blob: 64f35e10de3e50df682d9f6830410be0d30b8146 [file] [log] [blame]
// Copyright 2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_X64_MACRO_ASSEMBLER_X64_H_
#define V8_X64_MACRO_ASSEMBLER_X64_H_
#include "assembler.h"
namespace v8 {
namespace internal {
// Flags used for the AllocateInNewSpace functions.
enum AllocationFlags {
// No special flags.
NO_ALLOCATION_FLAGS = 0,
// Return the pointer to the allocated already tagged as a heap object.
TAG_OBJECT = 1 << 0,
// The content of the result register already contains the allocation top in
// new space.
RESULT_CONTAINS_TOP = 1 << 1
};
// Default scratch register used by MacroAssembler (and other code that needs
// a spare register). The register isn't callee save, and not used by the
// function calling convention.
static const Register kScratchRegister = { 10 }; // r10.
static const Register kSmiConstantRegister = { 15 }; // r15 (callee save).
static const Register kRootRegister = { 13 }; // r13 (callee save).
// Value of smi in kSmiConstantRegister.
static const int kSmiConstantRegisterValue = 1;
// Convenience for platform-independent signatures.
typedef Operand MemOperand;
// Forward declaration.
class JumpTarget;
struct SmiIndex {
SmiIndex(Register index_register, ScaleFactor scale)
: reg(index_register),
scale(scale) {}
Register reg;
ScaleFactor scale;
};
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
public:
MacroAssembler(void* buffer, int size);
void LoadRoot(Register destination, Heap::RootListIndex index);
void CompareRoot(Register with, Heap::RootListIndex index);
void CompareRoot(Operand with, Heap::RootListIndex index);
void PushRoot(Heap::RootListIndex index);
void StoreRoot(Register source, Heap::RootListIndex index);
// ---------------------------------------------------------------------------
// GC Support
// For page containing |object| mark region covering |addr| dirty.
// RecordWriteHelper only works if the object is not in new
// space.
void RecordWriteHelper(Register object,
Register addr,
Register scratch);
// Check if object is in new space. The condition cc can be equal or
// not_equal. If it is equal a jump will be done if the object is on new
// space. The register scratch can be object itself, but it will be clobbered.
void InNewSpace(Register object,
Register scratch,
Condition cc,
Label* branch);
// For page containing |object| mark region covering [object+offset]
// dirty. |object| is the object being stored into, |value| is the
// object being stored. If |offset| is zero, then the |scratch|
// register contains the array index into the elements array
// represented as a Smi. All registers are clobbered by the
// operation. RecordWrite filters out smis so it does not update the
// write barrier if the value is a smi.
void RecordWrite(Register object,
int offset,
Register value,
Register scratch);
// For page containing |object| mark region covering [address]
// dirty. |object| is the object being stored into, |value| is the
// object being stored. All registers are clobbered by the
// operation. RecordWrite filters out smis so it does not update
// the write barrier if the value is a smi.
void RecordWrite(Register object,
Register address,
Register value);
// For page containing |object| mark region covering [object+offset] dirty.
// The value is known to not be a smi.
// object is the object being stored into, value is the object being stored.
// If offset is zero, then the scratch register contains the array index into
// the elements array represented as a Smi.
// All registers are clobbered by the operation.
void RecordWriteNonSmi(Register object,
int offset,
Register value,
Register scratch);
#ifdef ENABLE_DEBUGGER_SUPPORT
// ---------------------------------------------------------------------------
// Debugger Support
void SaveRegistersToMemory(RegList regs);
void RestoreRegistersFromMemory(RegList regs);
void PushRegistersFromMemory(RegList regs);
void PopRegistersToMemory(RegList regs);
void CopyRegistersFromStackToMemory(Register base,
Register scratch,
RegList regs);
void DebugBreak();
#endif
// ---------------------------------------------------------------------------
// Stack limit support
// Do simple test for stack overflow. This doesn't handle an overflow.
void StackLimitCheck(Label* on_stack_limit_hit);
// ---------------------------------------------------------------------------
// Activation frames
void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); }
void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); }
void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); }
void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); }
// Enter specific kind of exit frame; either in normal or
// debug mode. Expects the number of arguments in register rax and
// sets up the number of arguments in register rdi and the pointer
// to the first argument in register rsi.
void EnterExitFrame(ExitFrame::Mode mode, int result_size = 1);
// Leave the current exit frame. Expects/provides the return value in
// register rax:rdx (untouched) and the pointer to the first
// argument in register rsi.
void LeaveExitFrame(ExitFrame::Mode mode, int result_size = 1);
// ---------------------------------------------------------------------------
// JavaScript invokes
// Invoke the JavaScript function code by either calling or jumping.
void InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag);
void InvokeCode(Handle<Code> code,
const ParameterCount& expected,
const ParameterCount& actual,
RelocInfo::Mode rmode,
InvokeFlag flag);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function,
const ParameterCount& actual,
InvokeFlag flag);
void InvokeFunction(JSFunction* function,
const ParameterCount& actual,
InvokeFlag flag);
// Invoke specified builtin JavaScript function. Adds an entry to
// the unresolved list if the name does not resolve.
void InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag);
// Store the code object for the given builtin in the target register.
void GetBuiltinEntry(Register target, Builtins::JavaScript id);
// ---------------------------------------------------------------------------
// Smi tagging, untagging and operations on tagged smis.
void InitializeSmiConstantRegister() {
movq(kSmiConstantRegister,
reinterpret_cast<uint64_t>(Smi::FromInt(kSmiConstantRegisterValue)),
RelocInfo::NONE);
}
// Conversions between tagged smi values and non-tagged integer values.
// Tag an integer value. The result must be known to be a valid smi value.
// Only uses the low 32 bits of the src register. Sets the N and Z flags
// based on the value of the resulting integer.
void Integer32ToSmi(Register dst, Register src);
// Tag an integer value if possible, or jump the integer value cannot be
// represented as a smi. Only uses the low 32 bit of the src registers.
// NOTICE: Destroys the dst register even if unsuccessful!
void Integer32ToSmi(Register dst, Register src, Label* on_overflow);
// Stores an integer32 value into a memory field that already holds a smi.
void Integer32ToSmiField(const Operand& dst, Register src);
// Adds constant to src and tags the result as a smi.
// Result must be a valid smi.
void Integer64PlusConstantToSmi(Register dst, Register src, int constant);
// Convert smi to 32-bit integer. I.e., not sign extended into
// high 32 bits of destination.
void SmiToInteger32(Register dst, Register src);
void SmiToInteger32(Register dst, const Operand& src);
// Convert smi to 64-bit integer (sign extended if necessary).
void SmiToInteger64(Register dst, Register src);
void SmiToInteger64(Register dst, const Operand& src);
// Multiply a positive smi's integer value by a power of two.
// Provides result as 64-bit integer value.
void PositiveSmiTimesPowerOfTwoToInteger64(Register dst,
Register src,
int power);
// Divide a positive smi's integer value by a power of two.
// Provides result as 32-bit integer value.
void PositiveSmiDivPowerOfTwoToInteger32(Register dst,
Register src,
int power);
// Simple comparison of smis.
void SmiCompare(Register dst, Register src);
void SmiCompare(Register dst, Smi* src);
void SmiCompare(Register dst, const Operand& src);
void SmiCompare(const Operand& dst, Register src);
void SmiCompare(const Operand& dst, Smi* src);
// Compare the int32 in src register to the value of the smi stored at dst.
void SmiCompareInteger32(const Operand& dst, Register src);
// Sets sign and zero flags depending on value of smi in register.
void SmiTest(Register src);
// Functions performing a check on a known or potential smi. Returns
// a condition that is satisfied if the check is successful.
// Is the value a tagged smi.
Condition CheckSmi(Register src);
// Is the value a positive tagged smi.
Condition CheckPositiveSmi(Register src);
// Are both values tagged smis.
Condition CheckBothSmi(Register first, Register second);
// Are both values tagged smis.
Condition CheckBothPositiveSmi(Register first, Register second);
// Are either value a tagged smi.
Condition CheckEitherSmi(Register first, Register second);
// Is the value the minimum smi value (since we are using
// two's complement numbers, negating the value is known to yield
// a non-smi value).
Condition CheckIsMinSmi(Register src);
// Checks whether an 32-bit integer value is a valid for conversion
// to a smi.
Condition CheckInteger32ValidSmiValue(Register src);
// Checks whether an 32-bit unsigned integer value is a valid for
// conversion to a smi.
Condition CheckUInteger32ValidSmiValue(Register src);
// Test-and-jump functions. Typically combines a check function
// above with a conditional jump.
// Jump if the value cannot be represented by a smi.
void JumpIfNotValidSmiValue(Register src, Label* on_invalid);
// Jump if the unsigned integer value cannot be represented by a smi.
void JumpIfUIntNotValidSmiValue(Register src, Label* on_invalid);
// Jump to label if the value is a tagged smi.
void JumpIfSmi(Register src, Label* on_smi);
// Jump to label if the value is not a tagged smi.
void JumpIfNotSmi(Register src, Label* on_not_smi);
// Jump to label if the value is not a positive tagged smi.
void JumpIfNotPositiveSmi(Register src, Label* on_not_smi);
// Jump to label if the value, which must be a tagged smi, has value equal
// to the constant.
void JumpIfSmiEqualsConstant(Register src, Smi* constant, Label* on_equals);
// Jump if either or both register are not smi values.
void JumpIfNotBothSmi(Register src1, Register src2, Label* on_not_both_smi);
// Jump if either or both register are not positive smi values.
void JumpIfNotBothPositiveSmi(Register src1, Register src2,
Label* on_not_both_smi);
// Operations on tagged smi values.
// Smis represent a subset of integers. The subset is always equivalent to
// a two's complement interpretation of a fixed number of bits.
// Optimistically adds an integer constant to a supposed smi.
// If the src is not a smi, or the result is not a smi, jump to
// the label.
void SmiTryAddConstant(Register dst,
Register src,
Smi* constant,
Label* on_not_smi_result);
// Add an integer constant to a tagged smi, giving a tagged smi as result.
// No overflow testing on the result is done.
void SmiAddConstant(Register dst, Register src, Smi* constant);
// Add an integer constant to a tagged smi, giving a tagged smi as result.
// No overflow testing on the result is done.
void SmiAddConstant(const Operand& dst, Smi* constant);
// Add an integer constant to a tagged smi, giving a tagged smi as result,
// or jumping to a label if the result cannot be represented by a smi.
void SmiAddConstant(Register dst,
Register src,
Smi* constant,
Label* on_not_smi_result);
// Subtract an integer constant from a tagged smi, giving a tagged smi as
// result. No testing on the result is done. Sets the N and Z flags
// based on the value of the resulting integer.
void SmiSubConstant(Register dst, Register src, Smi* constant);
// Subtract an integer constant from a tagged smi, giving a tagged smi as
// result, or jumping to a label if the result cannot be represented by a smi.
void SmiSubConstant(Register dst,
Register src,
Smi* constant,
Label* on_not_smi_result);
// Negating a smi can give a negative zero or too large positive value.
// NOTICE: This operation jumps on success, not failure!
void SmiNeg(Register dst,
Register src,
Label* on_smi_result);
// Adds smi values and return the result as a smi.
// If dst is src1, then src1 will be destroyed, even if
// the operation is unsuccessful.
void SmiAdd(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result);
// Subtracts smi values and return the result as a smi.
// If dst is src1, then src1 will be destroyed, even if
// the operation is unsuccessful.
void SmiSub(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result);
void SmiSub(Register dst,
Register src1,
const Operand& src2,
Label* on_not_smi_result);
// Multiplies smi values and return the result as a smi,
// if possible.
// If dst is src1, then src1 will be destroyed, even if
// the operation is unsuccessful.
void SmiMul(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result);
// Divides one smi by another and returns the quotient.
// Clobbers rax and rdx registers.
void SmiDiv(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result);
// Divides one smi by another and returns the remainder.
// Clobbers rax and rdx registers.
void SmiMod(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result);
// Bitwise operations.
void SmiNot(Register dst, Register src);
void SmiAnd(Register dst, Register src1, Register src2);
void SmiOr(Register dst, Register src1, Register src2);
void SmiXor(Register dst, Register src1, Register src2);
void SmiAndConstant(Register dst, Register src1, Smi* constant);
void SmiOrConstant(Register dst, Register src1, Smi* constant);
void SmiXorConstant(Register dst, Register src1, Smi* constant);
void SmiShiftLeftConstant(Register dst,
Register src,
int shift_value);
void SmiShiftLogicalRightConstant(Register dst,
Register src,
int shift_value,
Label* on_not_smi_result);
void SmiShiftArithmeticRightConstant(Register dst,
Register src,
int shift_value);
// Shifts a smi value to the left, and returns the result if that is a smi.
// Uses and clobbers rcx, so dst may not be rcx.
void SmiShiftLeft(Register dst,
Register src1,
Register src2);
// Shifts a smi value to the right, shifting in zero bits at the top, and
// returns the unsigned intepretation of the result if that is a smi.
// Uses and clobbers rcx, so dst may not be rcx.
void SmiShiftLogicalRight(Register dst,
Register src1,
Register src2,
Label* on_not_smi_result);
// Shifts a smi value to the right, sign extending the top, and
// returns the signed intepretation of the result. That will always
// be a valid smi value, since it's numerically smaller than the
// original.
// Uses and clobbers rcx, so dst may not be rcx.
void SmiShiftArithmeticRight(Register dst,
Register src1,
Register src2);
// Specialized operations
// Select the non-smi register of two registers where exactly one is a
// smi. If neither are smis, jump to the failure label.
void SelectNonSmi(Register dst,
Register src1,
Register src2,
Label* on_not_smis);
// Converts, if necessary, a smi to a combination of number and
// multiplier to be used as a scaled index.
// The src register contains a *positive* smi value. The shift is the
// power of two to multiply the index value by (e.g.
// to index by smi-value * kPointerSize, pass the smi and kPointerSizeLog2).
// The returned index register may be either src or dst, depending
// on what is most efficient. If src and dst are different registers,
// src is always unchanged.
SmiIndex SmiToIndex(Register dst, Register src, int shift);
// Converts a positive smi to a negative index.
SmiIndex SmiToNegativeIndex(Register dst, Register src, int shift);
// Basic Smi operations.
void Move(Register dst, Smi* source) {
LoadSmiConstant(dst, source);
}
void Move(const Operand& dst, Smi* source) {
Register constant = GetSmiConstant(source);
movq(dst, constant);
}
void Push(Smi* smi);
void Test(const Operand& dst, Smi* source);
// ---------------------------------------------------------------------------
// String macros.
void JumpIfNotBothSequentialAsciiStrings(Register first_object,
Register second_object,
Register scratch1,
Register scratch2,
Label* on_not_both_flat_ascii);
// Check whether the instance type represents a flat ascii string. Jump to the
// label if not. If the instance type can be scratched specify same register
// for both instance type and scratch.
void JumpIfInstanceTypeIsNotSequentialAscii(Register instance_type,
Register scratch,
Label *on_not_flat_ascii_string);
void JumpIfBothInstanceTypesAreNotSequentialAscii(
Register first_object_instance_type,
Register second_object_instance_type,
Register scratch1,
Register scratch2,
Label* on_fail);
// ---------------------------------------------------------------------------
// Macro instructions.
// Load a register with a long value as efficiently as possible.
void Set(Register dst, int64_t x);
void Set(const Operand& dst, int64_t x);
// Handle support
void Move(Register dst, Handle<Object> source);
void Move(const Operand& dst, Handle<Object> source);
void Cmp(Register dst, Handle<Object> source);
void Cmp(const Operand& dst, Handle<Object> source);
void Push(Handle<Object> source);
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the rsp register.
void Drop(int stack_elements);
void Call(Label* target) { call(target); }
// Control Flow
void Jump(Address destination, RelocInfo::Mode rmode);
void Jump(ExternalReference ext);
void Jump(Handle<Code> code_object, RelocInfo::Mode rmode);
void Call(Address destination, RelocInfo::Mode rmode);
void Call(ExternalReference ext);
void Call(Handle<Code> code_object, RelocInfo::Mode rmode);
// Compare object type for heap object.
// Always use unsigned comparisons: above and below, not less and greater.
// Incoming register is heap_object and outgoing register is map.
// They may be the same register, and may be kScratchRegister.
void CmpObjectType(Register heap_object, InstanceType type, Register map);
// Compare instance type for map.
// Always use unsigned comparisons: above and below, not less and greater.
void CmpInstanceType(Register map, InstanceType type);
// Check if the map of an object is equal to a specified map and
// branch to label if not. Skip the smi check if not required
// (object is known to be a heap object)
void CheckMap(Register obj,
Handle<Map> map,
Label* fail,
bool is_heap_object);
// Check if the object in register heap_object is a string. Afterwards the
// register map contains the object map and the register instance_type
// contains the instance_type. The registers map and instance_type can be the
// same in which case it contains the instance type afterwards. Either of the
// registers map and instance_type can be the same as heap_object.
Condition IsObjectStringType(Register heap_object,
Register map,
Register instance_type);
// FCmp compares and pops the two values on top of the FPU stack.
// The flag results are similar to integer cmp, but requires unsigned
// jcc instructions (je, ja, jae, jb, jbe, je, and jz).
void FCmp();
// Abort execution if argument is not a number. Used in debug code.
void AbortIfNotNumber(Register object);
// Abort execution if argument is not a smi. Used in debug code.
void AbortIfNotSmi(Register object);
// Abort execution if argument is not the root value with the given index.
void AbortIfNotRootValue(Register src,
Heap::RootListIndex root_value_index,
const char* message);
// ---------------------------------------------------------------------------
// Exception handling
// Push a new try handler and link into try handler chain. The return
// address must be pushed before calling this helper.
void PushTryHandler(CodeLocation try_location, HandlerType type);
// Unlink the stack handler on top of the stack from the try handler chain.
void PopTryHandler();
// ---------------------------------------------------------------------------
// Inline caching support
// Generate code for checking access rights - used for security checks
// on access to global objects across environments. The holder register
// is left untouched, but the scratch register and kScratchRegister,
// which must be different, are clobbered.
void CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss);
// ---------------------------------------------------------------------------
// Allocation support
// Allocate an object in new space. If the new space is exhausted control
// continues at the gc_required label. The allocated object is returned in
// result and end of the new object is returned in result_end. The register
// scratch can be passed as no_reg in which case an additional object
// reference will be added to the reloc info. The returned pointers in result
// and result_end have not yet been tagged as heap objects. If
// result_contains_top_on_entry is true the content of result is known to be
// the allocation top on entry (could be result_end from a previous call to
// AllocateInNewSpace). If result_contains_top_on_entry is true scratch
// should be no_reg as it is never used.
void AllocateInNewSpace(int object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags);
void AllocateInNewSpace(int header_size,
ScaleFactor element_size,
Register element_count,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags);
void AllocateInNewSpace(Register object_size,
Register result,
Register result_end,
Register scratch,
Label* gc_required,
AllocationFlags flags);
// Undo allocation in new space. The object passed and objects allocated after
// it will no longer be allocated. Make sure that no pointers are left to the
// object(s) no longer allocated as they would be invalid when allocation is
// un-done.
void UndoAllocationInNewSpace(Register object);
// Allocate a heap number in new space with undefined value. Returns
// tagged pointer in result register, or jumps to gc_required if new
// space is full.
void AllocateHeapNumber(Register result,
Register scratch,
Label* gc_required);
// Allocate a sequential string. All the header fields of the string object
// are initialized.
void AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
void AllocateAsciiString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
// Allocate a raw cons string object. Only the map field of the result is
// initialized.
void AllocateConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateAsciiConsString(Register result,
Register scratch1,
Register scratch2,
Label* gc_required);
// ---------------------------------------------------------------------------
// Support functions.
// Check if result is zero and op is negative.
void NegativeZeroTest(Register result, Register op, Label* then_label);
// Check if result is zero and op is negative in code using jump targets.
void NegativeZeroTest(CodeGenerator* cgen,
Register result,
Register op,
JumpTarget* then_target);
// Check if result is zero and any of op1 and op2 are negative.
// Register scratch is destroyed, and it must be different from op2.
void NegativeZeroTest(Register result, Register op1, Register op2,
Register scratch, Label* then_label);
// Try to get function prototype of a function and puts the value in
// the result register. Checks that the function really is a
// function and jumps to the miss label if the fast checks fail. The
// function register will be untouched; the other register may be
// clobbered.
void TryGetFunctionPrototype(Register function,
Register result,
Label* miss);
// Generates code for reporting that an illegal operation has
// occurred.
void IllegalOperation(int num_arguments);
// Find the function context up the context chain.
void LoadContext(Register dst, int context_chain_length);
// ---------------------------------------------------------------------------
// Runtime calls
// Call a code stub.
void CallStub(CodeStub* stub);
// Tail call a code stub (jump).
void TailCallStub(CodeStub* stub);
// Return from a code stub after popping its arguments.
void StubReturn(int argc);
// Call a runtime routine.
void CallRuntime(Runtime::Function* f, int num_arguments);
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId id, int num_arguments);
// Convenience function: call an external reference.
void CallExternalReference(const ExternalReference& ext,
int num_arguments);
// Tail call of a runtime routine (jump).
// Like JumpToExternalReference, but also takes care of passing the number
// of parameters.
void TailCallExternalReference(const ExternalReference& ext,
int num_arguments,
int result_size);
// Convenience function: tail call a runtime routine (jump).
void TailCallRuntime(Runtime::FunctionId fid,
int num_arguments,
int result_size);
// Jump to a runtime routine.
void JumpToExternalReference(const ExternalReference& ext, int result_size);
// Before calling a C-function from generated code, align arguments on stack.
// After aligning the frame, arguments must be stored in esp[0], esp[4],
// etc., not pushed. The argument count assumes all arguments are word sized.
// The number of slots reserved for arguments depends on platform. On Windows
// stack slots are reserved for the arguments passed in registers. On other
// platforms stack slots are only reserved for the arguments actually passed
// on the stack.
void PrepareCallCFunction(int num_arguments);
// Calls a C function and cleans up the space for arguments allocated
// by PrepareCallCFunction. The called function is not allowed to trigger a
// garbage collection, since that might move the code and invalidate the
// return address (unless this is somehow accounted for by the called
// function).
void CallCFunction(ExternalReference function, int num_arguments);
void CallCFunction(Register function, int num_arguments);
// Calculate the number of stack slots to reserve for arguments when calling a
// C function.
int ArgumentStackSlotsForCFunctionCall(int num_arguments);
// ---------------------------------------------------------------------------
// Utilities
void Ret();
Handle<Object> CodeObject() { return code_object_; }
// ---------------------------------------------------------------------------
// StatsCounter support
void SetCounter(StatsCounter* counter, int value);
void IncrementCounter(StatsCounter* counter, int value);
void DecrementCounter(StatsCounter* counter, int value);
// ---------------------------------------------------------------------------
// Debugging
// Calls Abort(msg) if the condition cc is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cc, const char* msg);
// Like Assert(), but always enabled.
void Check(Condition cc, const char* msg);
// Print a message to stdout and abort execution.
void Abort(const char* msg);
// Check that the stack is aligned.
void CheckStackAlignment();
// Verify restrictions about code generated in stubs.
void set_generating_stub(bool value) { generating_stub_ = value; }
bool generating_stub() { return generating_stub_; }
void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
bool allow_stub_calls() { return allow_stub_calls_; }
private:
bool generating_stub_;
bool allow_stub_calls_;
// Returns a register holding the smi value. The register MUST NOT be
// modified. It may be the "smi 1 constant" register.
Register GetSmiConstant(Smi* value);
// Moves the smi value to the destination register.
void LoadSmiConstant(Register dst, Smi* value);
// This handle will be patched with the code object on installation.
Handle<Object> code_object_;
// Helper functions for generating invokes.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_register,
Label* done,
InvokeFlag flag);
// Activation support.
void EnterFrame(StackFrame::Type type);
void LeaveFrame(StackFrame::Type type);
// Allocation support helpers.
// Loads the top of new-space into the result register.
// If flags contains RESULT_CONTAINS_TOP then result_end is valid and
// already contains the top of new-space, and scratch is invalid.
// Otherwise the address of the new-space top is loaded into scratch (if
// scratch is valid), and the new-space top is loaded into result.
void LoadAllocationTopHelper(Register result,
Register result_end,
Register scratch,
AllocationFlags flags);
// Update allocation top with value in result_end register.
// If scratch is valid, it contains the address of the allocation top.
void UpdateAllocationTopHelper(Register result_end, Register scratch);
};
// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. Is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion.
class CodePatcher {
public:
CodePatcher(byte* address, int size);
virtual ~CodePatcher();
// Macro assembler to emit code.
MacroAssembler* masm() { return &masm_; }
private:
byte* address_; // The address of the code being patched.
int size_; // Number of bytes of the expected patch size.
MacroAssembler masm_; // Macro assembler used to generate the code.
};
// -----------------------------------------------------------------------------
// Static helper functions.
// Generate an Operand for loading a field from an object.
static inline Operand FieldOperand(Register object, int offset) {
return Operand(object, offset - kHeapObjectTag);
}
// Generate an Operand for loading an indexed field from an object.
static inline Operand FieldOperand(Register object,
Register index,
ScaleFactor scale,
int offset) {
return Operand(object, index, scale, offset - kHeapObjectTag);
}
#ifdef GENERATED_CODE_COVERAGE
extern void LogGeneratedCodeCoverage(const char* file_line);
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) { \
byte* x64_coverage_function = \
reinterpret_cast<byte*>(FUNCTION_ADDR(LogGeneratedCodeCoverage)); \
masm->pushfd(); \
masm->pushad(); \
masm->push(Immediate(reinterpret_cast<int>(&__FILE_LINE__))); \
masm->call(x64_coverage_function, RelocInfo::RUNTIME_ENTRY); \
masm->pop(rax); \
masm->popad(); \
masm->popfd(); \
} \
masm->
#else
#define ACCESS_MASM(masm) masm->
#endif
} } // namespace v8::internal
#endif // V8_X64_MACRO_ASSEMBLER_X64_H_