blob: 5315bfbde4fac5bf307d7e614db513afbb8cec9e [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifdef ENABLE_LOGGING_AND_PROFILING
#include "v8.h"
#include "global-handles.h"
#include "scopeinfo.h"
#include "top.h"
#include "zone-inl.h"
#include "profile-generator-inl.h"
namespace v8 {
namespace internal {
TokenEnumerator::TokenEnumerator()
: token_locations_(4),
token_removed_(4) {
}
TokenEnumerator::~TokenEnumerator() {
for (int i = 0; i < token_locations_.length(); ++i) {
if (!token_removed_[i]) {
GlobalHandles::ClearWeakness(token_locations_[i]);
GlobalHandles::Destroy(token_locations_[i]);
}
}
}
int TokenEnumerator::GetTokenId(Object* token) {
if (token == NULL) return TokenEnumerator::kNoSecurityToken;
for (int i = 0; i < token_locations_.length(); ++i) {
if (*token_locations_[i] == token && !token_removed_[i]) return i;
}
Handle<Object> handle = GlobalHandles::Create(token);
// handle.location() points to a memory cell holding a pointer
// to a token object in the V8's heap.
GlobalHandles::MakeWeak(handle.location(), this, TokenRemovedCallback);
token_locations_.Add(handle.location());
token_removed_.Add(false);
return token_locations_.length() - 1;
}
void TokenEnumerator::TokenRemovedCallback(v8::Persistent<v8::Value> handle,
void* parameter) {
reinterpret_cast<TokenEnumerator*>(parameter)->TokenRemoved(
Utils::OpenHandle(*handle).location());
}
void TokenEnumerator::TokenRemoved(Object** token_location) {
for (int i = 0; i < token_locations_.length(); ++i) {
if (token_locations_[i] == token_location && !token_removed_[i]) {
token_removed_[i] = true;
return;
}
}
}
StringsStorage::StringsStorage()
: names_(StringsMatch) {
}
StringsStorage::~StringsStorage() {
for (HashMap::Entry* p = names_.Start();
p != NULL;
p = names_.Next(p)) {
DeleteArray(reinterpret_cast<const char*>(p->value));
}
}
const char* StringsStorage::GetName(String* name) {
if (name->IsString()) {
char* c_name =
name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL).Detach();
HashMap::Entry* cache_entry = names_.Lookup(c_name, name->Hash(), true);
if (cache_entry->value == NULL) {
// New entry added.
cache_entry->value = c_name;
} else {
DeleteArray(c_name);
}
return reinterpret_cast<const char*>(cache_entry->value);
}
return "";
}
const char* CodeEntry::kEmptyNamePrefix = "";
unsigned CodeEntry::next_call_uid_ = 1;
void CodeEntry::CopyData(const CodeEntry& source) {
call_uid_ = source.call_uid_;
tag_ = source.tag_;
name_prefix_ = source.name_prefix_;
name_ = source.name_;
resource_name_ = source.resource_name_;
line_number_ = source.line_number_;
}
ProfileNode* ProfileNode::FindChild(CodeEntry* entry) {
HashMap::Entry* map_entry =
children_.Lookup(entry, CodeEntryHash(entry), false);
return map_entry != NULL ?
reinterpret_cast<ProfileNode*>(map_entry->value) : NULL;
}
ProfileNode* ProfileNode::FindOrAddChild(CodeEntry* entry) {
HashMap::Entry* map_entry =
children_.Lookup(entry, CodeEntryHash(entry), true);
if (map_entry->value == NULL) {
// New node added.
ProfileNode* new_node = new ProfileNode(tree_, entry);
map_entry->value = new_node;
children_list_.Add(new_node);
}
return reinterpret_cast<ProfileNode*>(map_entry->value);
}
double ProfileNode::GetSelfMillis() const {
return tree_->TicksToMillis(self_ticks_);
}
double ProfileNode::GetTotalMillis() const {
return tree_->TicksToMillis(total_ticks_);
}
void ProfileNode::Print(int indent) {
OS::Print("%5u %5u %*c %s%s [%d]",
total_ticks_, self_ticks_,
indent, ' ',
entry_->name_prefix(),
entry_->name(),
entry_->security_token_id());
if (entry_->resource_name()[0] != '\0')
OS::Print(" %s:%d", entry_->resource_name(), entry_->line_number());
OS::Print("\n");
for (HashMap::Entry* p = children_.Start();
p != NULL;
p = children_.Next(p)) {
reinterpret_cast<ProfileNode*>(p->value)->Print(indent + 2);
}
}
class DeleteNodesCallback {
public:
void BeforeTraversingChild(ProfileNode*, ProfileNode*) { }
void AfterAllChildrenTraversed(ProfileNode* node) {
delete node;
}
void AfterChildTraversed(ProfileNode*, ProfileNode*) { }
};
ProfileTree::ProfileTree()
: root_entry_(Logger::FUNCTION_TAG,
"",
"(root)",
"",
0,
TokenEnumerator::kNoSecurityToken),
root_(new ProfileNode(this, &root_entry_)) {
}
ProfileTree::~ProfileTree() {
DeleteNodesCallback cb;
TraverseDepthFirst(&cb);
}
void ProfileTree::AddPathFromEnd(const Vector<CodeEntry*>& path) {
ProfileNode* node = root_;
for (CodeEntry** entry = path.start() + path.length() - 1;
entry != path.start() - 1;
--entry) {
if (*entry != NULL) {
node = node->FindOrAddChild(*entry);
}
}
node->IncrementSelfTicks();
}
void ProfileTree::AddPathFromStart(const Vector<CodeEntry*>& path) {
ProfileNode* node = root_;
for (CodeEntry** entry = path.start();
entry != path.start() + path.length();
++entry) {
if (*entry != NULL) {
node = node->FindOrAddChild(*entry);
}
}
node->IncrementSelfTicks();
}
struct NodesPair {
NodesPair(ProfileNode* src, ProfileNode* dst)
: src(src), dst(dst) { }
ProfileNode* src;
ProfileNode* dst;
};
class FilteredCloneCallback {
public:
explicit FilteredCloneCallback(ProfileNode* dst_root, int security_token_id)
: stack_(10),
security_token_id_(security_token_id) {
stack_.Add(NodesPair(NULL, dst_root));
}
void BeforeTraversingChild(ProfileNode* parent, ProfileNode* child) {
if (IsTokenAcceptable(child->entry()->security_token_id(),
parent->entry()->security_token_id())) {
ProfileNode* clone = stack_.last().dst->FindOrAddChild(child->entry());
clone->IncreaseSelfTicks(child->self_ticks());
stack_.Add(NodesPair(child, clone));
} else {
// Attribute ticks to parent node.
stack_.last().dst->IncreaseSelfTicks(child->self_ticks());
}
}
void AfterAllChildrenTraversed(ProfileNode* parent) { }
void AfterChildTraversed(ProfileNode*, ProfileNode* child) {
if (stack_.last().src == child) {
stack_.RemoveLast();
}
}
private:
bool IsTokenAcceptable(int token, int parent_token) {
if (token == TokenEnumerator::kNoSecurityToken
|| token == security_token_id_) return true;
if (token == TokenEnumerator::kInheritsSecurityToken) {
ASSERT(parent_token != TokenEnumerator::kInheritsSecurityToken);
return parent_token == TokenEnumerator::kNoSecurityToken
|| parent_token == security_token_id_;
}
return false;
}
List<NodesPair> stack_;
int security_token_id_;
};
void ProfileTree::FilteredClone(ProfileTree* src, int security_token_id) {
ms_to_ticks_scale_ = src->ms_to_ticks_scale_;
FilteredCloneCallback cb(root_, security_token_id);
src->TraverseDepthFirst(&cb);
CalculateTotalTicks();
}
void ProfileTree::SetTickRatePerMs(double ticks_per_ms) {
ms_to_ticks_scale_ = ticks_per_ms > 0 ? 1.0 / ticks_per_ms : 1.0;
}
class Position {
public:
explicit Position(ProfileNode* node)
: node(node), child_idx_(0) { }
INLINE(ProfileNode* current_child()) {
return node->children()->at(child_idx_);
}
INLINE(bool has_current_child()) {
return child_idx_ < node->children()->length();
}
INLINE(void next_child()) { ++child_idx_; }
ProfileNode* node;
private:
int child_idx_;
};
// Non-recursive implementation of a depth-first post-order tree traversal.
template <typename Callback>
void ProfileTree::TraverseDepthFirst(Callback* callback) {
List<Position> stack(10);
stack.Add(Position(root_));
while (stack.length() > 0) {
Position& current = stack.last();
if (current.has_current_child()) {
callback->BeforeTraversingChild(current.node, current.current_child());
stack.Add(Position(current.current_child()));
} else {
callback->AfterAllChildrenTraversed(current.node);
if (stack.length() > 1) {
Position& parent = stack[stack.length() - 2];
callback->AfterChildTraversed(parent.node, current.node);
parent.next_child();
}
// Remove child from the stack.
stack.RemoveLast();
}
}
}
class CalculateTotalTicksCallback {
public:
void BeforeTraversingChild(ProfileNode*, ProfileNode*) { }
void AfterAllChildrenTraversed(ProfileNode* node) {
node->IncreaseTotalTicks(node->self_ticks());
}
void AfterChildTraversed(ProfileNode* parent, ProfileNode* child) {
parent->IncreaseTotalTicks(child->total_ticks());
}
};
void ProfileTree::CalculateTotalTicks() {
CalculateTotalTicksCallback cb;
TraverseDepthFirst(&cb);
}
void ProfileTree::ShortPrint() {
OS::Print("root: %u %u %.2fms %.2fms\n",
root_->total_ticks(), root_->self_ticks(),
root_->GetTotalMillis(), root_->GetSelfMillis());
}
void CpuProfile::AddPath(const Vector<CodeEntry*>& path) {
top_down_.AddPathFromEnd(path);
bottom_up_.AddPathFromStart(path);
}
void CpuProfile::CalculateTotalTicks() {
top_down_.CalculateTotalTicks();
bottom_up_.CalculateTotalTicks();
}
void CpuProfile::SetActualSamplingRate(double actual_sampling_rate) {
top_down_.SetTickRatePerMs(actual_sampling_rate);
bottom_up_.SetTickRatePerMs(actual_sampling_rate);
}
CpuProfile* CpuProfile::FilteredClone(int security_token_id) {
ASSERT(security_token_id != TokenEnumerator::kNoSecurityToken);
CpuProfile* clone = new CpuProfile(title_, uid_);
clone->top_down_.FilteredClone(&top_down_, security_token_id);
clone->bottom_up_.FilteredClone(&bottom_up_, security_token_id);
return clone;
}
void CpuProfile::ShortPrint() {
OS::Print("top down ");
top_down_.ShortPrint();
OS::Print("bottom up ");
bottom_up_.ShortPrint();
}
void CpuProfile::Print() {
OS::Print("[Top down]:\n");
top_down_.Print();
OS::Print("[Bottom up]:\n");
bottom_up_.Print();
}
const CodeMap::CodeTreeConfig::Key CodeMap::CodeTreeConfig::kNoKey = NULL;
const CodeMap::CodeTreeConfig::Value CodeMap::CodeTreeConfig::kNoValue =
CodeMap::CodeEntryInfo(NULL, 0);
void CodeMap::AddAlias(Address start, CodeEntry* entry, Address code_start) {
CodeTree::Locator locator;
if (tree_.Find(code_start, &locator)) {
const CodeEntryInfo& code_info = locator.value();
entry->CopyData(*code_info.entry);
tree_.Insert(start, &locator);
locator.set_value(CodeEntryInfo(entry, code_info.size));
}
}
CodeEntry* CodeMap::FindEntry(Address addr) {
CodeTree::Locator locator;
if (tree_.FindGreatestLessThan(addr, &locator)) {
// locator.key() <= addr. Need to check that addr is within entry.
const CodeEntryInfo& entry = locator.value();
if (addr < (locator.key() + entry.size))
return entry.entry;
}
return NULL;
}
void CodeMap::CodeTreePrinter::Call(
const Address& key, const CodeMap::CodeEntryInfo& value) {
OS::Print("%p %5d %s\n", key, value.size, value.entry->name());
}
void CodeMap::Print() {
CodeTreePrinter printer;
tree_.ForEach(&printer);
}
CpuProfilesCollection::CpuProfilesCollection()
: profiles_uids_(UidsMatch),
current_profiles_semaphore_(OS::CreateSemaphore(1)) {
// Create list of unabridged profiles.
profiles_by_token_.Add(new List<CpuProfile*>());
}
static void DeleteArgsCountName(char** name_ptr) {
DeleteArray(*name_ptr);
}
static void DeleteCodeEntry(CodeEntry** entry_ptr) {
delete *entry_ptr;
}
static void DeleteCpuProfile(CpuProfile** profile_ptr) {
delete *profile_ptr;
}
static void DeleteProfilesList(List<CpuProfile*>** list_ptr) {
(*list_ptr)->Iterate(DeleteCpuProfile);
delete *list_ptr;
}
CpuProfilesCollection::~CpuProfilesCollection() {
delete current_profiles_semaphore_;
current_profiles_.Iterate(DeleteCpuProfile);
profiles_by_token_.Iterate(DeleteProfilesList);
code_entries_.Iterate(DeleteCodeEntry);
args_count_names_.Iterate(DeleteArgsCountName);
}
bool CpuProfilesCollection::StartProfiling(const char* title, unsigned uid) {
ASSERT(uid > 0);
current_profiles_semaphore_->Wait();
for (int i = 0; i < current_profiles_.length(); ++i) {
if (strcmp(current_profiles_[i]->title(), title) == 0) {
// Ignore attempts to start profile with the same title.
current_profiles_semaphore_->Signal();
return false;
}
}
current_profiles_.Add(new CpuProfile(title, uid));
current_profiles_semaphore_->Signal();
return true;
}
bool CpuProfilesCollection::StartProfiling(String* title, unsigned uid) {
return StartProfiling(GetName(title), uid);
}
CpuProfile* CpuProfilesCollection::StopProfiling(int security_token_id,
const char* title,
double actual_sampling_rate) {
const int title_len = StrLength(title);
CpuProfile* profile = NULL;
current_profiles_semaphore_->Wait();
for (int i = current_profiles_.length() - 1; i >= 0; --i) {
if (title_len == 0 || strcmp(current_profiles_[i]->title(), title) == 0) {
profile = current_profiles_.Remove(i);
break;
}
}
current_profiles_semaphore_->Signal();
if (profile != NULL) {
profile->CalculateTotalTicks();
profile->SetActualSamplingRate(actual_sampling_rate);
List<CpuProfile*>* unabridged_list =
profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)];
unabridged_list->Add(profile);
HashMap::Entry* entry =
profiles_uids_.Lookup(reinterpret_cast<void*>(profile->uid()),
static_cast<uint32_t>(profile->uid()),
true);
ASSERT(entry->value == NULL);
entry->value = reinterpret_cast<void*>(unabridged_list->length() - 1);
return GetProfile(security_token_id, profile->uid());
}
return NULL;
}
CpuProfile* CpuProfilesCollection::StopProfiling(int security_token_id,
String* title,
double actual_sampling_rate) {
return StopProfiling(security_token_id, GetName(title), actual_sampling_rate);
}
CpuProfile* CpuProfilesCollection::GetProfile(int security_token_id,
unsigned uid) {
HashMap::Entry* entry = profiles_uids_.Lookup(reinterpret_cast<void*>(uid),
static_cast<uint32_t>(uid),
false);
int index;
if (entry != NULL) {
index = static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
} else {
return NULL;
}
List<CpuProfile*>* unabridged_list =
profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)];
if (security_token_id == TokenEnumerator::kNoSecurityToken) {
return unabridged_list->at(index);
}
List<CpuProfile*>* list = GetProfilesList(security_token_id);
if (list->at(index) == NULL) {
list->at(index) =
unabridged_list->at(index)->FilteredClone(security_token_id);
}
return list->at(index);
}
int CpuProfilesCollection::TokenToIndex(int security_token_id) {
ASSERT(TokenEnumerator::kNoSecurityToken == -1);
return security_token_id + 1; // kNoSecurityToken -> 0, 0 -> 1, ...
}
List<CpuProfile*>* CpuProfilesCollection::GetProfilesList(
int security_token_id) {
const int index = TokenToIndex(security_token_id);
const int lists_to_add = index - profiles_by_token_.length() + 1;
if (lists_to_add > 0) profiles_by_token_.AddBlock(NULL, lists_to_add);
List<CpuProfile*>* unabridged_list =
profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)];
const int current_count = unabridged_list->length();
if (profiles_by_token_[index] == NULL) {
profiles_by_token_[index] = new List<CpuProfile*>(current_count);
}
List<CpuProfile*>* list = profiles_by_token_[index];
const int profiles_to_add = current_count - list->length();
if (profiles_to_add > 0) list->AddBlock(NULL, profiles_to_add);
return list;
}
List<CpuProfile*>* CpuProfilesCollection::Profiles(int security_token_id) {
List<CpuProfile*>* unabridged_list =
profiles_by_token_[TokenToIndex(TokenEnumerator::kNoSecurityToken)];
if (security_token_id == TokenEnumerator::kNoSecurityToken) {
return unabridged_list;
}
List<CpuProfile*>* list = GetProfilesList(security_token_id);
const int current_count = unabridged_list->length();
for (int i = 0; i < current_count; ++i) {
if (list->at(i) == NULL) {
list->at(i) = unabridged_list->at(i)->FilteredClone(security_token_id);
}
}
return list;
}
CodeEntry* CpuProfilesCollection::NewCodeEntry(Logger::LogEventsAndTags tag,
String* name,
String* resource_name,
int line_number) {
CodeEntry* entry = new CodeEntry(tag,
CodeEntry::kEmptyNamePrefix,
GetFunctionName(name),
GetName(resource_name),
line_number,
TokenEnumerator::kNoSecurityToken);
code_entries_.Add(entry);
return entry;
}
CodeEntry* CpuProfilesCollection::NewCodeEntry(Logger::LogEventsAndTags tag,
const char* name) {
CodeEntry* entry = new CodeEntry(tag,
CodeEntry::kEmptyNamePrefix,
GetFunctionName(name),
"",
v8::CpuProfileNode::kNoLineNumberInfo,
TokenEnumerator::kNoSecurityToken);
code_entries_.Add(entry);
return entry;
}
CodeEntry* CpuProfilesCollection::NewCodeEntry(Logger::LogEventsAndTags tag,
const char* name_prefix,
String* name) {
CodeEntry* entry = new CodeEntry(tag,
name_prefix,
GetName(name),
"",
v8::CpuProfileNode::kNoLineNumberInfo,
TokenEnumerator::kInheritsSecurityToken);
code_entries_.Add(entry);
return entry;
}
CodeEntry* CpuProfilesCollection::NewCodeEntry(Logger::LogEventsAndTags tag,
int args_count) {
CodeEntry* entry = new CodeEntry(tag,
"args_count: ",
GetName(args_count),
"",
v8::CpuProfileNode::kNoLineNumberInfo,
TokenEnumerator::kInheritsSecurityToken);
code_entries_.Add(entry);
return entry;
}
CodeEntry* CpuProfilesCollection::NewCodeEntry(int security_token_id) {
CodeEntry* entry = new CodeEntry(security_token_id);
code_entries_.Add(entry);
return entry;
}
const char* CpuProfilesCollection::GetName(int args_count) {
ASSERT(args_count >= 0);
if (args_count_names_.length() <= args_count) {
args_count_names_.AddBlock(
NULL, args_count - args_count_names_.length() + 1);
}
if (args_count_names_[args_count] == NULL) {
const int kMaximumNameLength = 32;
char* name = NewArray<char>(kMaximumNameLength);
OS::SNPrintF(Vector<char>(name, kMaximumNameLength), "%d", args_count);
args_count_names_[args_count] = name;
}
return args_count_names_[args_count];
}
void CpuProfilesCollection::AddPathToCurrentProfiles(
const Vector<CodeEntry*>& path) {
// As starting / stopping profiles is rare relatively to this
// method, we don't bother minimizing the duration of lock holding,
// e.g. copying contents of the list to a local vector.
current_profiles_semaphore_->Wait();
for (int i = 0; i < current_profiles_.length(); ++i) {
current_profiles_[i]->AddPath(path);
}
current_profiles_semaphore_->Signal();
}
void SampleRateCalculator::Tick() {
if (--wall_time_query_countdown_ == 0)
UpdateMeasurements(OS::TimeCurrentMillis());
}
void SampleRateCalculator::UpdateMeasurements(double current_time) {
if (measurements_count_++ != 0) {
const double measured_ticks_per_ms =
(kWallTimeQueryIntervalMs * ticks_per_ms_) /
(current_time - last_wall_time_);
// Update the average value.
ticks_per_ms_ +=
(measured_ticks_per_ms - ticks_per_ms_) / measurements_count_;
// Update the externally accessible result.
result_ = static_cast<AtomicWord>(ticks_per_ms_ * kResultScale);
}
last_wall_time_ = current_time;
wall_time_query_countdown_ =
static_cast<unsigned>(kWallTimeQueryIntervalMs * ticks_per_ms_);
}
const char* ProfileGenerator::kAnonymousFunctionName = "(anonymous function)";
const char* ProfileGenerator::kProgramEntryName = "(program)";
const char* ProfileGenerator::kGarbageCollectorEntryName =
"(garbage collector)";
ProfileGenerator::ProfileGenerator(CpuProfilesCollection* profiles)
: profiles_(profiles),
program_entry_(
profiles->NewCodeEntry(Logger::FUNCTION_TAG, kProgramEntryName)),
gc_entry_(
profiles->NewCodeEntry(Logger::BUILTIN_TAG,
kGarbageCollectorEntryName)) {
}
void ProfileGenerator::RecordTickSample(const TickSample& sample) {
// Allocate space for stack frames + pc + function + vm-state.
ScopedVector<CodeEntry*> entries(sample.frames_count + 3);
// As actual number of decoded code entries may vary, initialize
// entries vector with NULL values.
CodeEntry** entry = entries.start();
memset(entry, 0, entries.length() * sizeof(*entry));
if (sample.pc != NULL) {
*entry++ = code_map_.FindEntry(sample.pc);
if (sample.function != NULL) {
*entry = code_map_.FindEntry(sample.function);
if (*entry != NULL && !(*entry)->is_js_function()) {
*entry = NULL;
} else {
CodeEntry* pc_entry = *entries.start();
if (pc_entry == NULL) {
*entry = NULL;
} else if (pc_entry->is_js_function()) {
// Use function entry in favor of pc entry, as function
// entry has security token.
*entries.start() = NULL;
}
}
entry++;
}
for (const Address *stack_pos = sample.stack,
*stack_end = stack_pos + sample.frames_count;
stack_pos != stack_end;
++stack_pos) {
*entry++ = code_map_.FindEntry(*stack_pos);
}
}
if (FLAG_prof_browser_mode) {
bool no_symbolized_entries = true;
for (CodeEntry** e = entries.start(); e != entry; ++e) {
if (*e != NULL) {
no_symbolized_entries = false;
break;
}
}
// If no frames were symbolized, put the VM state entry in.
if (no_symbolized_entries) {
*entry++ = EntryForVMState(sample.state);
}
}
profiles_->AddPathToCurrentProfiles(entries);
}
HeapGraphEdge::HeapGraphEdge(Type type,
const char* name,
HeapEntry* from,
HeapEntry* to)
: type_(type), name_(name), from_(from), to_(to) {
ASSERT(type_ == CONTEXT_VARIABLE || type_ == PROPERTY || type_ == INTERNAL);
}
HeapGraphEdge::HeapGraphEdge(int index,
HeapEntry* from,
HeapEntry* to)
: type_(ELEMENT), index_(index), from_(from), to_(to) {
}
static void DeleteHeapGraphEdge(HeapGraphEdge** edge_ptr) {
delete *edge_ptr;
}
static void DeleteHeapGraphPath(HeapGraphPath** path_ptr) {
delete *path_ptr;
}
HeapEntry::~HeapEntry() {
children_.Iterate(DeleteHeapGraphEdge);
retaining_paths_.Iterate(DeleteHeapGraphPath);
}
void HeapEntry::AddEdge(HeapGraphEdge* edge) {
children_.Add(edge);
edge->to()->retainers_.Add(edge);
}
void HeapEntry::SetClosureReference(const char* name, HeapEntry* entry) {
AddEdge(
new HeapGraphEdge(HeapGraphEdge::CONTEXT_VARIABLE, name, this, entry));
}
void HeapEntry::SetElementReference(int index, HeapEntry* entry) {
AddEdge(new HeapGraphEdge(index, this, entry));
}
void HeapEntry::SetInternalReference(const char* name, HeapEntry* entry) {
AddEdge(new HeapGraphEdge(HeapGraphEdge::INTERNAL, name, this, entry));
}
void HeapEntry::SetPropertyReference(const char* name, HeapEntry* entry) {
AddEdge(new HeapGraphEdge(HeapGraphEdge::PROPERTY, name, this, entry));
}
void HeapEntry::SetAutoIndexReference(HeapEntry* entry) {
SetElementReference(next_auto_index_++, entry);
}
void HeapEntry::SetUnidirAutoIndexReference(HeapEntry* entry) {
children_.Add(new HeapGraphEdge(next_auto_index_++, this, entry));
}
int HeapEntry::TotalSize() {
return total_size_ != kUnknownSize ? total_size_ : CalculateTotalSize();
}
int HeapEntry::NonSharedTotalSize() {
return non_shared_total_size_ != kUnknownSize ?
non_shared_total_size_ : CalculateNonSharedTotalSize();
}
template<class Visitor>
void HeapEntry::ApplyAndPaintAllReachable(Visitor* visitor) {
List<HeapEntry*> list(10);
list.Add(this);
this->PaintReachable();
visitor->Apply(this);
while (!list.is_empty()) {
HeapEntry* entry = list.RemoveLast();
const int children_count = entry->children_.length();
for (int i = 0; i < children_count; ++i) {
HeapEntry* child = entry->children_[i]->to();
if (!child->painted_reachable()) {
list.Add(child);
child->PaintReachable();
visitor->Apply(child);
}
}
}
}
class NullClass {
public:
void Apply(HeapEntry* entry) { }
};
void HeapEntry::PaintAllReachable() {
NullClass null;
ApplyAndPaintAllReachable(&null);
}
class TotalSizeCalculator {
public:
TotalSizeCalculator()
: total_size_(0) {
}
int total_size() const { return total_size_; }
void Apply(HeapEntry* entry) {
total_size_ += entry->self_size();
}
private:
int total_size_;
};
int HeapEntry::CalculateTotalSize() {
snapshot_->ClearPaint();
TotalSizeCalculator calc;
ApplyAndPaintAllReachable(&calc);
total_size_ = calc.total_size();
return total_size_;
}
class NonSharedSizeCalculator {
public:
NonSharedSizeCalculator()
: non_shared_total_size_(0) {
}
int non_shared_total_size() const { return non_shared_total_size_; }
void Apply(HeapEntry* entry) {
if (entry->painted_reachable()) {
non_shared_total_size_ += entry->self_size();
}
}
private:
int non_shared_total_size_;
};
int HeapEntry::CalculateNonSharedTotalSize() {
// To calculate non-shared total size, first we paint all reachable
// nodes in one color, then we paint all nodes reachable from other
// nodes with a different color. Then we consider only nodes painted
// with the first color for calculating the total size.
snapshot_->ClearPaint();
PaintAllReachable();
List<HeapEntry*> list(10);
if (this != snapshot_->root()) {
list.Add(snapshot_->root());
snapshot_->root()->PaintReachableFromOthers();
}
while (!list.is_empty()) {
HeapEntry* entry = list.RemoveLast();
const int children_count = entry->children_.length();
for (int i = 0; i < children_count; ++i) {
HeapEntry* child = entry->children_[i]->to();
if (child != this && child->not_painted_reachable_from_others()) {
list.Add(child);
child->PaintReachableFromOthers();
}
}
}
NonSharedSizeCalculator calculator;
snapshot_->IterateEntries(&calculator);
non_shared_total_size_ = calculator.non_shared_total_size();
return non_shared_total_size_;
}
class CachedHeapGraphPath {
public:
CachedHeapGraphPath()
: nodes_(NodesMatch) { }
CachedHeapGraphPath(const CachedHeapGraphPath& src)
: nodes_(NodesMatch, &HashMap::DefaultAllocator, src.nodes_.capacity()),
path_(src.path_.length() + 1) {
for (HashMap::Entry* p = src.nodes_.Start();
p != NULL;
p = src.nodes_.Next(p)) {
nodes_.Lookup(p->key, p->hash, true);
}
path_.AddAll(src.path_);
}
void Add(HeapGraphEdge* edge) {
nodes_.Lookup(edge->to(), Hash(edge->to()), true);
path_.Add(edge);
}
bool ContainsNode(HeapEntry* node) {
return nodes_.Lookup(node, Hash(node), false) != NULL;
}
const List<HeapGraphEdge*>* path() const { return &path_; }
private:
static uint32_t Hash(HeapEntry* entry) {
return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry));
}
static bool NodesMatch(void* key1, void* key2) { return key1 == key2; }
HashMap nodes_;
List<HeapGraphEdge*> path_;
};
const List<HeapGraphPath*>* HeapEntry::GetRetainingPaths() {
if (retaining_paths_.length() == 0 && retainers_.length() != 0) {
CachedHeapGraphPath path;
FindRetainingPaths(this, &path);
}
return &retaining_paths_;
}
void HeapEntry::FindRetainingPaths(HeapEntry* node,
CachedHeapGraphPath* prev_path) {
for (int i = 0; i < node->retainers_.length(); ++i) {
HeapGraphEdge* ret_edge = node->retainers_[i];
if (prev_path->ContainsNode(ret_edge->from())) continue;
if (ret_edge->from() != snapshot_->root()) {
CachedHeapGraphPath path(*prev_path);
path.Add(ret_edge);
FindRetainingPaths(ret_edge->from(), &path);
} else {
HeapGraphPath* ret_path = new HeapGraphPath(*prev_path->path());
ret_path->Set(0, ret_edge);
retaining_paths_.Add(ret_path);
}
}
}
static void RemoveEdge(List<HeapGraphEdge*>* list, HeapGraphEdge* edge) {
for (int i = 0; i < list->length(); ) {
if (list->at(i) == edge) {
list->Remove(i);
return;
} else {
++i;
}
}
UNREACHABLE();
}
void HeapEntry::RemoveChild(HeapGraphEdge* edge) {
RemoveEdge(&children_, edge);
delete edge;
}
void HeapEntry::RemoveRetainer(HeapGraphEdge* edge) {
RemoveEdge(&retainers_, edge);
}
void HeapEntry::CutEdges() {
for (int i = 0; i < children_.length(); ++i) {
HeapGraphEdge* edge = children_[i];
edge->to()->RemoveRetainer(edge);
}
children_.Iterate(DeleteHeapGraphEdge);
children_.Clear();
for (int i = 0; i < retainers_.length(); ++i) {
HeapGraphEdge* edge = retainers_[i];
edge->from()->RemoveChild(edge);
}
retainers_.Clear();
}
void HeapEntry::Print(int max_depth, int indent) {
OS::Print("%6d %6d %6d [%ld] ",
self_size_, TotalSize(), NonSharedTotalSize(), id_);
if (type_ != STRING) {
OS::Print("%s %.40s\n", TypeAsString(), name_);
} else {
OS::Print("\"");
const char* c = name_;
while (*c && (c - name_) <= 40) {
if (*c != '\n')
OS::Print("%c", *c);
else
OS::Print("\\n");
++c;
}
OS::Print("\"\n");
}
if (--max_depth == 0) return;
const int children_count = children_.length();
for (int i = 0; i < children_count; ++i) {
HeapGraphEdge* edge = children_[i];
switch (edge->type()) {
case HeapGraphEdge::CONTEXT_VARIABLE:
OS::Print(" %*c #%s: ", indent, ' ', edge->name());
break;
case HeapGraphEdge::ELEMENT:
OS::Print(" %*c %d: ", indent, ' ', edge->index());
break;
case HeapGraphEdge::INTERNAL:
OS::Print(" %*c $%s: ", indent, ' ', edge->name());
break;
case HeapGraphEdge::PROPERTY:
OS::Print(" %*c %s: ", indent, ' ', edge->name());
break;
default:
OS::Print("!!! unknown edge type: %d ", edge->type());
}
edge->to()->Print(max_depth, indent + 2);
}
}
const char* HeapEntry::TypeAsString() {
switch (type_) {
case INTERNAL: return "/internal/";
case OBJECT: return "/object/";
case CLOSURE: return "/closure/";
case STRING: return "/string/";
case CODE: return "/code/";
case ARRAY: return "/array/";
default: return "???";
}
}
HeapGraphPath::HeapGraphPath(const List<HeapGraphEdge*>& path)
: path_(path.length() + 1) {
Add(NULL);
for (int i = path.length() - 1; i >= 0; --i) {
Add(path[i]);
}
}
void HeapGraphPath::Print() {
path_[0]->from()->Print(1, 0);
for (int i = 0; i < path_.length(); ++i) {
OS::Print(" -> ");
HeapGraphEdge* edge = path_[i];
switch (edge->type()) {
case HeapGraphEdge::CONTEXT_VARIABLE:
OS::Print("[#%s] ", edge->name());
break;
case HeapGraphEdge::ELEMENT:
OS::Print("[%d] ", edge->index());
break;
case HeapGraphEdge::INTERNAL:
OS::Print("[$%s] ", edge->name());
break;
case HeapGraphEdge::PROPERTY:
OS::Print("[%s] ", edge->name());
break;
default:
OS::Print("!!! unknown edge type: %d ", edge->type());
}
edge->to()->Print(1, 0);
}
OS::Print("\n");
}
class IndexedReferencesExtractor : public ObjectVisitor {
public:
IndexedReferencesExtractor(HeapSnapshot* snapshot, HeapEntry* parent)
: snapshot_(snapshot),
parent_(parent) {
}
void VisitPointer(Object** o) {
if (!(*o)->IsHeapObject()) return;
HeapEntry* entry = snapshot_->GetEntry(HeapObject::cast(*o));
if (entry != NULL) {
parent_->SetAutoIndexReference(entry);
}
}
void VisitPointers(Object** start, Object** end) {
for (Object** p = start; p < end; p++) VisitPointer(p);
}
private:
HeapSnapshot* snapshot_;
HeapEntry* parent_;
};
HeapEntriesMap::HeapEntriesMap()
: entries_(HeapObjectsMatch) {
}
HeapEntriesMap::~HeapEntriesMap() {
for (HashMap::Entry* p = entries_.Start();
p != NULL;
p = entries_.Next(p)) {
if (!IsAlias(p->value)) delete reinterpret_cast<HeapEntry*>(p->value);
}
}
void HeapEntriesMap::Alias(HeapObject* object, HeapEntry* entry) {
HashMap::Entry* cache_entry = entries_.Lookup(object, Hash(object), true);
if (cache_entry->value == NULL)
cache_entry->value = reinterpret_cast<void*>(
reinterpret_cast<intptr_t>(entry) | kAliasTag);
}
void HeapEntriesMap::Apply(void (HeapEntry::*Func)(void)) {
for (HashMap::Entry* p = entries_.Start();
p != NULL;
p = entries_.Next(p)) {
if (!IsAlias(p->value)) (reinterpret_cast<HeapEntry*>(p->value)->*Func)();
}
}
HeapEntry* HeapEntriesMap::Map(HeapObject* object) {
HashMap::Entry* cache_entry = entries_.Lookup(object, Hash(object), false);
return cache_entry != NULL ?
reinterpret_cast<HeapEntry*>(
reinterpret_cast<intptr_t>(cache_entry->value) & (~kAliasTag)) : NULL;
}
void HeapEntriesMap::Pair(HeapObject* object, HeapEntry* entry) {
HashMap::Entry* cache_entry = entries_.Lookup(object, Hash(object), true);
ASSERT(cache_entry->value == NULL);
cache_entry->value = entry;
}
HeapSnapshot::HeapSnapshot(HeapSnapshotsCollection* collection,
const char* title,
unsigned uid)
: collection_(collection),
title_(title),
uid_(uid),
root_(this),
sorted_entries_(NULL) {
}
HeapSnapshot::~HeapSnapshot() {
delete sorted_entries_;
}
void HeapSnapshot::ClearPaint() {
root_.ClearPaint();
entries_.Apply(&HeapEntry::ClearPaint);
}
HeapEntry* HeapSnapshot::GetEntry(Object* obj) {
if (!obj->IsHeapObject()) return NULL;
HeapObject* object = HeapObject::cast(obj);
{
HeapEntry* existing = FindEntry(object);
if (existing != NULL) return existing;
}
// Add new entry.
if (object->IsJSFunction()) {
JSFunction* func = JSFunction::cast(object);
SharedFunctionInfo* shared = func->shared();
String* name = String::cast(shared->name())->length() > 0 ?
String::cast(shared->name()) : shared->inferred_name();
return AddEntry(object, HeapEntry::CLOSURE, collection_->GetName(name));
} else if (object->IsJSObject()) {
return AddEntry(object,
HeapEntry::OBJECT,
collection_->GetName(
JSObject::cast(object)->constructor_name()));
} else if (object->IsJSGlobalPropertyCell()) {
HeapEntry* value = GetEntry(JSGlobalPropertyCell::cast(object)->value());
// If GPC references an object that we have interest in, add the object.
// We don't store HeapEntries for GPCs. Instead, we make our hash map
// to point to object's HeapEntry by GPCs address.
if (value != NULL) AddEntryAlias(object, value);
return value;
} else if (object->IsString()) {
return AddEntry(object,
HeapEntry::STRING,
collection_->GetName(String::cast(object)));
} else if (object->IsCode()) {
return AddEntry(object, HeapEntry::CODE);
} else if (object->IsSharedFunctionInfo()) {
SharedFunctionInfo* shared = SharedFunctionInfo::cast(object);
String* name = String::cast(shared->name())->length() > 0 ?
String::cast(shared->name()) : shared->inferred_name();
return AddEntry(object, HeapEntry::CODE, collection_->GetName(name));
} else if (object->IsScript()) {
Script* script = Script::cast(object);
return AddEntry(object,
HeapEntry::CODE,
script->name()->IsString() ?
collection_->GetName(String::cast(script->name())) : "");
} else if (object->IsFixedArray()) {
return AddEntry(object, HeapEntry::ARRAY);
}
// No interest in this object.
return NULL;
}
void HeapSnapshot::SetClosureReference(HeapEntry* parent,
String* reference_name,
Object* child) {
HeapEntry* child_entry = GetEntry(child);
if (child_entry != NULL) {
parent->SetClosureReference(
collection_->GetName(reference_name), child_entry);
}
}
void HeapSnapshot::SetElementReference(HeapEntry* parent,
int index,
Object* child) {
HeapEntry* child_entry = GetEntry(child);
if (child_entry != NULL) {
parent->SetElementReference(index, child_entry);
}
}
void HeapSnapshot::SetInternalReference(HeapEntry* parent,
const char* reference_name,
Object* child) {
HeapEntry* child_entry = GetEntry(child);
if (child_entry != NULL) {
parent->SetInternalReference(reference_name, child_entry);
}
}
void HeapSnapshot::SetPropertyReference(HeapEntry* parent,
String* reference_name,
Object* child) {
HeapEntry* child_entry = GetEntry(child);
if (child_entry != NULL) {
parent->SetPropertyReference(
collection_->GetName(reference_name), child_entry);
}
}
HeapEntry* HeapSnapshot::AddEntry(HeapObject* object,
HeapEntry::Type type,
const char* name) {
HeapEntry* entry = new HeapEntry(this,
type,
name,
collection_->GetObjectId(object->address()),
GetObjectSize(object),
GetObjectSecurityToken(object));
entries_.Pair(object, entry);
// Detect, if this is a JS global object of the current context, and
// add it to snapshot's roots. There can be several JS global objects
// in a context.
if (object->IsJSGlobalProxy()) {
int global_security_token = GetGlobalSecurityToken();
int object_security_token =
collection_->token_enumerator()->GetTokenId(
Context::cast(
JSGlobalProxy::cast(object)->context())->security_token());
if (object_security_token == TokenEnumerator::kNoSecurityToken
|| object_security_token == global_security_token) {
HeapEntry* global_object_entry =
GetEntry(HeapObject::cast(object->map()->prototype()));
ASSERT(global_object_entry != NULL);
root_.SetAutoIndexReference(global_object_entry);
}
}
return entry;
}
class EdgesCutter {
public:
explicit EdgesCutter(int global_security_token)
: global_security_token_(global_security_token) {
}
void Apply(HeapEntry* entry) {
if (entry->security_token_id() != TokenEnumerator::kNoSecurityToken
&& entry->security_token_id() != global_security_token_) {
entry->CutEdges();
}
}
private:
const int global_security_token_;
};
void HeapSnapshot::CutObjectsFromForeignSecurityContexts() {
EdgesCutter cutter(GetGlobalSecurityToken());
entries_.Apply(&cutter);
}
int HeapSnapshot::GetGlobalSecurityToken() {
return collection_->token_enumerator()->GetTokenId(
Top::context()->global()->global_context()->security_token());
}
int HeapSnapshot::GetObjectSize(HeapObject* obj) {
return obj->IsJSObject() ?
CalculateNetworkSize(JSObject::cast(obj)) : obj->Size();
}
int HeapSnapshot::GetObjectSecurityToken(HeapObject* obj) {
if (obj->IsGlobalContext()) {
return collection_->token_enumerator()->GetTokenId(
Context::cast(obj)->security_token());
} else {
return TokenEnumerator::kNoSecurityToken;
}
}
int HeapSnapshot::CalculateNetworkSize(JSObject* obj) {
int size = obj->Size();
// If 'properties' and 'elements' are non-empty (thus, non-shared),
// take their size into account.
if (FixedArray::cast(obj->properties())->length() != 0) {
size += obj->properties()->Size();
}
if (FixedArray::cast(obj->elements())->length() != 0) {
size += obj->elements()->Size();
}
// For functions, also account non-empty context and literals sizes.
if (obj->IsJSFunction()) {
JSFunction* f = JSFunction::cast(obj);
if (f->unchecked_context()->IsContext()) {
size += f->context()->Size();
}
if (f->literals()->length() != 0) {
size += f->literals()->Size();
}
}
return size;
}
class EntriesCollector {
public:
explicit EntriesCollector(List<HeapEntry*>* list) : list_(list) { }
void Apply(HeapEntry* entry) {
list_->Add(entry);
}
private:
List<HeapEntry*>* list_;
};
template<class T>
static int SortByIds(const T* entry1_ptr,
const T* entry2_ptr) {
if ((*entry1_ptr)->id() == (*entry2_ptr)->id()) return 0;
return (*entry1_ptr)->id() < (*entry2_ptr)->id() ? -1 : 1;
}
List<HeapEntry*>* HeapSnapshot::GetSortedEntriesList() {
if (sorted_entries_ != NULL) return sorted_entries_;
sorted_entries_ = new List<HeapEntry*>(entries_.capacity());
EntriesCollector collector(sorted_entries_);
entries_.Apply(&collector);
sorted_entries_->Sort(SortByIds);
return sorted_entries_;
}
HeapSnapshotsDiff* HeapSnapshot::CompareWith(HeapSnapshot* snapshot) {
return collection_->CompareSnapshots(this, snapshot);
}
void HeapSnapshot::Print(int max_depth) {
root_.Print(max_depth, 0);
}
HeapObjectsMap::HeapObjectsMap()
: initial_fill_mode_(true),
next_id_(1),
entries_map_(AddressesMatch),
entries_(new List<EntryInfo>()) { }
HeapObjectsMap::~HeapObjectsMap() {
delete entries_;
}
void HeapObjectsMap::SnapshotGenerationFinished() {
initial_fill_mode_ = false;
RemoveDeadEntries();
}
uint64_t HeapObjectsMap::FindObject(Address addr) {
if (!initial_fill_mode_) {
uint64_t existing = FindEntry(addr);
if (existing != 0) return existing;
}
uint64_t id = next_id_++;
AddEntry(addr, id);
return id;
}
void HeapObjectsMap::MoveObject(Address from, Address to) {
if (from == to) return;
HashMap::Entry* entry = entries_map_.Lookup(from, AddressHash(from), false);
if (entry != NULL) {
void* value = entry->value;
entries_map_.Remove(from, AddressHash(from));
entry = entries_map_.Lookup(to, AddressHash(to), true);
// We can have an entry at the new location, it is OK, as GC can overwrite
// dead objects with alive objects being moved.
entry->value = value;
}
}
void HeapObjectsMap::AddEntry(Address addr, uint64_t id) {
HashMap::Entry* entry = entries_map_.Lookup(addr, AddressHash(addr), true);
ASSERT(entry->value == NULL);
entry->value = reinterpret_cast<void*>(entries_->length());
entries_->Add(EntryInfo(id));
}
uint64_t HeapObjectsMap::FindEntry(Address addr) {
HashMap::Entry* entry = entries_map_.Lookup(addr, AddressHash(addr), false);
if (entry != NULL) {
int entry_index =
static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
EntryInfo& entry_info = entries_->at(entry_index);
entry_info.accessed = true;
return entry_info.id;
} else {
return 0;
}
}
void HeapObjectsMap::RemoveDeadEntries() {
List<EntryInfo>* new_entries = new List<EntryInfo>();
for (HashMap::Entry* entry = entries_map_.Start();
entry != NULL;
entry = entries_map_.Next(entry)) {
int entry_index =
static_cast<int>(reinterpret_cast<intptr_t>(entry->value));
EntryInfo& entry_info = entries_->at(entry_index);
if (entry_info.accessed) {
entry->value = reinterpret_cast<void*>(new_entries->length());
new_entries->Add(EntryInfo(entry_info.id, false));
}
}
delete entries_;
entries_ = new_entries;
}
HeapSnapshotsCollection::HeapSnapshotsCollection()
: is_tracking_objects_(false),
snapshots_uids_(HeapSnapshotsMatch),
token_enumerator_(new TokenEnumerator()) {
}
static void DeleteHeapSnapshot(HeapSnapshot** snapshot_ptr) {
delete *snapshot_ptr;
}
HeapSnapshotsCollection::~HeapSnapshotsCollection() {
delete token_enumerator_;
snapshots_.Iterate(DeleteHeapSnapshot);
}
HeapSnapshot* HeapSnapshotsCollection::NewSnapshot(const char* name,
unsigned uid) {
is_tracking_objects_ = true; // Start watching for heap objects moves.
HeapSnapshot* snapshot = new HeapSnapshot(this, name, uid);
snapshots_.Add(snapshot);
HashMap::Entry* entry =
snapshots_uids_.Lookup(reinterpret_cast<void*>(snapshot->uid()),
static_cast<uint32_t>(snapshot->uid()),
true);
ASSERT(entry->value == NULL);
entry->value = snapshot;
return snapshot;
}
HeapSnapshot* HeapSnapshotsCollection::GetSnapshot(unsigned uid) {
HashMap::Entry* entry = snapshots_uids_.Lookup(reinterpret_cast<void*>(uid),
static_cast<uint32_t>(uid),
false);
return entry != NULL ? reinterpret_cast<HeapSnapshot*>(entry->value) : NULL;
}
HeapSnapshotsDiff* HeapSnapshotsCollection::CompareSnapshots(
HeapSnapshot* snapshot1,
HeapSnapshot* snapshot2) {
return comparator_.Compare(snapshot1, snapshot2);
}
HeapSnapshotGenerator::HeapSnapshotGenerator(HeapSnapshot* snapshot)
: snapshot_(snapshot) {
}
void HeapSnapshotGenerator::GenerateSnapshot() {
AssertNoAllocation no_alloc;
// Iterate heap contents.
HeapIterator iterator;
for (HeapObject* obj = iterator.next(); obj != NULL; obj = iterator.next()) {
ExtractReferences(obj);
}
snapshot_->CutObjectsFromForeignSecurityContexts();
}
void HeapSnapshotGenerator::ExtractReferences(HeapObject* obj) {
HeapEntry* entry = snapshot_->GetEntry(obj);
if (entry == NULL) return;
if (entry->visited()) return;
if (obj->IsJSObject()) {
JSObject* js_obj = JSObject::cast(obj);
ExtractClosureReferences(js_obj, entry);
ExtractPropertyReferences(js_obj, entry);
ExtractElementReferences(js_obj, entry);
snapshot_->SetPropertyReference(
entry, Heap::prototype_symbol(), js_obj->map()->prototype());
} else if (obj->IsJSGlobalPropertyCell()) {
JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast(obj);
snapshot_->SetElementReference(entry, 0, cell->value());
} else if (obj->IsString()) {
if (obj->IsConsString()) {
ConsString* cs = ConsString::cast(obj);
snapshot_->SetElementReference(entry, 0, cs->first());
snapshot_->SetElementReference(entry, 1, cs->second());
}
} else if (obj->IsCode() || obj->IsSharedFunctionInfo() || obj->IsScript()) {
IndexedReferencesExtractor refs_extractor(snapshot_, entry);
obj->Iterate(&refs_extractor);
} else if (obj->IsFixedArray()) {
IndexedReferencesExtractor refs_extractor(snapshot_, entry);
obj->Iterate(&refs_extractor);
}
entry->MarkAsVisited();
}
void HeapSnapshotGenerator::ExtractClosureReferences(JSObject* js_obj,
HeapEntry* entry) {
if (js_obj->IsJSFunction()) {
HandleScope hs;
JSFunction* func = JSFunction::cast(js_obj);
Context* context = func->context();
ZoneScope zscope(DELETE_ON_EXIT);
SerializedScopeInfo* serialized_scope_info =
context->closure()->shared()->scope_info();
ScopeInfo<ZoneListAllocationPolicy> zone_scope_info(serialized_scope_info);
int locals_number = zone_scope_info.NumberOfLocals();
for (int i = 0; i < locals_number; ++i) {
String* local_name = *zone_scope_info.LocalName(i);
int idx = serialized_scope_info->ContextSlotIndex(local_name, NULL);
if (idx >= 0 && idx < context->length()) {
snapshot_->SetClosureReference(entry, local_name, context->get(idx));
}
}
snapshot_->SetInternalReference(entry, "code", func->shared());
}
}
void HeapSnapshotGenerator::ExtractPropertyReferences(JSObject* js_obj,
HeapEntry* entry) {
if (js_obj->HasFastProperties()) {
DescriptorArray* descs = js_obj->map()->instance_descriptors();
for (int i = 0; i < descs->number_of_descriptors(); i++) {
switch (descs->GetType(i)) {
case FIELD: {
int index = descs->GetFieldIndex(i);
snapshot_->SetPropertyReference(
entry, descs->GetKey(i), js_obj->FastPropertyAt(index));
break;
}
case CONSTANT_FUNCTION:
snapshot_->SetPropertyReference(
entry, descs->GetKey(i), descs->GetConstantFunction(i));
break;
default: ;
}
}
} else {
StringDictionary* dictionary = js_obj->property_dictionary();
int length = dictionary->Capacity();
for (int i = 0; i < length; ++i) {
Object* k = dictionary->KeyAt(i);
if (dictionary->IsKey(k)) {
snapshot_->SetPropertyReference(
entry, String::cast(k), dictionary->ValueAt(i));
}
}
}
}
void HeapSnapshotGenerator::ExtractElementReferences(JSObject* js_obj,
HeapEntry* entry) {
if (js_obj->HasFastElements()) {
FixedArray* elements = FixedArray::cast(js_obj->elements());
int length = js_obj->IsJSArray() ?
Smi::cast(JSArray::cast(js_obj)->length())->value() :
elements->length();
for (int i = 0; i < length; ++i) {
if (!elements->get(i)->IsTheHole()) {
snapshot_->SetElementReference(entry, i, elements->get(i));
}
}
} else if (js_obj->HasDictionaryElements()) {
NumberDictionary* dictionary = js_obj->element_dictionary();
int length = dictionary->Capacity();
for (int i = 0; i < length; ++i) {
Object* k = dictionary->KeyAt(i);
if (dictionary->IsKey(k)) {
ASSERT(k->IsNumber());
uint32_t index = static_cast<uint32_t>(k->Number());
snapshot_->SetElementReference(entry, index, dictionary->ValueAt(i));
}
}
}
}
static void DeleteHeapSnapshotsDiff(HeapSnapshotsDiff** diff_ptr) {
delete *diff_ptr;
}
HeapSnapshotsComparator::~HeapSnapshotsComparator() {
diffs_.Iterate(DeleteHeapSnapshotsDiff);
}
HeapSnapshotsDiff* HeapSnapshotsComparator::Compare(HeapSnapshot* snapshot1,
HeapSnapshot* snapshot2) {
HeapSnapshotsDiff* diff = new HeapSnapshotsDiff(snapshot1, snapshot2);
diffs_.Add(diff);
List<HeapEntry*>* entries1 = snapshot1->GetSortedEntriesList();
List<HeapEntry*>* entries2 = snapshot2->GetSortedEntriesList();
int i = 0, j = 0;
List<HeapEntry*> added_entries, deleted_entries;
while (i < entries1->length() && j < entries2->length()) {
uint64_t id1 = entries1->at(i)->id();
uint64_t id2 = entries2->at(j)->id();
if (id1 == id2) {
i++;
j++;
} else if (id1 < id2) {
HeapEntry* entry = entries1->at(i++);
deleted_entries.Add(entry);
} else {
HeapEntry* entry = entries2->at(j++);
added_entries.Add(entry);
}
}
while (i < entries1->length()) {
HeapEntry* entry = entries1->at(i++);
deleted_entries.Add(entry);
}
while (j < entries2->length()) {
HeapEntry* entry = entries2->at(j++);
added_entries.Add(entry);
}
snapshot1->ClearPaint();
snapshot1->root()->PaintAllReachable();
for (int i = 0; i < deleted_entries.length(); ++i) {
HeapEntry* entry = deleted_entries[i];
if (entry->painted_reachable())
diff->AddDeletedEntry(entry);
}
snapshot2->ClearPaint();
snapshot2->root()->PaintAllReachable();
for (int i = 0; i < added_entries.length(); ++i) {
HeapEntry* entry = added_entries[i];
if (entry->painted_reachable())
diff->AddAddedEntry(entry);
}
return diff;
}
} } // namespace v8::internal
#endif // ENABLE_LOGGING_AND_PROFILING