLengthOffset));
__ SmiTest(rcx);
__ j(not_zero, &second_not_zero_length);
// Second string is empty, result is first string which is already in rax.
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
__ bind(&second_not_zero_length);
__ movq(rbx, FieldOperand(rax, String::kLengthOffset));
__ SmiTest(rbx);
__ j(not_zero, &both_not_zero_length);
// First string is empty, result is second string which is in rdx.
__ movq(rax, rdx);
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
// Both strings are non-empty.
// rax: first string
// rbx: length of first string
// rcx: length of second string
// rdx: second string
// r8: map of first string if string check was performed above
// r9: map of second string if string check was performed above
Label string_add_flat_result, longer_than_two;
__ bind(&both_not_zero_length);
// If arguments where known to be strings, maps are not loaded to r8 and r9
// by the code above.
if (!string_check_) {
__ movq(r8, FieldOperand(rax, HeapObject::kMapOffset));
__ movq(r9, FieldOperand(rdx, HeapObject::kMapOffset));
}
// Get the instance types of the two strings as they will be needed soon.
__ movzxbl(r8, FieldOperand(r8, Map::kInstanceTypeOffset));
__ movzxbl(r9, FieldOperand(r9, Map::kInstanceTypeOffset));
// Look at the length of the result of adding the two strings.
STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue / 2);
__ SmiAdd(rbx, rbx, rcx);
// Use the runtime system when adding two one character strings, as it
// contains optimizations for this specific case using the symbol table.
__ SmiCompare(rbx, Smi::FromInt(2));
__ j(not_equal, &longer_than_two);
// Check that both strings are non-external ascii strings.
__ JumpIfBothInstanceTypesAreNotSequentialAscii(r8, r9, rbx, rcx,
&string_add_runtime);
// Get the two characters forming the sub string.
__ movzxbq(rbx, FieldOperand(rax, SeqAsciiString::kHeaderSize));
__ movzxbq(rcx, FieldOperand(rdx, SeqAsciiString::kHeaderSize));
// Try to lookup two character string in symbol table. If it is not found
// just allocate a new one.
Label make_two_character_string, make_flat_ascii_string;
StringHelper::GenerateTwoCharacterSymbolTableProbe(
masm, rbx, rcx, r14, r11, rdi, r12, &make_two_character_string);
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
__ bind(&make_two_character_string);
__ Set(rbx, 2);
__ jmp(&make_flat_ascii_string);
__ bind(&longer_than_two);
// Check if resulting string will be flat.
__ SmiCompare(rbx, Smi::FromInt(String::kMinNonFlatLength));
__ j(below, &string_add_flat_result);
// Handle exceptionally long strings in the runtime system.
STATIC_ASSERT((String::kMaxLength & 0x80000000) == 0);
__ SmiCompare(rbx, Smi::FromInt(String::kMaxLength));
__ j(above, &string_add_runtime);
// If result is not supposed to be flat, allocate a cons string object. If
// both strings are ascii the result is an ascii cons string.
// rax: first string
// rbx: length of resulting flat string
// rdx: second string
// r8: instance type of first string
// r9: instance type of second string
Label non_ascii, allocated, ascii_data;
__ movl(rcx, r8);
__ and_(rcx, r9);
STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
__ testl(rcx, Immediate(kAsciiStringTag));
__ j(zero, &non_ascii);
__ bind(&ascii_data);
// Allocate an acsii cons string.
__ AllocateAsciiConsString(rcx, rdi, no_reg, &string_add_runtime);
__ bind(&allocated);
// Fill the fields of the cons string.
__ movq(FieldOperand(rcx, ConsString::kLengthOffset), rbx);
__ movq(FieldOperand(rcx, ConsString::kHashFieldOffset),
Immediate(String::kEmptyHashField));
__ movq(FieldOperand(rcx, ConsString::kFirstOffset), rax);
__ movq(FieldOperand(rcx, ConsString::kSecondOffset), rdx);
__ movq(rax, rcx);
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
__ bind(&non_ascii);
// At least one of the strings is two-byte. Check whether it happens
// to contain only ascii characters.
// rcx: first instance type AND second instance type.
// r8: first instance type.
// r9: second instance type.
__ testb(rcx, Immediate(kAsciiDataHintMask));
__ j(not_zero, &ascii_data);
__ xor_(r8, r9);
STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0);
__ andb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
__ cmpb(r8, Immediate(kAsciiStringTag | kAsciiDataHintTag));
__ j(equal, &ascii_data);
// Allocate a two byte cons string.
__ AllocateConsString(rcx, rdi, no_reg, &string_add_runtime);
__ jmp(&allocated);
// Handle creating a flat result. First check that both strings are not
// external strings.
// rax: first string
// rbx: length of resulting flat string as smi
// rdx: second string
// r8: instance type of first string
// r9: instance type of first string
__ bind(&string_add_flat_result);
__ SmiToInteger32(rbx, rbx);
__ movl(rcx, r8);
__ and_(rcx, Immediate(kStringRepresentationMask));
__ cmpl(rcx, Immediate(kExternalStringTag));
__ j(equal, &string_add_runtime);
__ movl(rcx, r9);
__ and_(rcx, Immediate(kStringRepresentationMask));
__ cmpl(rcx, Immediate(kExternalStringTag));
__ j(equal, &string_add_runtime);
// Now check if both strings are ascii strings.
// rax: first string
// rbx: length of resulting flat string
// rdx: second string
// r8: instance type of first string
// r9: instance type of second string
Label non_ascii_string_add_flat_result;
STATIC_ASSERT(kStringEncodingMask == kAsciiStringTag);
__ testl(r8, Immediate(kAsciiStringTag));
__ j(zero, &non_ascii_string_add_flat_result);
__ testl(r9, Immediate(kAsciiStringTag));
__ j(zero, &string_add_runtime);
__ bind(&make_flat_ascii_string);
// Both strings are ascii strings. As they are short they are both flat.
__ AllocateAsciiString(rcx, rbx, rdi, r14, r11, &string_add_runtime);
// rcx: result string
__ movq(rbx, rcx);
// Locate first character of result.
__ addq(rcx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// Locate first character of first argument
__ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
__ addq(rax, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// rax: first char of first argument
// rbx: result string
// rcx: first character of result
// rdx: second string
// rdi: length of first argument
StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, true);
// Locate first character of second argument.
__ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset));
__ addq(rdx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// rbx: result string
// rcx: next character of result
// rdx: first char of second argument
// rdi: length of second argument
StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, true);
__ movq(rax, rbx);
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
// Handle creating a flat two byte result.
// rax: first string - known to be two byte
// rbx: length of resulting flat string
// rdx: second string
// r8: instance type of first string
// r9: instance type of first string
__ bind(&non_ascii_string_add_flat_result);
__ and_(r9, Immediate(kAsciiStringTag));
__ j(not_zero, &string_add_runtime);
// Both strings are two byte strings. As they are short they are both
// flat.
__ AllocateTwoByteString(rcx, rbx, rdi, r14, r11, &string_add_runtime);
// rcx: result string
__ movq(rbx, rcx);
// Locate first character of result.
__ addq(rcx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// Locate first character of first argument.
__ SmiToInteger32(rdi, FieldOperand(rax, String::kLengthOffset));
__ addq(rax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// rax: first char of first argument
// rbx: result string
// rcx: first character of result
// rdx: second argument
// rdi: length of first argument
StringHelper::GenerateCopyCharacters(masm, rcx, rax, rdi, false);
// Locate first character of second argument.
__ SmiToInteger32(rdi, FieldOperand(rdx, String::kLengthOffset));
__ addq(rdx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
// rbx: result string
// rcx: next character of result
// rdx: first char of second argument
// rdi: length of second argument
StringHelper::GenerateCopyCharacters(masm, rcx, rdx, rdi, false);
__ movq(rax, rbx);
__ IncrementCounter(&Counters::string_add_native, 1);
__ ret(2 * kPointerSize);
// Just jump to runtime to add the two strings.
__ bind(&string_add_runtime);
__ TailCallRuntime(Runtime::kStringAdd, 2, 1);
}
void StringHelper::GenerateCopyCharacters(MacroAssembler* masm,
Register dest,
Register src,
Register count,
bool ascii) {
Label loop;
__ bind(&loop);
// This loop just copies one character at a time, as it is only used for very
// short strings.
if (ascii) {
__ movb(kScratchRegister, Operand(src, 0));
__ movb(Operand(dest, 0), kScratchRegister);
__ incq(src);
__ incq(dest);
} else {
__ movzxwl(kScratchRegister, Operand(src, 0));
__ movw(Operand(dest, 0), kScratchRegister);
__ addq(src, Immediate(2));
__ addq(dest, Immediate(2));
}
__ decl(count);
__ j(not_zero, &loop);
}
void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm,
Register dest,
Register src,
Register count,
bool ascii) {
// Copy characters using rep movs of doublewords. Align destination on 4 byte
// boundary before starting rep movs. Copy remaining characters after running
// rep movs.
// Count is positive int32, dest and src are character pointers.
ASSERT(dest.is(rdi)); // rep movs destination
ASSERT(src.is(rsi)); // rep movs source
ASSERT(count.is(rcx)); // rep movs count
// Nothing to do for zero characters.
NearLabel done;
__ testl(count, count);
__ j(zero, &done);
// Make count the number of bytes to copy.
if (!ascii) {
STATIC_ASSERT(2 == sizeof(uc16));
__ addl(count, count);
}
// Don't enter the rep movs if there are less than 4 bytes to copy.
NearLabel last_bytes;
__ testl(count, Immediate(~7));
__ j(zero, &last_bytes);
// Copy from edi to esi using rep movs instruction.
__ movl(kScratchRegister, count);
__ shr(count, Immediate(3)); // Number of doublewords to copy.
__ repmovsq();
// Find number of bytes left.
__ movl(count, kScratchRegister);
__ and_(count, Immediate(7));
// Check if there are more bytes to copy.
__ bind(&last_bytes);
__ testl(count, count);
__ j(zero, &done);
// Copy remaining characters.
Label loop;
__ bind(&loop);
__ movb(kScratchRegister, Operand(src, 0));
__ movb(Operand(dest, 0), kScratchRegister);
__ incq(src);
__ incq(dest);
__ decl(count);
__ j(not_zero, &loop);
__ bind(&done);
}
void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm,
Register c1,
Register c2,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4,
Label* not_found) {
// Register scratch3 is the general scratch register in this function.
Register scratch = scratch3;
// Make sure that both characters are not digits as such strings has a
// different hash algorithm. Don't try to look for these in the symbol table.
NearLabel not_array_index;
__ leal(scratch, Operand(c1, -'0'));
__ cmpl(scratch, Immediate(static_cast<int>('9' - '0')));
__ j(above, &not_array_index);
__ leal(scratch, Operand(c2, -'0'));
__ cmpl(scratch, Immediate(static_cast<int>('9' - '0')));
__ j(below_equal, not_found);
__ bind(&not_array_index);
// Calculate the two character string hash.
Register hash = scratch1;
GenerateHashInit(masm, hash, c1, scratch);
GenerateHashAddCharacter(masm, hash, c2, scratch);
GenerateHashGetHash(masm, hash, scratch);
// Collect the two characters in a register.
Register chars = c1;
__ shl(c2, Immediate(kBitsPerByte));
__ orl(chars, c2);
// chars: two character string, char 1 in byte 0 and char 2 in byte 1.
// hash: hash of two character string.
// Load the symbol table.
Register symbol_table = c2;
__ LoadRoot(symbol_table, Heap::kSymbolTableRootIndex);
// Calculate capacity mask from the symbol table capacity.
Register mask = scratch2;
__ SmiToInteger32(mask,
FieldOperand(symbol_table, SymbolTable::kCapacityOffset));
__ decl(mask);
Register undefined = scratch4;
__ LoadRoot(undefined, Heap::kUndefinedValueRootIndex);
// Registers
// chars: two character string, char 1 in byte 0 and char 2 in byte 1.
// hash: hash of two character string (32-bit int)
// symbol_table: symbol table
// mask: capacity mask (32-bit int)
// undefined: undefined value
// scratch: -
// Perform a number of probes in the symbol table.
static const int kProbes = 4;
Label found_in_symbol_table;
Label next_probe[kProbes];
for (int i = 0; i < kProbes; i++) {
// Calculate entry in symbol table.
__ movl(scratch, hash);
if (i > 0) {
__ addl(scratch, Immediate(SymbolTable::GetProbeOffset(i)));
}
__ andl(scratch, mask);
// Load the entry from the symble table.
Register candidate = scratch; // Scratch register contains candidate.
STATIC_ASSERT(SymbolTable::kEntrySize == 1);
__ movq(candidate,
FieldOperand(symbol_table,
scratch,
times_pointer_size,
SymbolTable::kElementsStartOffset));
// If entry is undefined no string with this hash can be found.
__ cmpq(candidate, undefined);
__ j(equal, not_found);
// If length is not 2 the string is not a candidate.
__ SmiCompare(FieldOperand(candidate, String::kLengthOffset),
Smi::FromInt(2));
__ j(not_equal, &next_probe[i]);
// We use kScratchRegister as a temporary register in assumption that
// JumpIfInstanceTypeIsNotSequentialAscii does not use it implicitly
Register temp = kScratchRegister;
// Check that the candidate is a non-external ascii string.
__ movq(temp, FieldOperand(candidate, HeapObject::kMapOffset));
__ movzxbl(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialAscii(
temp, temp, &next_probe[i]);
// Check if the two characters match.
__ movl(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize));
__ andl(temp, Immediate(0x0000ffff));
__ cmpl(chars, temp);
__ j(equal, &found_in_symbol_table);
__ bind(&next_probe[i]);
}
// No matching 2 character string found by probing.
__ jmp(not_found);
// Scratch register contains result when we fall through to here.
Register result = scratch;
__ bind(&found_in_symbol_table);
if (!result.is(rax)) {
__ movq(rax, result);
}
}
void StringHelper::GenerateHashInit(MacroAssembler* masm,
Register hash,
Register character,
Register scratch) {
// hash = character + (character << 10);
__ movl(hash, character);
__ shll(hash, Immediate(10));
__ addl(hash, character);
// hash ^= hash >> 6;
__ movl(scratch, hash);
__ sarl(scratch, Immediate(6));
__ xorl(hash, scratch);
}
void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm,
Register hash,
Register character,
Register scratch) {
// hash += character;
__ addl(hash, character);
// hash += hash << 10;
__ movl(scratch, hash);
__ shll(scratch, Immediate(10));
__ addl(hash, scratch);
// hash ^= hash >> 6;
__ movl(scratch, hash);
__ sarl(scratch, Immediate(6));
__ xorl(hash, scratch);
}
void StringHelper::GenerateHashGetHash(MacroAssembler* masm,
Register hash,
Register scratch) {
// hash += hash << 3;
__ leal(hash, Operand(hash, hash, times_8, 0));
// hash ^= hash >> 11;
__ movl(scratch, hash);
__ sarl(scratch, Immediate(11));
__ xorl(hash, scratch);
// hash += hash << 15;
__ movl(scratch, hash);
__ shll(scratch, Immediate(15));
__ addl(hash, scratch);
// if (hash == 0) hash = 27;
Label hash_not_zero;
__ j(not_zero, &hash_not_zero);
__ movl(hash, Immediate(27));
__ bind(&hash_not_zero);
}
void SubStringStub::Generate(MacroAssembler* masm) {
Label runtime;
// Stack frame on entry.
// rsp[0]: return address
// rsp[8]: to
// rsp[16]: from
// rsp[24]: string
const int kToOffset = 1 * kPointerSize;
const int kFromOffset = kToOffset + kPointerSize;
const int kStringOffset = kFromOffset + kPointerSize;
const int kArgumentsSize = (kStringOffset + kPointerSize) - kToOffset;
// Make sure first argument is a string.
__ movq(rax, Operand(rsp, kStringOffset));
STATIC_ASSERT(kSmiTag == 0);
__ testl(rax, Immediate(kSmiTagMask));
__ j(zero, &runtime);
Condition is_string = masm->IsObjectStringType(rax, rbx, rbx);
__ j(NegateCondition(is_string), &runtime);
// rax: string
// rbx: instance type
// Calculate length of sub string using the smi values.
Label result_longer_than_two;
__ movq(rcx, Operand(rsp, kToOffset));
__ movq(rdx, Operand(rsp, kFromOffset));
__ JumpUnlessBothNonNegativeSmi(rcx, rdx, &runtime);
__ SmiSub(rcx, rcx, rdx); // Overflow doesn't happen.
__ cmpq(FieldOperand(rax, String::kLengthOffset), rcx);
Label return_rax;
__ j(equal, &return_rax);
// Special handling of sub-strings of length 1 and 2. One character strings
// are handled in the runtime system (looked up in the single character
// cache). Two character strings are looked for in the symbol cache.
__ SmiToInteger32(rcx, rcx);
__ cmpl(rcx, Immediate(2));
__ j(greater, &result_longer_than_two);
__ j(less, &runtime);
// Sub string of length 2 requested.
// rax: string
// rbx: instance type
// rcx: sub string length (value is 2)
// rdx: from index (smi)
__ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &runtime);
// Get the two characters forming the sub string.
__ SmiToInteger32(rdx, rdx); // From index is no longer smi.
__ movzxbq(rbx, FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize));
__ movzxbq(rcx,
FieldOperand(rax, rdx, times_1, SeqAsciiString::kHeaderSize + 1));
// Try to lookup two character string in symbol table.
Label make_two_character_string;
StringHelper::GenerateTwoCharacterSymbolTableProbe(
masm, rbx, rcx, rax, rdx, rdi, r14, &make_two_character_string);
__ ret(3 * kPointerSize);
__ bind(&make_two_character_string);
// Setup registers for allocating the two character string.
__ movq(rax, Operand(rsp, kStringOffset));
__ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset));
__ movzxbl(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset));
__ Set(rcx, 2);
__ bind(&result_longer_than_two);
// rax: string
// rbx: instance type
// rcx: result string length
// Check for flat ascii string
Label non_ascii_flat;
__ JumpIfInstanceTypeIsNotSequentialAscii(rbx, rbx, &non_ascii_flat);
// Allocate the result.
__ AllocateAsciiString(rax, rcx, rbx, rdx, rdi, &runtime);
// rax: result string
// rcx: result string length
__ movq(rdx, rsi); // esi used by following code.
// Locate first character of result.
__ lea(rdi, FieldOperand(rax, SeqAsciiString::kHeaderSize));
// Load string argument and locate character of sub string start.
__ movq(rsi, Operand(rsp, kStringOffset));
__ movq(rbx, Operand(rsp, kFromOffset));
{
SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_1);
__ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale,
SeqAsciiString::kHeaderSize - kHeapObjectTag));
}
// rax: result string
// rcx: result length
// rdx: original value of rsi
// rdi: first character of result
// rsi: character of sub string start
StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, true);
__ movq(rsi, rdx); // Restore rsi.
__ IncrementCounter(&Counters::sub_string_native, 1);
__ ret(kArgumentsSize);
__ bind(&non_ascii_flat);
// rax: string
// rbx: instance type & kStringRepresentationMask | kStringEncodingMask
// rcx: result string length
// Check for sequential two byte string
__ cmpb(rbx, Immediate(kSeqStringTag | kTwoByteStringTag));
__ j(not_equal, &runtime);
// Allocate the result.
__ AllocateTwoByteString(rax, rcx, rbx, rdx, rdi, &runtime);
// rax: result string
// rcx: result string length
__ movq(rdx, rsi); // esi used by following code.
// Locate first character of result.
__ lea(rdi, FieldOperand(rax, SeqTwoByteString::kHeaderSize));
// Load string argument and locate character of sub string start.
__ movq(rsi, Operand(rsp, kStringOffset));
__ movq(rbx, Operand(rsp, kFromOffset));
{
SmiIndex smi_as_index = masm->SmiToIndex(rbx, rbx, times_2);
__ lea(rsi, Operand(rsi, smi_as_index.reg, smi_as_index.scale,
SeqAsciiString::kHeaderSize - kHeapObjectTag));
}
// rax: result string
// rcx: result length
// rdx: original value of rsi
// rdi: first character of result
// rsi: character of sub string start
StringHelper::GenerateCopyCharactersREP(masm, rdi, rsi, rcx, false);
__ movq(rsi, rdx); // Restore esi.
__ bind(&return_rax);
__ IncrementCounter(&Counters::sub_string_native, 1);
__ ret(kArgumentsSize);
// Just jump to runtime to create the sub string.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kSubString, 3, 1);
}
void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm,
Register left,
Register right,
Register scratch1,
Register scratch2,
Register scratch3,
Register scratch4) {
// Ensure that you can always subtract a string length from a non-negative
// number (e.g. another length).
STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
// Find minimum length and length difference.
__ movq(scratch1, FieldOperand(left, String::kLengthOffset));
__ movq(scratch4, scratch1);
__ SmiSub(scratch4,
scratch4,
FieldOperand(right, String::kLengthOffset));
// Register scratch4 now holds left.length - right.length.
const Register length_difference = scratch4;
NearLabel left_shorter;
__ j(less, &left_shorter);
// The right string isn't longer that the left one.
// Get the right string's length by subtracting the (non-negative) difference
// from the left string's length.
__ SmiSub(scratch1, scratch1, length_difference);
__ bind(&left_shorter);
// Register scratch1 now holds Min(left.length, right.length).
const Register min_length = scratch1;
NearLabel compare_lengths;
// If min-length is zero, go directly to comparing lengths.
__ SmiTest(min_length);
__ j(zero, &compare_lengths);
__ SmiToInteger32(min_length, min_length);
// Registers scratch2 and scratch3 are free.
NearLabel result_not_equal;
Label loop;
{
// Check characters 0 .. min_length - 1 in a loop.
// Use scratch3 as loop index, min_length as limit and scratch2
// for computation.
const Register index = scratch3;
__ movl(index, Immediate(0)); // Index into strings.
__ bind(&loop);
// Compare characters.
// TODO(lrn): Could we load more than one character at a time?
__ movb(scratch2, FieldOperand(left,
index,
times_1,
SeqAsciiString::kHeaderSize));
// Increment index and use -1 modifier on next load to give
// the previous load extra time to complete.
__ addl(index, Immediate(1));
__ cmpb(scratch2, FieldOperand(right,
index,
times_1,
SeqAsciiString::kHeaderSize - 1));
__ j(not_equal, &result_not_equal);
__ cmpl(index, min_length);
__ j(not_equal, &loop);
}
// Completed loop without finding different characters.
// Compare lengths (precomputed).
__ bind(&compare_lengths);
__ SmiTest(length_difference);
__ j(not_zero, &result_not_equal);
// Result is EQUAL.
__ Move(rax, Smi::FromInt(EQUAL));
__ ret(0);
NearLabel result_greater;
__ bind(&result_not_equal);
// Unequal comparison of left to right, either character or length.
__ j(greater, &result_greater);
// Result is LESS.
__ Move(rax, Smi::FromInt(LESS));
__ ret(0);
// Result is GREATER.
__ bind(&result_greater);
__ Move(rax, Smi::FromInt(GREATER));
__ ret(0);
}
void StringCompareStub::Generate(MacroAssembler* masm) {
Label runtime;
// Stack frame on entry.
// rsp[0]: return address
// rsp[8]: right string
// rsp[16]: left string
__ movq(rdx, Operand(rsp, 2 * kPointerSize)); // left
__ movq(rax, Operand(rsp, 1 * kPointerSize)); // right
// Check for identity.
NearLabel not_same;
__ cmpq(rdx, rax);
__ j(not_equal, &not_same);
__ Move(rax, Smi::FromInt(EQUAL));
__ IncrementCounter(&Counters::string_compare_native, 1);
__ ret(2 * kPointerSize);
__ bind(&not_same);
// Check that both are sequential ASCII strings.
__ JumpIfNotBothSequentialAsciiStrings(rdx, rax, rcx, rbx, &runtime);
// Inline comparison of ascii strings.
__ IncrementCounter(&Counters::string_compare_native, 1);
// Drop arguments from the stack
__ pop(rcx);
__ addq(rsp, Immediate(2 * kPointerSize));
__ push(rcx);
GenerateCompareFlatAsciiStrings(masm, rdx, rax, rcx, rbx, rdi, r8);
// Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater)
// tagged as a small integer.
__ bind(&runtime);
__ TailCallRuntime(Runtime::kStringCompare, 2, 1);
}
void ICCompareStub::GenerateSmis(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::SMIS);
NearLabel miss;
__ JumpIfNotBothSmi(rdx, rax, &miss);
if (GetCondition() == equal) {
// For equality we do not care about the sign of the result.
__ subq(rax, rdx);
} else {
NearLabel done;
__ subq(rdx, rax);
__ j(no_overflow, &done);
// Correct sign of result in case of overflow.
__ SmiNot(rdx, rdx);
__ bind(&done);
__ movq(rax, rdx);
}
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::HEAP_NUMBERS);
NearLabel generic_stub;
NearLabel unordered;
NearLabel miss;
Condition either_smi = masm->CheckEitherSmi(rax, rdx);
__ j(either_smi, &generic_stub);
__ CmpObjectType(rax, HEAP_NUMBER_TYPE, rcx);
__ j(not_equal, &miss);
__ CmpObjectType(rdx, HEAP_NUMBER_TYPE, rcx);
__ j(not_equal, &miss);
// Load left and right operand
__ movsd(xmm0, FieldOperand(rdx, HeapNumber::kValueOffset));
__ movsd(xmm1, FieldOperand(rax, HeapNumber::kValueOffset));
// Compare operands
__ ucomisd(xmm0, xmm1);
// Don't base result on EFLAGS when a NaN is involved.
__ j(parity_even, &unordered);
// Return a result of -1, 0, or 1, based on EFLAGS.
// Performing mov, because xor would destroy the flag register.
__ movl(rax, Immediate(0));
__ movl(rcx, Immediate(0));
__ setcc(above, rax); // Add one to zero if carry clear and not equal.
__ sbbq(rax, rcx); // Subtract one if below (aka. carry set).
__ ret(0);
__ bind(&unordered);
CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS);
__ bind(&generic_stub);
__ jmp(stub.GetCode(), RelocInfo::CODE_TARGET);
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateObjects(MacroAssembler* masm) {
ASSERT(state_ == CompareIC::OBJECTS);
NearLabel miss;
Condition either_smi = masm->CheckEitherSmi(rdx, rax);
__ j(either_smi, &miss);
__ CmpObjectType(rax, JS_OBJECT_TYPE, rcx);
__ j(not_equal, &miss, not_taken);
__ CmpObjectType(rdx, JS_OBJECT_TYPE, rcx);
__ j(not_equal, &miss, not_taken);
ASSERT(GetCondition() == equal);
__ subq(rax, rdx);
__ ret(0);
__ bind(&miss);
GenerateMiss(masm);
}
void ICCompareStub::GenerateMiss(MacroAssembler* masm) {
// Save the registers.
__ pop(rcx);
__ push(rdx);
__ push(rax);
__ push(rcx);
// Call the runtime system in a fresh internal frame.
ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss));
__ EnterInternalFrame();
__ push(rdx);
__ push(rax);
__ Push(Smi::FromInt(op_));
__ CallExternalReference(miss, 3);
__ LeaveInternalFrame();
// Compute the entry point of the rewritten stub.
__ lea(rdi, FieldOperand(rax, Code::kHeaderSize));
// Restore registers.
__ pop(rcx);
__ pop(rax);
__ pop(rdx);
__ push(rcx);
// Do a tail call to the rewritten stub.
__ jmp(rdi);
}
void GenerateFastPixelArrayLoad(MacroAssembler* masm,
Register receiver,
Register key,
Register elements,
Register untagged_key,
Register result,
Label* not_pixel_array,
Label* key_not_smi,
Label* out_of_range) {
// Register use:
// receiver - holds the receiver and is unchanged.
// key - holds the key and is unchanged (must be a smi).
// elements - is set to the the receiver's element if
// the receiver doesn't have a pixel array or the
// key is not a smi, otherwise it's the elements'
// external pointer.
// untagged_key - is set to the untagged key
// Some callers already have verified that the key is a smi. key_not_smi is
// set to NULL as a sentinel for that case. Otherwise, add an explicit check
// to ensure the key is a smi must be added.
if (key_not_smi != NULL) {
__ JumpIfNotSmi(key, key_not_smi);
} else {
if (FLAG_debug_code) {
__ AbortIfNotSmi(key);
}
}
__ SmiToInteger32(untagged_key, key);
// Verify that the receiver has pixel array elements.
__ movq(elements, FieldOperand(receiver, JSObject::kElementsOffset));
__ CheckMap(elements, Factory::pixel_array_map(), not_pixel_array, true);
// Check that the smi is in range.
__ cmpl(untagged_key, FieldOperand(elements, PixelArray::kLengthOffset));
__ j(above_equal, out_of_range); // unsigned check handles negative keys.
// Load and tag the element as a smi.
__ movq(elements, FieldOperand(elements, PixelArray::kExternalPointerOffset));
__ movzxbq(result, Operand(elements, untagged_key, times_1, 0));
__ Integer32ToSmi(result, result);
__ ret(0);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64