| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #include "accessors.h" |
| #include "api.h" |
| #include "arguments.h" |
| #include "bootstrapper.h" |
| #include "compiler.h" |
| #include "debug.h" |
| #include "execution.h" |
| #include "global-handles.h" |
| #include "natives.h" |
| #include "runtime.h" |
| #include "string-search.h" |
| #include "stub-cache.h" |
| #include "vm-state-inl.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| int HandleScope::NumberOfHandles() { |
| Isolate* isolate = Isolate::Current(); |
| HandleScopeImplementer* impl = isolate->handle_scope_implementer(); |
| int n = impl->blocks()->length(); |
| if (n == 0) return 0; |
| return ((n - 1) * kHandleBlockSize) + static_cast<int>( |
| (isolate->handle_scope_data()->next - impl->blocks()->last())); |
| } |
| |
| |
| Object** HandleScope::Extend() { |
| Isolate* isolate = Isolate::Current(); |
| v8::ImplementationUtilities::HandleScopeData* current = |
| isolate->handle_scope_data(); |
| |
| Object** result = current->next; |
| |
| ASSERT(result == current->limit); |
| // Make sure there's at least one scope on the stack and that the |
| // top of the scope stack isn't a barrier. |
| if (current->level == 0) { |
| Utils::ReportApiFailure("v8::HandleScope::CreateHandle()", |
| "Cannot create a handle without a HandleScope"); |
| return NULL; |
| } |
| HandleScopeImplementer* impl = isolate->handle_scope_implementer(); |
| // If there's more room in the last block, we use that. This is used |
| // for fast creation of scopes after scope barriers. |
| if (!impl->blocks()->is_empty()) { |
| Object** limit = &impl->blocks()->last()[kHandleBlockSize]; |
| if (current->limit != limit) { |
| current->limit = limit; |
| ASSERT(limit - current->next < kHandleBlockSize); |
| } |
| } |
| |
| // If we still haven't found a slot for the handle, we extend the |
| // current handle scope by allocating a new handle block. |
| if (result == current->limit) { |
| // If there's a spare block, use it for growing the current scope. |
| result = impl->GetSpareOrNewBlock(); |
| // Add the extension to the global list of blocks, but count the |
| // extension as part of the current scope. |
| impl->blocks()->Add(result); |
| current->limit = &result[kHandleBlockSize]; |
| } |
| |
| return result; |
| } |
| |
| |
| void HandleScope::DeleteExtensions(Isolate* isolate) { |
| ASSERT(isolate == Isolate::Current()); |
| v8::ImplementationUtilities::HandleScopeData* current = |
| isolate->handle_scope_data(); |
| isolate->handle_scope_implementer()->DeleteExtensions(current->limit); |
| } |
| |
| |
| void HandleScope::ZapRange(Object** start, Object** end) { |
| ASSERT(end - start <= kHandleBlockSize); |
| for (Object** p = start; p != end; p++) { |
| *reinterpret_cast<Address*>(p) = v8::internal::kHandleZapValue; |
| } |
| } |
| |
| |
| Address HandleScope::current_level_address() { |
| return reinterpret_cast<Address>( |
| &Isolate::Current()->handle_scope_data()->level); |
| } |
| |
| |
| Address HandleScope::current_next_address() { |
| return reinterpret_cast<Address>( |
| &Isolate::Current()->handle_scope_data()->next); |
| } |
| |
| |
| Address HandleScope::current_limit_address() { |
| return reinterpret_cast<Address>( |
| &Isolate::Current()->handle_scope_data()->limit); |
| } |
| |
| |
| Handle<FixedArray> AddKeysFromJSArray(Handle<FixedArray> content, |
| Handle<JSArray> array) { |
| CALL_HEAP_FUNCTION(content->GetIsolate(), |
| content->AddKeysFromJSArray(*array), FixedArray); |
| } |
| |
| |
| Handle<FixedArray> UnionOfKeys(Handle<FixedArray> first, |
| Handle<FixedArray> second) { |
| CALL_HEAP_FUNCTION(first->GetIsolate(), |
| first->UnionOfKeys(*second), FixedArray); |
| } |
| |
| |
| Handle<JSGlobalProxy> ReinitializeJSGlobalProxy( |
| Handle<JSFunction> constructor, |
| Handle<JSGlobalProxy> global) { |
| CALL_HEAP_FUNCTION( |
| constructor->GetIsolate(), |
| constructor->GetHeap()->ReinitializeJSGlobalProxy(*constructor, *global), |
| JSGlobalProxy); |
| } |
| |
| |
| void SetExpectedNofProperties(Handle<JSFunction> func, int nof) { |
| // If objects constructed from this function exist then changing |
| // 'estimated_nof_properties' is dangerous since the previous value might |
| // have been compiled into the fast construct stub. More over, the inobject |
| // slack tracking logic might have adjusted the previous value, so even |
| // passing the same value is risky. |
| if (func->shared()->live_objects_may_exist()) return; |
| |
| func->shared()->set_expected_nof_properties(nof); |
| if (func->has_initial_map()) { |
| Handle<Map> new_initial_map = |
| func->GetIsolate()->factory()->CopyMapDropTransitions( |
| Handle<Map>(func->initial_map())); |
| new_initial_map->set_unused_property_fields(nof); |
| func->set_initial_map(*new_initial_map); |
| } |
| } |
| |
| |
| void SetPrototypeProperty(Handle<JSFunction> func, Handle<JSObject> value) { |
| CALL_HEAP_FUNCTION_VOID(func->GetIsolate(), |
| func->SetPrototype(*value)); |
| } |
| |
| |
| static int ExpectedNofPropertiesFromEstimate(int estimate) { |
| // If no properties are added in the constructor, they are more likely |
| // to be added later. |
| if (estimate == 0) estimate = 2; |
| |
| // We do not shrink objects that go into a snapshot (yet), so we adjust |
| // the estimate conservatively. |
| if (Serializer::enabled()) return estimate + 2; |
| |
| // Inobject slack tracking will reclaim redundant inobject space later, |
| // so we can afford to adjust the estimate generously. |
| if (FLAG_clever_optimizations) { |
| return estimate + 8; |
| } else { |
| return estimate + 3; |
| } |
| } |
| |
| |
| void SetExpectedNofPropertiesFromEstimate(Handle<SharedFunctionInfo> shared, |
| int estimate) { |
| // See the comment in SetExpectedNofProperties. |
| if (shared->live_objects_may_exist()) return; |
| |
| shared->set_expected_nof_properties( |
| ExpectedNofPropertiesFromEstimate(estimate)); |
| } |
| |
| |
| void FlattenString(Handle<String> string) { |
| CALL_HEAP_FUNCTION_VOID(string->GetIsolate(), string->TryFlatten()); |
| } |
| |
| |
| Handle<String> FlattenGetString(Handle<String> string) { |
| CALL_HEAP_FUNCTION(string->GetIsolate(), string->TryFlatten(), String); |
| } |
| |
| |
| Handle<Object> SetPrototype(Handle<JSFunction> function, |
| Handle<Object> prototype) { |
| ASSERT(function->should_have_prototype()); |
| CALL_HEAP_FUNCTION(function->GetIsolate(), |
| Accessors::FunctionSetPrototype(*function, |
| *prototype, |
| NULL), |
| Object); |
| } |
| |
| |
| Handle<Object> SetProperty(Handle<Object> object, |
| Handle<Object> key, |
| Handle<Object> value, |
| PropertyAttributes attributes, |
| StrictModeFlag strict_mode) { |
| Isolate* isolate = Isolate::Current(); |
| CALL_HEAP_FUNCTION( |
| isolate, |
| Runtime::SetObjectProperty( |
| isolate, object, key, value, attributes, strict_mode), |
| Object); |
| } |
| |
| |
| Handle<Object> ForceSetProperty(Handle<JSObject> object, |
| Handle<Object> key, |
| Handle<Object> value, |
| PropertyAttributes attributes) { |
| Isolate* isolate = object->GetIsolate(); |
| CALL_HEAP_FUNCTION( |
| isolate, |
| Runtime::ForceSetObjectProperty( |
| isolate, object, key, value, attributes), |
| Object); |
| } |
| |
| |
| Handle<Object> ForceDeleteProperty(Handle<JSObject> object, |
| Handle<Object> key) { |
| Isolate* isolate = object->GetIsolate(); |
| CALL_HEAP_FUNCTION(isolate, |
| Runtime::ForceDeleteObjectProperty(isolate, object, key), |
| Object); |
| } |
| |
| |
| Handle<Object> SetPropertyWithInterceptor(Handle<JSObject> object, |
| Handle<String> key, |
| Handle<Object> value, |
| PropertyAttributes attributes, |
| StrictModeFlag strict_mode) { |
| CALL_HEAP_FUNCTION(object->GetIsolate(), |
| object->SetPropertyWithInterceptor(*key, |
| *value, |
| attributes, |
| strict_mode), |
| Object); |
| } |
| |
| |
| Handle<Object> GetProperty(Handle<JSReceiver> obj, |
| const char* name) { |
| Isolate* isolate = obj->GetIsolate(); |
| Handle<String> str = isolate->factory()->LookupAsciiSymbol(name); |
| CALL_HEAP_FUNCTION(isolate, obj->GetProperty(*str), Object); |
| } |
| |
| |
| Handle<Object> GetProperty(Handle<Object> obj, |
| Handle<Object> key) { |
| Isolate* isolate = Isolate::Current(); |
| CALL_HEAP_FUNCTION(isolate, |
| Runtime::GetObjectProperty(isolate, obj, key), Object); |
| } |
| |
| |
| Handle<Object> GetPropertyWithInterceptor(Handle<JSObject> receiver, |
| Handle<JSObject> holder, |
| Handle<String> name, |
| PropertyAttributes* attributes) { |
| Isolate* isolate = receiver->GetIsolate(); |
| CALL_HEAP_FUNCTION(isolate, |
| holder->GetPropertyWithInterceptor(*receiver, |
| *name, |
| attributes), |
| Object); |
| } |
| |
| |
| Handle<Object> SetPrototype(Handle<JSObject> obj, Handle<Object> value) { |
| const bool skip_hidden_prototypes = false; |
| CALL_HEAP_FUNCTION(obj->GetIsolate(), |
| obj->SetPrototype(*value, skip_hidden_prototypes), Object); |
| } |
| |
| |
| Handle<Object> LookupSingleCharacterStringFromCode(uint32_t index) { |
| Isolate* isolate = Isolate::Current(); |
| CALL_HEAP_FUNCTION( |
| isolate, |
| isolate->heap()->LookupSingleCharacterStringFromCode(index), Object); |
| } |
| |
| |
| Handle<String> SubString(Handle<String> str, |
| int start, |
| int end, |
| PretenureFlag pretenure) { |
| CALL_HEAP_FUNCTION(str->GetIsolate(), |
| str->SubString(start, end, pretenure), String); |
| } |
| |
| |
| Handle<JSObject> Copy(Handle<JSObject> obj) { |
| Isolate* isolate = obj->GetIsolate(); |
| CALL_HEAP_FUNCTION(isolate, |
| isolate->heap()->CopyJSObject(*obj), JSObject); |
| } |
| |
| |
| Handle<Object> SetAccessor(Handle<JSObject> obj, Handle<AccessorInfo> info) { |
| CALL_HEAP_FUNCTION(obj->GetIsolate(), obj->DefineAccessor(*info), Object); |
| } |
| |
| |
| // Wrappers for scripts are kept alive and cached in weak global |
| // handles referred from foreign objects held by the scripts as long as |
| // they are used. When they are not used anymore, the garbage |
| // collector will call the weak callback on the global handle |
| // associated with the wrapper and get rid of both the wrapper and the |
| // handle. |
| static void ClearWrapperCache(Persistent<v8::Value> handle, void*) { |
| Handle<Object> cache = Utils::OpenHandle(*handle); |
| JSValue* wrapper = JSValue::cast(*cache); |
| Foreign* foreign = Script::cast(wrapper->value())->wrapper(); |
| ASSERT(foreign->foreign_address() == |
| reinterpret_cast<Address>(cache.location())); |
| foreign->set_foreign_address(0); |
| Isolate* isolate = Isolate::Current(); |
| isolate->global_handles()->Destroy(cache.location()); |
| isolate->counters()->script_wrappers()->Decrement(); |
| } |
| |
| |
| Handle<JSValue> GetScriptWrapper(Handle<Script> script) { |
| if (script->wrapper()->foreign_address() != NULL) { |
| // Return the script wrapper directly from the cache. |
| return Handle<JSValue>( |
| reinterpret_cast<JSValue**>(script->wrapper()->foreign_address())); |
| } |
| Isolate* isolate = Isolate::Current(); |
| // Construct a new script wrapper. |
| isolate->counters()->script_wrappers()->Increment(); |
| Handle<JSFunction> constructor = isolate->script_function(); |
| Handle<JSValue> result = |
| Handle<JSValue>::cast(isolate->factory()->NewJSObject(constructor)); |
| result->set_value(*script); |
| |
| // Create a new weak global handle and use it to cache the wrapper |
| // for future use. The cache will automatically be cleared by the |
| // garbage collector when it is not used anymore. |
| Handle<Object> handle = isolate->global_handles()->Create(*result); |
| isolate->global_handles()->MakeWeak(handle.location(), NULL, |
| &ClearWrapperCache); |
| script->wrapper()->set_foreign_address( |
| reinterpret_cast<Address>(handle.location())); |
| return result; |
| } |
| |
| |
| // Init line_ends array with code positions of line ends inside script |
| // source. |
| void InitScriptLineEnds(Handle<Script> script) { |
| if (!script->line_ends()->IsUndefined()) return; |
| |
| Isolate* isolate = script->GetIsolate(); |
| |
| if (!script->source()->IsString()) { |
| ASSERT(script->source()->IsUndefined()); |
| Handle<FixedArray> empty = isolate->factory()->NewFixedArray(0); |
| script->set_line_ends(*empty); |
| ASSERT(script->line_ends()->IsFixedArray()); |
| return; |
| } |
| |
| Handle<String> src(String::cast(script->source()), isolate); |
| |
| Handle<FixedArray> array = CalculateLineEnds(src, true); |
| |
| if (*array != isolate->heap()->empty_fixed_array()) { |
| array->set_map(isolate->heap()->fixed_cow_array_map()); |
| } |
| |
| script->set_line_ends(*array); |
| ASSERT(script->line_ends()->IsFixedArray()); |
| } |
| |
| |
| template <typename SourceChar> |
| static void CalculateLineEnds(Isolate* isolate, |
| List<int>* line_ends, |
| Vector<const SourceChar> src, |
| bool with_last_line) { |
| const int src_len = src.length(); |
| StringSearch<char, SourceChar> search(isolate, CStrVector("\n")); |
| |
| // Find and record line ends. |
| int position = 0; |
| while (position != -1 && position < src_len) { |
| position = search.Search(src, position); |
| if (position != -1) { |
| line_ends->Add(position); |
| position++; |
| } else if (with_last_line) { |
| // Even if the last line misses a line end, it is counted. |
| line_ends->Add(src_len); |
| return; |
| } |
| } |
| } |
| |
| |
| Handle<FixedArray> CalculateLineEnds(Handle<String> src, |
| bool with_last_line) { |
| src = FlattenGetString(src); |
| // Rough estimate of line count based on a roughly estimated average |
| // length of (unpacked) code. |
| int line_count_estimate = src->length() >> 4; |
| List<int> line_ends(line_count_estimate); |
| Isolate* isolate = src->GetIsolate(); |
| { |
| AssertNoAllocation no_heap_allocation; // ensure vectors stay valid. |
| // Dispatch on type of strings. |
| String::FlatContent content = src->GetFlatContent(); |
| ASSERT(content.IsFlat()); |
| if (content.IsAscii()) { |
| CalculateLineEnds(isolate, |
| &line_ends, |
| content.ToAsciiVector(), |
| with_last_line); |
| } else { |
| CalculateLineEnds(isolate, |
| &line_ends, |
| content.ToUC16Vector(), |
| with_last_line); |
| } |
| } |
| int line_count = line_ends.length(); |
| Handle<FixedArray> array = isolate->factory()->NewFixedArray(line_count); |
| for (int i = 0; i < line_count; i++) { |
| array->set(i, Smi::FromInt(line_ends[i])); |
| } |
| return array; |
| } |
| |
| |
| // Convert code position into line number. |
| int GetScriptLineNumber(Handle<Script> script, int code_pos) { |
| InitScriptLineEnds(script); |
| AssertNoAllocation no_allocation; |
| FixedArray* line_ends_array = FixedArray::cast(script->line_ends()); |
| const int line_ends_len = line_ends_array->length(); |
| |
| if (!line_ends_len) return -1; |
| |
| if ((Smi::cast(line_ends_array->get(0)))->value() >= code_pos) { |
| return script->line_offset()->value(); |
| } |
| |
| int left = 0; |
| int right = line_ends_len; |
| while (int half = (right - left) / 2) { |
| if ((Smi::cast(line_ends_array->get(left + half)))->value() > code_pos) { |
| right -= half; |
| } else { |
| left += half; |
| } |
| } |
| return right + script->line_offset()->value(); |
| } |
| |
| // Convert code position into column number. |
| int GetScriptColumnNumber(Handle<Script> script, int code_pos) { |
| int line_number = GetScriptLineNumber(script, code_pos); |
| if (line_number == -1) return -1; |
| |
| AssertNoAllocation no_allocation; |
| FixedArray* line_ends_array = FixedArray::cast(script->line_ends()); |
| line_number = line_number - script->line_offset()->value(); |
| if (line_number == 0) return code_pos + script->column_offset()->value(); |
| int prev_line_end_pos = |
| Smi::cast(line_ends_array->get(line_number - 1))->value(); |
| return code_pos - (prev_line_end_pos + 1); |
| } |
| |
| int GetScriptLineNumberSafe(Handle<Script> script, int code_pos) { |
| AssertNoAllocation no_allocation; |
| if (!script->line_ends()->IsUndefined()) { |
| return GetScriptLineNumber(script, code_pos); |
| } |
| // Slow mode: we do not have line_ends. We have to iterate through source. |
| if (!script->source()->IsString()) { |
| return -1; |
| } |
| String* source = String::cast(script->source()); |
| int line = 0; |
| int len = source->length(); |
| for (int pos = 0; pos < len; pos++) { |
| if (pos == code_pos) { |
| break; |
| } |
| if (source->Get(pos) == '\n') { |
| line++; |
| } |
| } |
| return line; |
| } |
| |
| |
| void CustomArguments::IterateInstance(ObjectVisitor* v) { |
| v->VisitPointers(values_, values_ + ARRAY_SIZE(values_)); |
| } |
| |
| |
| // Compute the property keys from the interceptor. |
| v8::Handle<v8::Array> GetKeysForNamedInterceptor(Handle<JSReceiver> receiver, |
| Handle<JSObject> object) { |
| Isolate* isolate = receiver->GetIsolate(); |
| Handle<InterceptorInfo> interceptor(object->GetNamedInterceptor()); |
| CustomArguments args(isolate, interceptor->data(), *receiver, *object); |
| v8::AccessorInfo info(args.end()); |
| v8::Handle<v8::Array> result; |
| if (!interceptor->enumerator()->IsUndefined()) { |
| v8::NamedPropertyEnumerator enum_fun = |
| v8::ToCData<v8::NamedPropertyEnumerator>(interceptor->enumerator()); |
| LOG(isolate, ApiObjectAccess("interceptor-named-enum", *object)); |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| result = enum_fun(info); |
| } |
| } |
| return result; |
| } |
| |
| |
| // Compute the element keys from the interceptor. |
| v8::Handle<v8::Array> GetKeysForIndexedInterceptor(Handle<JSReceiver> receiver, |
| Handle<JSObject> object) { |
| Isolate* isolate = receiver->GetIsolate(); |
| Handle<InterceptorInfo> interceptor(object->GetIndexedInterceptor()); |
| CustomArguments args(isolate, interceptor->data(), *receiver, *object); |
| v8::AccessorInfo info(args.end()); |
| v8::Handle<v8::Array> result; |
| if (!interceptor->enumerator()->IsUndefined()) { |
| v8::IndexedPropertyEnumerator enum_fun = |
| v8::ToCData<v8::IndexedPropertyEnumerator>(interceptor->enumerator()); |
| LOG(isolate, ApiObjectAccess("interceptor-indexed-enum", *object)); |
| { |
| // Leaving JavaScript. |
| VMState state(isolate, EXTERNAL); |
| result = enum_fun(info); |
| } |
| } |
| return result; |
| } |
| |
| |
| static bool ContainsOnlyValidKeys(Handle<FixedArray> array) { |
| int len = array->length(); |
| for (int i = 0; i < len; i++) { |
| Object* e = array->get(i); |
| if (!(e->IsString() || e->IsNumber())) return false; |
| } |
| return true; |
| } |
| |
| |
| Handle<FixedArray> GetKeysInFixedArrayFor(Handle<JSReceiver> object, |
| KeyCollectionType type, |
| bool* threw) { |
| USE(ContainsOnlyValidKeys); |
| Isolate* isolate = object->GetIsolate(); |
| Handle<FixedArray> content = isolate->factory()->empty_fixed_array(); |
| Handle<JSObject> arguments_boilerplate = Handle<JSObject>( |
| isolate->context()->global_context()->arguments_boilerplate(), |
| isolate); |
| Handle<JSFunction> arguments_function = Handle<JSFunction>( |
| JSFunction::cast(arguments_boilerplate->map()->constructor()), |
| isolate); |
| |
| // Only collect keys if access is permitted. |
| for (Handle<Object> p = object; |
| *p != isolate->heap()->null_value(); |
| p = Handle<Object>(p->GetPrototype(), isolate)) { |
| if (p->IsJSProxy()) { |
| Handle<JSProxy> proxy(JSProxy::cast(*p), isolate); |
| Handle<Object> args[] = { proxy }; |
| Handle<Object> names = Execution::Call( |
| isolate->proxy_enumerate(), object, ARRAY_SIZE(args), args, threw); |
| if (*threw) return content; |
| content = AddKeysFromJSArray(content, Handle<JSArray>::cast(names)); |
| break; |
| } |
| |
| Handle<JSObject> current(JSObject::cast(*p), isolate); |
| |
| // Check access rights if required. |
| if (current->IsAccessCheckNeeded() && |
| !isolate->MayNamedAccess(*current, |
| isolate->heap()->undefined_value(), |
| v8::ACCESS_KEYS)) { |
| isolate->ReportFailedAccessCheck(*current, v8::ACCESS_KEYS); |
| break; |
| } |
| |
| // Compute the element keys. |
| Handle<FixedArray> element_keys = |
| isolate->factory()->NewFixedArray(current->NumberOfEnumElements()); |
| current->GetEnumElementKeys(*element_keys); |
| content = UnionOfKeys(content, element_keys); |
| ASSERT(ContainsOnlyValidKeys(content)); |
| |
| // Add the element keys from the interceptor. |
| if (current->HasIndexedInterceptor()) { |
| v8::Handle<v8::Array> result = |
| GetKeysForIndexedInterceptor(object, current); |
| if (!result.IsEmpty()) |
| content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result)); |
| ASSERT(ContainsOnlyValidKeys(content)); |
| } |
| |
| // We can cache the computed property keys if access checks are |
| // not needed and no interceptors are involved. |
| // |
| // We do not use the cache if the object has elements and |
| // therefore it does not make sense to cache the property names |
| // for arguments objects. Arguments objects will always have |
| // elements. |
| // Wrapped strings have elements, but don't have an elements |
| // array or dictionary. So the fast inline test for whether to |
| // use the cache says yes, so we should not create a cache. |
| bool cache_enum_keys = |
| ((current->map()->constructor() != *arguments_function) && |
| !current->IsJSValue() && |
| !current->IsAccessCheckNeeded() && |
| !current->HasNamedInterceptor() && |
| !current->HasIndexedInterceptor()); |
| // Compute the property keys and cache them if possible. |
| content = |
| UnionOfKeys(content, GetEnumPropertyKeys(current, cache_enum_keys)); |
| ASSERT(ContainsOnlyValidKeys(content)); |
| |
| // Add the property keys from the interceptor. |
| if (current->HasNamedInterceptor()) { |
| v8::Handle<v8::Array> result = |
| GetKeysForNamedInterceptor(object, current); |
| if (!result.IsEmpty()) |
| content = AddKeysFromJSArray(content, v8::Utils::OpenHandle(*result)); |
| ASSERT(ContainsOnlyValidKeys(content)); |
| } |
| |
| // If we only want local properties we bail out after the first |
| // iteration. |
| if (type == LOCAL_ONLY) |
| break; |
| } |
| return content; |
| } |
| |
| |
| Handle<JSArray> GetKeysFor(Handle<JSReceiver> object, bool* threw) { |
| Isolate* isolate = object->GetIsolate(); |
| isolate->counters()->for_in()->Increment(); |
| Handle<FixedArray> elements = |
| GetKeysInFixedArrayFor(object, INCLUDE_PROTOS, threw); |
| return isolate->factory()->NewJSArrayWithElements(elements); |
| } |
| |
| |
| Handle<FixedArray> GetEnumPropertyKeys(Handle<JSObject> object, |
| bool cache_result) { |
| int index = 0; |
| Isolate* isolate = object->GetIsolate(); |
| if (object->HasFastProperties()) { |
| if (object->map()->instance_descriptors()->HasEnumCache()) { |
| isolate->counters()->enum_cache_hits()->Increment(); |
| DescriptorArray* desc = object->map()->instance_descriptors(); |
| return Handle<FixedArray>(FixedArray::cast(desc->GetEnumCache()), |
| isolate); |
| } |
| isolate->counters()->enum_cache_misses()->Increment(); |
| Handle<Map> map(object->map()); |
| int num_enum = object->NumberOfLocalProperties(DONT_ENUM); |
| |
| Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum); |
| Handle<FixedArray> sort_array = isolate->factory()->NewFixedArray(num_enum); |
| |
| Handle<FixedArray> indices; |
| Handle<FixedArray> sort_array2; |
| |
| if (cache_result) { |
| indices = isolate->factory()->NewFixedArray(num_enum); |
| sort_array2 = isolate->factory()->NewFixedArray(num_enum); |
| } |
| |
| Handle<DescriptorArray> descs = |
| Handle<DescriptorArray>(object->map()->instance_descriptors(), isolate); |
| |
| for (int i = 0; i < descs->number_of_descriptors(); i++) { |
| if (descs->IsProperty(i) && !descs->IsDontEnum(i)) { |
| storage->set(index, descs->GetKey(i)); |
| PropertyDetails details(descs->GetDetails(i)); |
| sort_array->set(index, Smi::FromInt(details.index())); |
| if (!indices.is_null()) { |
| if (details.type() != FIELD) { |
| indices = Handle<FixedArray>(); |
| sort_array2 = Handle<FixedArray>(); |
| } else { |
| int field_index = Descriptor::IndexFromValue(descs->GetValue(i)); |
| if (field_index >= map->inobject_properties()) { |
| field_index = -(field_index - map->inobject_properties() + 1); |
| } |
| indices->set(index, Smi::FromInt(field_index)); |
| sort_array2->set(index, Smi::FromInt(details.index())); |
| } |
| } |
| index++; |
| } |
| } |
| storage->SortPairs(*sort_array, sort_array->length()); |
| if (!indices.is_null()) { |
| indices->SortPairs(*sort_array2, sort_array2->length()); |
| } |
| if (cache_result) { |
| Handle<FixedArray> bridge_storage = |
| isolate->factory()->NewFixedArray( |
| DescriptorArray::kEnumCacheBridgeLength); |
| DescriptorArray* desc = object->map()->instance_descriptors(); |
| desc->SetEnumCache(*bridge_storage, |
| *storage, |
| indices.is_null() ? Object::cast(Smi::FromInt(0)) |
| : Object::cast(*indices)); |
| } |
| ASSERT(storage->length() == index); |
| return storage; |
| } else { |
| int num_enum = object->NumberOfLocalProperties(DONT_ENUM); |
| Handle<FixedArray> storage = isolate->factory()->NewFixedArray(num_enum); |
| Handle<FixedArray> sort_array = isolate->factory()->NewFixedArray(num_enum); |
| object->property_dictionary()->CopyEnumKeysTo(*storage, *sort_array); |
| return storage; |
| } |
| } |
| |
| |
| Handle<ObjectHashSet> ObjectHashSetAdd(Handle<ObjectHashSet> table, |
| Handle<Object> key) { |
| CALL_HEAP_FUNCTION(table->GetIsolate(), |
| table->Add(*key), |
| ObjectHashSet); |
| } |
| |
| |
| Handle<ObjectHashSet> ObjectHashSetRemove(Handle<ObjectHashSet> table, |
| Handle<Object> key) { |
| CALL_HEAP_FUNCTION(table->GetIsolate(), |
| table->Remove(*key), |
| ObjectHashSet); |
| } |
| |
| |
| Handle<ObjectHashTable> PutIntoObjectHashTable(Handle<ObjectHashTable> table, |
| Handle<Object> key, |
| Handle<Object> value) { |
| CALL_HEAP_FUNCTION(table->GetIsolate(), |
| table->Put(*key, *value), |
| ObjectHashTable); |
| } |
| |
| |
| // This method determines the type of string involved and then gets the UTF8 |
| // length of the string. It doesn't flatten the string and has log(n) recursion |
| // for a string of length n. If the failure flag gets set, then we have to |
| // flatten the string and retry. Failures are caused by surrogate pairs in deep |
| // cons strings. |
| |
| // Single surrogate characters that are encountered in the UTF-16 character |
| // sequence of the input string get counted as 3 UTF-8 bytes, because that |
| // is the way that WriteUtf8 will encode them. Surrogate pairs are counted and |
| // encoded as one 4-byte UTF-8 sequence. |
| |
| // This function conceptually uses recursion on the two halves of cons strings. |
| // However, in order to avoid the recursion going too deep it recurses on the |
| // second string of the cons, but iterates on the first substring (by manually |
| // eliminating it as a tail recursion). This means it counts the UTF-8 length |
| // from the end to the start, which makes no difference to the total. |
| |
| // Surrogate pairs are recognized even if they are split across two sides of a |
| // cons, which complicates the implementation somewhat. Therefore, too deep |
| // recursion cannot always be avoided. This case is detected, and the failure |
| // flag is set, a signal to the caller that the string should be flattened and |
| // the operation retried. |
| int Utf8LengthHelper(String* input, |
| int from, |
| int to, |
| bool followed_by_surrogate, |
| int max_recursion, |
| bool* failure, |
| bool* starts_with_surrogate) { |
| if (from == to) return 0; |
| int total = 0; |
| bool dummy; |
| while (true) { |
| if (input->IsAsciiRepresentation()) { |
| *starts_with_surrogate = false; |
| return total + to - from; |
| } |
| switch (StringShape(input).representation_tag()) { |
| case kConsStringTag: { |
| ConsString* str = ConsString::cast(input); |
| String* first = str->first(); |
| String* second = str->second(); |
| int first_length = first->length(); |
| if (first_length - from > to - first_length) { |
| if (first_length < to) { |
| // Right hand side is shorter. No need to check the recursion depth |
| // since this can only happen log(n) times. |
| bool right_starts_with_surrogate = false; |
| total += Utf8LengthHelper(second, |
| 0, |
| to - first_length, |
| followed_by_surrogate, |
| max_recursion - 1, |
| failure, |
| &right_starts_with_surrogate); |
| if (*failure) return 0; |
| followed_by_surrogate = right_starts_with_surrogate; |
| input = first; |
| to = first_length; |
| } else { |
| // We only need the left hand side. |
| input = first; |
| } |
| } else { |
| if (first_length > from) { |
| // Left hand side is shorter. |
| if (first->IsAsciiRepresentation()) { |
| total += first_length - from; |
| *starts_with_surrogate = false; |
| starts_with_surrogate = &dummy; |
| input = second; |
| from = 0; |
| to -= first_length; |
| } else if (second->IsAsciiRepresentation()) { |
| followed_by_surrogate = false; |
| total += to - first_length; |
| input = first; |
| to = first_length; |
| } else if (max_recursion > 0) { |
| bool right_starts_with_surrogate = false; |
| // Recursing on the long one. This may fail. |
| total += Utf8LengthHelper(second, |
| 0, |
| to - first_length, |
| followed_by_surrogate, |
| max_recursion - 1, |
| failure, |
| &right_starts_with_surrogate); |
| if (*failure) return 0; |
| input = first; |
| to = first_length; |
| followed_by_surrogate = right_starts_with_surrogate; |
| } else { |
| *failure = true; |
| return 0; |
| } |
| } else { |
| // We only need the right hand side. |
| input = second; |
| from = 0; |
| to -= first_length; |
| } |
| } |
| continue; |
| } |
| case kExternalStringTag: |
| case kSeqStringTag: { |
| Vector<const uc16> vector = input->GetFlatContent().ToUC16Vector(); |
| const uc16* p = vector.start(); |
| int previous = unibrow::Utf16::kNoPreviousCharacter; |
| for (int i = from; i < to; i++) { |
| uc16 c = p[i]; |
| total += unibrow::Utf8::Length(c, previous); |
| previous = c; |
| } |
| if (to - from > 0) { |
| if (unibrow::Utf16::IsLeadSurrogate(previous) && |
| followed_by_surrogate) { |
| total -= unibrow::Utf8::kBytesSavedByCombiningSurrogates; |
| } |
| if (unibrow::Utf16::IsTrailSurrogate(p[from])) { |
| *starts_with_surrogate = true; |
| } |
| } |
| return total; |
| } |
| case kSlicedStringTag: { |
| SlicedString* str = SlicedString::cast(input); |
| int offset = str->offset(); |
| input = str->parent(); |
| from += offset; |
| to += offset; |
| continue; |
| } |
| default: |
| break; |
| } |
| UNREACHABLE(); |
| return 0; |
| } |
| return 0; |
| } |
| |
| |
| int Utf8Length(Handle<String> str) { |
| bool dummy; |
| bool failure; |
| int len; |
| const int kRecursionBudget = 100; |
| do { |
| failure = false; |
| len = Utf8LengthHelper( |
| *str, 0, str->length(), false, kRecursionBudget, &failure, &dummy); |
| if (failure) FlattenString(str); |
| } while (failure); |
| return len; |
| } |
| |
| } } // namespace v8::internal |