| // Copyright 2006-2009 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <limits.h> // For LONG_MIN, LONG_MAX. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_ARM) |
| |
| #include "bootstrapper.h" |
| #include "codegen-inl.h" |
| #include "debug.h" |
| #include "runtime.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| MacroAssembler::MacroAssembler(void* buffer, int size) |
| : Assembler(buffer, size), |
| generating_stub_(false), |
| allow_stub_calls_(true), |
| code_object_(Heap::undefined_value()) { |
| } |
| |
| |
| // We always generate arm code, never thumb code, even if V8 is compiled to |
| // thumb, so we require inter-working support |
| #if defined(__thumb__) && !defined(USE_THUMB_INTERWORK) |
| #error "flag -mthumb-interwork missing" |
| #endif |
| |
| |
| // We do not support thumb inter-working with an arm architecture not supporting |
| // the blx instruction (below v5t). If you know what CPU you are compiling for |
| // you can use -march=armv7 or similar. |
| #if defined(USE_THUMB_INTERWORK) && !defined(CAN_USE_THUMB_INSTRUCTIONS) |
| # error "For thumb inter-working we require an architecture which supports blx" |
| #endif |
| |
| |
| // Using bx does not yield better code, so use it only when required |
| #if defined(USE_THUMB_INTERWORK) |
| #define USE_BX 1 |
| #endif |
| |
| |
| void MacroAssembler::Jump(Register target, Condition cond) { |
| #if USE_BX |
| bx(target, cond); |
| #else |
| mov(pc, Operand(target), LeaveCC, cond); |
| #endif |
| } |
| |
| |
| void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, |
| Condition cond) { |
| #if USE_BX |
| mov(ip, Operand(target, rmode), LeaveCC, cond); |
| bx(ip, cond); |
| #else |
| mov(pc, Operand(target, rmode), LeaveCC, cond); |
| #endif |
| } |
| |
| |
| void MacroAssembler::Jump(byte* target, RelocInfo::Mode rmode, |
| Condition cond) { |
| ASSERT(!RelocInfo::IsCodeTarget(rmode)); |
| Jump(reinterpret_cast<intptr_t>(target), rmode, cond); |
| } |
| |
| |
| void MacroAssembler::Jump(Handle<Code> code, RelocInfo::Mode rmode, |
| Condition cond) { |
| ASSERT(RelocInfo::IsCodeTarget(rmode)); |
| // 'code' is always generated ARM code, never THUMB code |
| Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond); |
| } |
| |
| |
| void MacroAssembler::Call(Register target, Condition cond) { |
| #if USE_BLX |
| blx(target, cond); |
| #else |
| // set lr for return at current pc + 8 |
| mov(lr, Operand(pc), LeaveCC, cond); |
| mov(pc, Operand(target), LeaveCC, cond); |
| #endif |
| } |
| |
| |
| void MacroAssembler::Call(intptr_t target, RelocInfo::Mode rmode, |
| Condition cond) { |
| #if USE_BLX |
| // On ARMv5 and after the recommended call sequence is: |
| // ldr ip, [pc, #...] |
| // blx ip |
| |
| // The two instructions (ldr and blx) could be separated by a constant |
| // pool and the code would still work. The issue comes from the |
| // patching code which expect the ldr to be just above the blx. |
| { BlockConstPoolScope block_const_pool(this); |
| // Statement positions are expected to be recorded when the target |
| // address is loaded. The mov method will automatically record |
| // positions when pc is the target, since this is not the case here |
| // we have to do it explicitly. |
| positions_recorder()->WriteRecordedPositions(); |
| |
| mov(ip, Operand(target, rmode), LeaveCC, cond); |
| blx(ip, cond); |
| } |
| |
| ASSERT(kCallTargetAddressOffset == 2 * kInstrSize); |
| #else |
| // Set lr for return at current pc + 8. |
| mov(lr, Operand(pc), LeaveCC, cond); |
| // Emit a ldr<cond> pc, [pc + offset of target in constant pool]. |
| mov(pc, Operand(target, rmode), LeaveCC, cond); |
| |
| ASSERT(kCallTargetAddressOffset == kInstrSize); |
| #endif |
| } |
| |
| |
| void MacroAssembler::Call(byte* target, RelocInfo::Mode rmode, |
| Condition cond) { |
| ASSERT(!RelocInfo::IsCodeTarget(rmode)); |
| Call(reinterpret_cast<intptr_t>(target), rmode, cond); |
| } |
| |
| |
| void MacroAssembler::Call(Handle<Code> code, RelocInfo::Mode rmode, |
| Condition cond) { |
| ASSERT(RelocInfo::IsCodeTarget(rmode)); |
| // 'code' is always generated ARM code, never THUMB code |
| Call(reinterpret_cast<intptr_t>(code.location()), rmode, cond); |
| } |
| |
| |
| void MacroAssembler::Ret(Condition cond) { |
| #if USE_BX |
| bx(lr, cond); |
| #else |
| mov(pc, Operand(lr), LeaveCC, cond); |
| #endif |
| } |
| |
| |
| void MacroAssembler::StackLimitCheck(Label* on_stack_overflow) { |
| LoadRoot(ip, Heap::kStackLimitRootIndex); |
| cmp(sp, Operand(ip)); |
| b(lo, on_stack_overflow); |
| } |
| |
| |
| void MacroAssembler::Drop(int count, Condition cond) { |
| if (count > 0) { |
| add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond); |
| } |
| } |
| |
| |
| void MacroAssembler::Swap(Register reg1, |
| Register reg2, |
| Register scratch, |
| Condition cond) { |
| if (scratch.is(no_reg)) { |
| eor(reg1, reg1, Operand(reg2), LeaveCC, cond); |
| eor(reg2, reg2, Operand(reg1), LeaveCC, cond); |
| eor(reg1, reg1, Operand(reg2), LeaveCC, cond); |
| } else { |
| mov(scratch, reg1, LeaveCC, cond); |
| mov(reg1, reg2, LeaveCC, cond); |
| mov(reg2, scratch, LeaveCC, cond); |
| } |
| } |
| |
| |
| void MacroAssembler::Call(Label* target) { |
| bl(target); |
| } |
| |
| |
| void MacroAssembler::Move(Register dst, Handle<Object> value) { |
| mov(dst, Operand(value)); |
| } |
| |
| |
| void MacroAssembler::Move(Register dst, Register src) { |
| if (!dst.is(src)) { |
| mov(dst, src); |
| } |
| } |
| |
| |
| void MacroAssembler::And(Register dst, Register src1, const Operand& src2, |
| Condition cond) { |
| if (!src2.is_reg() && |
| !src2.must_use_constant_pool() && |
| src2.immediate() == 0) { |
| mov(dst, Operand(0, RelocInfo::NONE), LeaveCC, cond); |
| |
| } else if (!src2.is_single_instruction() && |
| !src2.must_use_constant_pool() && |
| CpuFeatures::IsSupported(ARMv7) && |
| IsPowerOf2(src2.immediate() + 1)) { |
| ubfx(dst, src1, 0, WhichPowerOf2(src2.immediate() + 1), cond); |
| |
| } else { |
| and_(dst, src1, src2, LeaveCC, cond); |
| } |
| } |
| |
| |
| void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width, |
| Condition cond) { |
| ASSERT(lsb < 32); |
| if (!CpuFeatures::IsSupported(ARMv7)) { |
| int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); |
| and_(dst, src1, Operand(mask), LeaveCC, cond); |
| if (lsb != 0) { |
| mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond); |
| } |
| } else { |
| ubfx(dst, src1, lsb, width, cond); |
| } |
| } |
| |
| |
| void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width, |
| Condition cond) { |
| ASSERT(lsb < 32); |
| if (!CpuFeatures::IsSupported(ARMv7)) { |
| int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); |
| and_(dst, src1, Operand(mask), LeaveCC, cond); |
| int shift_up = 32 - lsb - width; |
| int shift_down = lsb + shift_up; |
| if (shift_up != 0) { |
| mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond); |
| } |
| if (shift_down != 0) { |
| mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond); |
| } |
| } else { |
| sbfx(dst, src1, lsb, width, cond); |
| } |
| } |
| |
| |
| void MacroAssembler::Bfc(Register dst, int lsb, int width, Condition cond) { |
| ASSERT(lsb < 32); |
| if (!CpuFeatures::IsSupported(ARMv7)) { |
| int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); |
| bic(dst, dst, Operand(mask)); |
| } else { |
| bfc(dst, lsb, width, cond); |
| } |
| } |
| |
| |
| void MacroAssembler::Usat(Register dst, int satpos, const Operand& src, |
| Condition cond) { |
| if (!CpuFeatures::IsSupported(ARMv7)) { |
| ASSERT(!dst.is(pc) && !src.rm().is(pc)); |
| ASSERT((satpos >= 0) && (satpos <= 31)); |
| |
| // These asserts are required to ensure compatibility with the ARMv7 |
| // implementation. |
| ASSERT((src.shift_op() == ASR) || (src.shift_op() == LSL)); |
| ASSERT(src.rs().is(no_reg)); |
| |
| Label done; |
| int satval = (1 << satpos) - 1; |
| |
| if (cond != al) { |
| b(NegateCondition(cond), &done); // Skip saturate if !condition. |
| } |
| if (!(src.is_reg() && dst.is(src.rm()))) { |
| mov(dst, src); |
| } |
| tst(dst, Operand(~satval)); |
| b(eq, &done); |
| mov(dst, Operand(0, RelocInfo::NONE), LeaveCC, mi); // 0 if negative. |
| mov(dst, Operand(satval), LeaveCC, pl); // satval if positive. |
| bind(&done); |
| } else { |
| usat(dst, satpos, src, cond); |
| } |
| } |
| |
| |
| void MacroAssembler::SmiJumpTable(Register index, Vector<Label*> targets) { |
| // Empty the const pool. |
| CheckConstPool(true, true); |
| add(pc, pc, Operand(index, |
| LSL, |
| assembler::arm::Instr::kInstrSizeLog2 - kSmiTagSize)); |
| BlockConstPoolBefore(pc_offset() + (targets.length() + 1) * kInstrSize); |
| nop(); // Jump table alignment. |
| for (int i = 0; i < targets.length(); i++) { |
| b(targets[i]); |
| } |
| } |
| |
| |
| void MacroAssembler::LoadRoot(Register destination, |
| Heap::RootListIndex index, |
| Condition cond) { |
| ldr(destination, MemOperand(roots, index << kPointerSizeLog2), cond); |
| } |
| |
| |
| void MacroAssembler::StoreRoot(Register source, |
| Heap::RootListIndex index, |
| Condition cond) { |
| str(source, MemOperand(roots, index << kPointerSizeLog2), cond); |
| } |
| |
| |
| void MacroAssembler::RecordWriteHelper(Register object, |
| Register address, |
| Register scratch) { |
| if (FLAG_debug_code) { |
| // Check that the object is not in new space. |
| Label not_in_new_space; |
| InNewSpace(object, scratch, ne, ¬_in_new_space); |
| Abort("new-space object passed to RecordWriteHelper"); |
| bind(¬_in_new_space); |
| } |
| |
| // Calculate page address. |
| Bfc(object, 0, kPageSizeBits); |
| |
| // Calculate region number. |
| Ubfx(address, address, Page::kRegionSizeLog2, |
| kPageSizeBits - Page::kRegionSizeLog2); |
| |
| // Mark region dirty. |
| ldr(scratch, MemOperand(object, Page::kDirtyFlagOffset)); |
| mov(ip, Operand(1)); |
| orr(scratch, scratch, Operand(ip, LSL, address)); |
| str(scratch, MemOperand(object, Page::kDirtyFlagOffset)); |
| } |
| |
| |
| void MacroAssembler::InNewSpace(Register object, |
| Register scratch, |
| Condition cc, |
| Label* branch) { |
| ASSERT(cc == eq || cc == ne); |
| and_(scratch, object, Operand(ExternalReference::new_space_mask())); |
| cmp(scratch, Operand(ExternalReference::new_space_start())); |
| b(cc, branch); |
| } |
| |
| |
| // Will clobber 4 registers: object, offset, scratch, ip. The |
| // register 'object' contains a heap object pointer. The heap object |
| // tag is shifted away. |
| void MacroAssembler::RecordWrite(Register object, |
| Operand offset, |
| Register scratch0, |
| Register scratch1) { |
| // The compiled code assumes that record write doesn't change the |
| // context register, so we check that none of the clobbered |
| // registers are cp. |
| ASSERT(!object.is(cp) && !scratch0.is(cp) && !scratch1.is(cp)); |
| |
| Label done; |
| |
| // First, test that the object is not in the new space. We cannot set |
| // region marks for new space pages. |
| InNewSpace(object, scratch0, eq, &done); |
| |
| // Add offset into the object. |
| add(scratch0, object, offset); |
| |
| // Record the actual write. |
| RecordWriteHelper(object, scratch0, scratch1); |
| |
| bind(&done); |
| |
| // Clobber all input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (FLAG_debug_code) { |
| mov(object, Operand(BitCast<int32_t>(kZapValue))); |
| mov(scratch0, Operand(BitCast<int32_t>(kZapValue))); |
| mov(scratch1, Operand(BitCast<int32_t>(kZapValue))); |
| } |
| } |
| |
| |
| // Will clobber 4 registers: object, address, scratch, ip. The |
| // register 'object' contains a heap object pointer. The heap object |
| // tag is shifted away. |
| void MacroAssembler::RecordWrite(Register object, |
| Register address, |
| Register scratch) { |
| // The compiled code assumes that record write doesn't change the |
| // context register, so we check that none of the clobbered |
| // registers are cp. |
| ASSERT(!object.is(cp) && !address.is(cp) && !scratch.is(cp)); |
| |
| Label done; |
| |
| // First, test that the object is not in the new space. We cannot set |
| // region marks for new space pages. |
| InNewSpace(object, scratch, eq, &done); |
| |
| // Record the actual write. |
| RecordWriteHelper(object, address, scratch); |
| |
| bind(&done); |
| |
| // Clobber all input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (FLAG_debug_code) { |
| mov(object, Operand(BitCast<int32_t>(kZapValue))); |
| mov(address, Operand(BitCast<int32_t>(kZapValue))); |
| mov(scratch, Operand(BitCast<int32_t>(kZapValue))); |
| } |
| } |
| |
| |
| void MacroAssembler::Ldrd(Register dst1, Register dst2, |
| const MemOperand& src, Condition cond) { |
| ASSERT(src.rm().is(no_reg)); |
| ASSERT(!dst1.is(lr)); // r14. |
| ASSERT_EQ(0, dst1.code() % 2); |
| ASSERT_EQ(dst1.code() + 1, dst2.code()); |
| |
| // Generate two ldr instructions if ldrd is not available. |
| if (CpuFeatures::IsSupported(ARMv7)) { |
| CpuFeatures::Scope scope(ARMv7); |
| ldrd(dst1, dst2, src, cond); |
| } else { |
| MemOperand src2(src); |
| src2.set_offset(src2.offset() + 4); |
| if (dst1.is(src.rn())) { |
| ldr(dst2, src2, cond); |
| ldr(dst1, src, cond); |
| } else { |
| ldr(dst1, src, cond); |
| ldr(dst2, src2, cond); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::Strd(Register src1, Register src2, |
| const MemOperand& dst, Condition cond) { |
| ASSERT(dst.rm().is(no_reg)); |
| ASSERT(!src1.is(lr)); // r14. |
| ASSERT_EQ(0, src1.code() % 2); |
| ASSERT_EQ(src1.code() + 1, src2.code()); |
| |
| // Generate two str instructions if strd is not available. |
| if (CpuFeatures::IsSupported(ARMv7)) { |
| CpuFeatures::Scope scope(ARMv7); |
| strd(src1, src2, dst, cond); |
| } else { |
| MemOperand dst2(dst); |
| dst2.set_offset(dst2.offset() + 4); |
| str(src1, dst, cond); |
| str(src2, dst2, cond); |
| } |
| } |
| |
| |
| void MacroAssembler::EnterFrame(StackFrame::Type type) { |
| // r0-r3: preserved |
| stm(db_w, sp, cp.bit() | fp.bit() | lr.bit()); |
| mov(ip, Operand(Smi::FromInt(type))); |
| push(ip); |
| mov(ip, Operand(CodeObject())); |
| push(ip); |
| add(fp, sp, Operand(3 * kPointerSize)); // Adjust FP to point to saved FP. |
| } |
| |
| |
| void MacroAssembler::LeaveFrame(StackFrame::Type type) { |
| // r0: preserved |
| // r1: preserved |
| // r2: preserved |
| |
| // Drop the execution stack down to the frame pointer and restore |
| // the caller frame pointer and return address. |
| mov(sp, fp); |
| ldm(ia_w, sp, fp.bit() | lr.bit()); |
| } |
| |
| |
| void MacroAssembler::EnterExitFrame() { |
| // Compute the argv pointer and keep it in a callee-saved register. |
| // r0 is argc. |
| add(r6, sp, Operand(r0, LSL, kPointerSizeLog2)); |
| sub(r6, r6, Operand(kPointerSize)); |
| |
| // Compute callee's stack pointer before making changes and save it as |
| // ip register so that it is restored as sp register on exit, thereby |
| // popping the args. |
| |
| // ip = sp + kPointerSize * #args; |
| add(ip, sp, Operand(r0, LSL, kPointerSizeLog2)); |
| |
| // Prepare the stack to be aligned when calling into C. After this point there |
| // are 5 pushes before the call into C, so the stack needs to be aligned after |
| // 5 pushes. |
| int frame_alignment = ActivationFrameAlignment(); |
| int frame_alignment_mask = frame_alignment - 1; |
| if (frame_alignment != kPointerSize) { |
| // The following code needs to be more general if this assert does not hold. |
| ASSERT(frame_alignment == 2 * kPointerSize); |
| // With 5 pushes left the frame must be unaligned at this point. |
| mov(r7, Operand(Smi::FromInt(0))); |
| tst(sp, Operand((frame_alignment - kPointerSize) & frame_alignment_mask)); |
| push(r7, eq); // Push if aligned to make it unaligned. |
| } |
| |
| // Push in reverse order: caller_fp, sp_on_exit, and caller_pc. |
| stm(db_w, sp, fp.bit() | ip.bit() | lr.bit()); |
| mov(fp, Operand(sp)); // Setup new frame pointer. |
| |
| mov(ip, Operand(CodeObject())); |
| push(ip); // Accessed from ExitFrame::code_slot. |
| |
| // Save the frame pointer and the context in top. |
| mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address))); |
| str(fp, MemOperand(ip)); |
| mov(ip, Operand(ExternalReference(Top::k_context_address))); |
| str(cp, MemOperand(ip)); |
| |
| // Setup argc and the builtin function in callee-saved registers. |
| mov(r4, Operand(r0)); |
| mov(r5, Operand(r1)); |
| } |
| |
| |
| void MacroAssembler::InitializeNewString(Register string, |
| Register length, |
| Heap::RootListIndex map_index, |
| Register scratch1, |
| Register scratch2) { |
| mov(scratch1, Operand(length, LSL, kSmiTagSize)); |
| LoadRoot(scratch2, map_index); |
| str(scratch1, FieldMemOperand(string, String::kLengthOffset)); |
| mov(scratch1, Operand(String::kEmptyHashField)); |
| str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset)); |
| str(scratch1, FieldMemOperand(string, String::kHashFieldOffset)); |
| } |
| |
| |
| int MacroAssembler::ActivationFrameAlignment() { |
| #if defined(V8_HOST_ARCH_ARM) |
| // Running on the real platform. Use the alignment as mandated by the local |
| // environment. |
| // Note: This will break if we ever start generating snapshots on one ARM |
| // platform for another ARM platform with a different alignment. |
| return OS::ActivationFrameAlignment(); |
| #else // defined(V8_HOST_ARCH_ARM) |
| // If we are using the simulator then we should always align to the expected |
| // alignment. As the simulator is used to generate snapshots we do not know |
| // if the target platform will need alignment, so this is controlled from a |
| // flag. |
| return FLAG_sim_stack_alignment; |
| #endif // defined(V8_HOST_ARCH_ARM) |
| } |
| |
| |
| void MacroAssembler::LeaveExitFrame() { |
| // Clear top frame. |
| mov(r3, Operand(0, RelocInfo::NONE)); |
| mov(ip, Operand(ExternalReference(Top::k_c_entry_fp_address))); |
| str(r3, MemOperand(ip)); |
| |
| // Restore current context from top and clear it in debug mode. |
| mov(ip, Operand(ExternalReference(Top::k_context_address))); |
| ldr(cp, MemOperand(ip)); |
| #ifdef DEBUG |
| str(r3, MemOperand(ip)); |
| #endif |
| |
| // Pop the arguments, restore registers, and return. |
| mov(sp, Operand(fp)); // respect ABI stack constraint |
| ldm(ia, sp, fp.bit() | sp.bit() | pc.bit()); |
| } |
| |
| |
| void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, |
| Handle<Code> code_constant, |
| Register code_reg, |
| Label* done, |
| InvokeFlag flag) { |
| bool definitely_matches = false; |
| Label regular_invoke; |
| |
| // Check whether the expected and actual arguments count match. If not, |
| // setup registers according to contract with ArgumentsAdaptorTrampoline: |
| // r0: actual arguments count |
| // r1: function (passed through to callee) |
| // r2: expected arguments count |
| // r3: callee code entry |
| |
| // The code below is made a lot easier because the calling code already sets |
| // up actual and expected registers according to the contract if values are |
| // passed in registers. |
| ASSERT(actual.is_immediate() || actual.reg().is(r0)); |
| ASSERT(expected.is_immediate() || expected.reg().is(r2)); |
| ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(r3)); |
| |
| if (expected.is_immediate()) { |
| ASSERT(actual.is_immediate()); |
| if (expected.immediate() == actual.immediate()) { |
| definitely_matches = true; |
| } else { |
| mov(r0, Operand(actual.immediate())); |
| const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; |
| if (expected.immediate() == sentinel) { |
| // Don't worry about adapting arguments for builtins that |
| // don't want that done. Skip adaption code by making it look |
| // like we have a match between expected and actual number of |
| // arguments. |
| definitely_matches = true; |
| } else { |
| mov(r2, Operand(expected.immediate())); |
| } |
| } |
| } else { |
| if (actual.is_immediate()) { |
| cmp(expected.reg(), Operand(actual.immediate())); |
| b(eq, ®ular_invoke); |
| mov(r0, Operand(actual.immediate())); |
| } else { |
| cmp(expected.reg(), Operand(actual.reg())); |
| b(eq, ®ular_invoke); |
| } |
| } |
| |
| if (!definitely_matches) { |
| if (!code_constant.is_null()) { |
| mov(r3, Operand(code_constant)); |
| add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); |
| } |
| |
| Handle<Code> adaptor = |
| Handle<Code>(Builtins::builtin(Builtins::ArgumentsAdaptorTrampoline)); |
| if (flag == CALL_FUNCTION) { |
| Call(adaptor, RelocInfo::CODE_TARGET); |
| b(done); |
| } else { |
| Jump(adaptor, RelocInfo::CODE_TARGET); |
| } |
| bind(®ular_invoke); |
| } |
| } |
| |
| |
| void MacroAssembler::InvokeCode(Register code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| Label done; |
| |
| InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag); |
| if (flag == CALL_FUNCTION) { |
| Call(code); |
| } else { |
| ASSERT(flag == JUMP_FUNCTION); |
| Jump(code); |
| } |
| |
| // Continue here if InvokePrologue does handle the invocation due to |
| // mismatched parameter counts. |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::InvokeCode(Handle<Code> code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| RelocInfo::Mode rmode, |
| InvokeFlag flag) { |
| Label done; |
| |
| InvokePrologue(expected, actual, code, no_reg, &done, flag); |
| if (flag == CALL_FUNCTION) { |
| Call(code, rmode); |
| } else { |
| Jump(code, rmode); |
| } |
| |
| // Continue here if InvokePrologue does handle the invocation due to |
| // mismatched parameter counts. |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::InvokeFunction(Register fun, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| // Contract with called JS functions requires that function is passed in r1. |
| ASSERT(fun.is(r1)); |
| |
| Register expected_reg = r2; |
| Register code_reg = r3; |
| |
| ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); |
| ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); |
| ldr(expected_reg, |
| FieldMemOperand(code_reg, |
| SharedFunctionInfo::kFormalParameterCountOffset)); |
| mov(expected_reg, Operand(expected_reg, ASR, kSmiTagSize)); |
| ldr(code_reg, |
| FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); |
| |
| ParameterCount expected(expected_reg); |
| InvokeCode(code_reg, expected, actual, flag); |
| } |
| |
| |
| void MacroAssembler::InvokeFunction(JSFunction* function, |
| const ParameterCount& actual, |
| InvokeFlag flag) { |
| ASSERT(function->is_compiled()); |
| |
| // Get the function and setup the context. |
| mov(r1, Operand(Handle<JSFunction>(function))); |
| ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); |
| |
| // Invoke the cached code. |
| Handle<Code> code(function->code()); |
| ParameterCount expected(function->shared()->formal_parameter_count()); |
| InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag); |
| } |
| |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| void MacroAssembler::DebugBreak() { |
| ASSERT(allow_stub_calls()); |
| mov(r0, Operand(0, RelocInfo::NONE)); |
| mov(r1, Operand(ExternalReference(Runtime::kDebugBreak))); |
| CEntryStub ces(1); |
| Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); |
| } |
| #endif |
| |
| |
| void MacroAssembler::PushTryHandler(CodeLocation try_location, |
| HandlerType type) { |
| // Adjust this code if not the case. |
| ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize); |
| // The pc (return address) is passed in register lr. |
| if (try_location == IN_JAVASCRIPT) { |
| if (type == TRY_CATCH_HANDLER) { |
| mov(r3, Operand(StackHandler::TRY_CATCH)); |
| } else { |
| mov(r3, Operand(StackHandler::TRY_FINALLY)); |
| } |
| ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize |
| && StackHandlerConstants::kFPOffset == 2 * kPointerSize |
| && StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
| stm(db_w, sp, r3.bit() | fp.bit() | lr.bit()); |
| // Save the current handler as the next handler. |
| mov(r3, Operand(ExternalReference(Top::k_handler_address))); |
| ldr(r1, MemOperand(r3)); |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| push(r1); |
| // Link this handler as the new current one. |
| str(sp, MemOperand(r3)); |
| } else { |
| // Must preserve r0-r4, r5-r7 are available. |
| ASSERT(try_location == IN_JS_ENTRY); |
| // The frame pointer does not point to a JS frame so we save NULL |
| // for fp. We expect the code throwing an exception to check fp |
| // before dereferencing it to restore the context. |
| mov(ip, Operand(0, RelocInfo::NONE)); // To save a NULL frame pointer. |
| mov(r6, Operand(StackHandler::ENTRY)); |
| ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize |
| && StackHandlerConstants::kFPOffset == 2 * kPointerSize |
| && StackHandlerConstants::kPCOffset == 3 * kPointerSize); |
| stm(db_w, sp, r6.bit() | ip.bit() | lr.bit()); |
| // Save the current handler as the next handler. |
| mov(r7, Operand(ExternalReference(Top::k_handler_address))); |
| ldr(r6, MemOperand(r7)); |
| ASSERT(StackHandlerConstants::kNextOffset == 0); |
| push(r6); |
| // Link this handler as the new current one. |
| str(sp, MemOperand(r7)); |
| } |
| } |
| |
| |
| void MacroAssembler::PopTryHandler() { |
| ASSERT_EQ(0, StackHandlerConstants::kNextOffset); |
| pop(r1); |
| mov(ip, Operand(ExternalReference(Top::k_handler_address))); |
| add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); |
| str(r1, MemOperand(ip)); |
| } |
| |
| |
| void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, |
| Register scratch, |
| Label* miss) { |
| Label same_contexts; |
| |
| ASSERT(!holder_reg.is(scratch)); |
| ASSERT(!holder_reg.is(ip)); |
| ASSERT(!scratch.is(ip)); |
| |
| // Load current lexical context from the stack frame. |
| ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| // In debug mode, make sure the lexical context is set. |
| #ifdef DEBUG |
| cmp(scratch, Operand(0, RelocInfo::NONE)); |
| Check(ne, "we should not have an empty lexical context"); |
| #endif |
| |
| // Load the global context of the current context. |
| int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; |
| ldr(scratch, FieldMemOperand(scratch, offset)); |
| ldr(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset)); |
| |
| // Check the context is a global context. |
| if (FLAG_debug_code) { |
| // TODO(119): avoid push(holder_reg)/pop(holder_reg) |
| // Cannot use ip as a temporary in this verification code. Due to the fact |
| // that ip is clobbered as part of cmp with an object Operand. |
| push(holder_reg); // Temporarily save holder on the stack. |
| // Read the first word and compare to the global_context_map. |
| ldr(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset)); |
| LoadRoot(ip, Heap::kGlobalContextMapRootIndex); |
| cmp(holder_reg, ip); |
| Check(eq, "JSGlobalObject::global_context should be a global context."); |
| pop(holder_reg); // Restore holder. |
| } |
| |
| // Check if both contexts are the same. |
| ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
| cmp(scratch, Operand(ip)); |
| b(eq, &same_contexts); |
| |
| // Check the context is a global context. |
| if (FLAG_debug_code) { |
| // TODO(119): avoid push(holder_reg)/pop(holder_reg) |
| // Cannot use ip as a temporary in this verification code. Due to the fact |
| // that ip is clobbered as part of cmp with an object Operand. |
| push(holder_reg); // Temporarily save holder on the stack. |
| mov(holder_reg, ip); // Move ip to its holding place. |
| LoadRoot(ip, Heap::kNullValueRootIndex); |
| cmp(holder_reg, ip); |
| Check(ne, "JSGlobalProxy::context() should not be null."); |
| |
| ldr(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset)); |
| LoadRoot(ip, Heap::kGlobalContextMapRootIndex); |
| cmp(holder_reg, ip); |
| Check(eq, "JSGlobalObject::global_context should be a global context."); |
| // Restore ip is not needed. ip is reloaded below. |
| pop(holder_reg); // Restore holder. |
| // Restore ip to holder's context. |
| ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
| } |
| |
| // Check that the security token in the calling global object is |
| // compatible with the security token in the receiving global |
| // object. |
| int token_offset = Context::kHeaderSize + |
| Context::SECURITY_TOKEN_INDEX * kPointerSize; |
| |
| ldr(scratch, FieldMemOperand(scratch, token_offset)); |
| ldr(ip, FieldMemOperand(ip, token_offset)); |
| cmp(scratch, Operand(ip)); |
| b(ne, miss); |
| |
| bind(&same_contexts); |
| } |
| |
| |
| void MacroAssembler::AllocateInNewSpace(int object_size, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required, |
| AllocationFlags flags) { |
| if (!FLAG_inline_new) { |
| if (FLAG_debug_code) { |
| // Trash the registers to simulate an allocation failure. |
| mov(result, Operand(0x7091)); |
| mov(scratch1, Operand(0x7191)); |
| mov(scratch2, Operand(0x7291)); |
| } |
| jmp(gc_required); |
| return; |
| } |
| |
| ASSERT(!result.is(scratch1)); |
| ASSERT(!scratch1.is(scratch2)); |
| |
| // Make object size into bytes. |
| if ((flags & SIZE_IN_WORDS) != 0) { |
| object_size *= kPointerSize; |
| } |
| ASSERT_EQ(0, object_size & kObjectAlignmentMask); |
| |
| // Load address of new object into result and allocation top address into |
| // scratch1. |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(); |
| mov(scratch1, Operand(new_space_allocation_top)); |
| if ((flags & RESULT_CONTAINS_TOP) == 0) { |
| ldr(result, MemOperand(scratch1)); |
| } else if (FLAG_debug_code) { |
| // Assert that result actually contains top on entry. scratch2 is used |
| // immediately below so this use of scratch2 does not cause difference with |
| // respect to register content between debug and release mode. |
| ldr(scratch2, MemOperand(scratch1)); |
| cmp(result, scratch2); |
| Check(eq, "Unexpected allocation top"); |
| } |
| |
| // Calculate new top and bail out if new space is exhausted. Use result |
| // to calculate the new top. |
| ExternalReference new_space_allocation_limit = |
| ExternalReference::new_space_allocation_limit_address(); |
| mov(scratch2, Operand(new_space_allocation_limit)); |
| ldr(scratch2, MemOperand(scratch2)); |
| add(result, result, Operand(object_size)); |
| cmp(result, Operand(scratch2)); |
| b(hi, gc_required); |
| str(result, MemOperand(scratch1)); |
| |
| // Tag and adjust back to start of new object. |
| if ((flags & TAG_OBJECT) != 0) { |
| sub(result, result, Operand(object_size - kHeapObjectTag)); |
| } else { |
| sub(result, result, Operand(object_size)); |
| } |
| } |
| |
| |
| void MacroAssembler::AllocateInNewSpace(Register object_size, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required, |
| AllocationFlags flags) { |
| if (!FLAG_inline_new) { |
| if (FLAG_debug_code) { |
| // Trash the registers to simulate an allocation failure. |
| mov(result, Operand(0x7091)); |
| mov(scratch1, Operand(0x7191)); |
| mov(scratch2, Operand(0x7291)); |
| } |
| jmp(gc_required); |
| return; |
| } |
| |
| ASSERT(!result.is(scratch1)); |
| ASSERT(!scratch1.is(scratch2)); |
| |
| // Load address of new object into result and allocation top address into |
| // scratch1. |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(); |
| mov(scratch1, Operand(new_space_allocation_top)); |
| if ((flags & RESULT_CONTAINS_TOP) == 0) { |
| ldr(result, MemOperand(scratch1)); |
| } else if (FLAG_debug_code) { |
| // Assert that result actually contains top on entry. scratch2 is used |
| // immediately below so this use of scratch2 does not cause difference with |
| // respect to register content between debug and release mode. |
| ldr(scratch2, MemOperand(scratch1)); |
| cmp(result, scratch2); |
| Check(eq, "Unexpected allocation top"); |
| } |
| |
| // Calculate new top and bail out if new space is exhausted. Use result |
| // to calculate the new top. Object size is in words so a shift is required to |
| // get the number of bytes |
| ExternalReference new_space_allocation_limit = |
| ExternalReference::new_space_allocation_limit_address(); |
| mov(scratch2, Operand(new_space_allocation_limit)); |
| ldr(scratch2, MemOperand(scratch2)); |
| if ((flags & SIZE_IN_WORDS) != 0) { |
| add(result, result, Operand(object_size, LSL, kPointerSizeLog2)); |
| } else { |
| add(result, result, Operand(object_size)); |
| } |
| cmp(result, Operand(scratch2)); |
| b(hi, gc_required); |
| |
| // Update allocation top. result temporarily holds the new top. |
| if (FLAG_debug_code) { |
| tst(result, Operand(kObjectAlignmentMask)); |
| Check(eq, "Unaligned allocation in new space"); |
| } |
| str(result, MemOperand(scratch1)); |
| |
| // Adjust back to start of new object. |
| if ((flags & SIZE_IN_WORDS) != 0) { |
| sub(result, result, Operand(object_size, LSL, kPointerSizeLog2)); |
| } else { |
| sub(result, result, Operand(object_size)); |
| } |
| |
| // Tag object if requested. |
| if ((flags & TAG_OBJECT) != 0) { |
| add(result, result, Operand(kHeapObjectTag)); |
| } |
| } |
| |
| |
| void MacroAssembler::UndoAllocationInNewSpace(Register object, |
| Register scratch) { |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(); |
| |
| // Make sure the object has no tag before resetting top. |
| and_(object, object, Operand(~kHeapObjectTagMask)); |
| #ifdef DEBUG |
| // Check that the object un-allocated is below the current top. |
| mov(scratch, Operand(new_space_allocation_top)); |
| ldr(scratch, MemOperand(scratch)); |
| cmp(object, scratch); |
| Check(lt, "Undo allocation of non allocated memory"); |
| #endif |
| // Write the address of the object to un-allocate as the current top. |
| mov(scratch, Operand(new_space_allocation_top)); |
| str(object, MemOperand(scratch)); |
| } |
| |
| |
| void MacroAssembler::AllocateTwoByteString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required) { |
| // Calculate the number of bytes needed for the characters in the string while |
| // observing object alignment. |
| ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
| mov(scratch1, Operand(length, LSL, 1)); // Length in bytes, not chars. |
| add(scratch1, scratch1, |
| Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize)); |
| and_(scratch1, scratch1, Operand(~kObjectAlignmentMask)); |
| |
| // Allocate two-byte string in new space. |
| AllocateInNewSpace(scratch1, |
| result, |
| scratch2, |
| scratch3, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map, length and hash field. |
| InitializeNewString(result, |
| length, |
| Heap::kStringMapRootIndex, |
| scratch1, |
| scratch2); |
| } |
| |
| |
| void MacroAssembler::AllocateAsciiString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required) { |
| // Calculate the number of bytes needed for the characters in the string while |
| // observing object alignment. |
| ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); |
| ASSERT(kCharSize == 1); |
| add(scratch1, length, |
| Operand(kObjectAlignmentMask + SeqAsciiString::kHeaderSize)); |
| and_(scratch1, scratch1, Operand(~kObjectAlignmentMask)); |
| |
| // Allocate ASCII string in new space. |
| AllocateInNewSpace(scratch1, |
| result, |
| scratch2, |
| scratch3, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map, length and hash field. |
| InitializeNewString(result, |
| length, |
| Heap::kAsciiStringMapRootIndex, |
| scratch1, |
| scratch2); |
| } |
| |
| |
| void MacroAssembler::AllocateTwoByteConsString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| AllocateInNewSpace(ConsString::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| InitializeNewString(result, |
| length, |
| Heap::kConsStringMapRootIndex, |
| scratch1, |
| scratch2); |
| } |
| |
| |
| void MacroAssembler::AllocateAsciiConsString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| AllocateInNewSpace(ConsString::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| InitializeNewString(result, |
| length, |
| Heap::kConsAsciiStringMapRootIndex, |
| scratch1, |
| scratch2); |
| } |
| |
| |
| void MacroAssembler::CompareObjectType(Register object, |
| Register map, |
| Register type_reg, |
| InstanceType type) { |
| ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); |
| CompareInstanceType(map, type_reg, type); |
| } |
| |
| |
| void MacroAssembler::CompareInstanceType(Register map, |
| Register type_reg, |
| InstanceType type) { |
| ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| cmp(type_reg, Operand(type)); |
| } |
| |
| |
| void MacroAssembler::CheckMap(Register obj, |
| Register scratch, |
| Handle<Map> map, |
| Label* fail, |
| bool is_heap_object) { |
| if (!is_heap_object) { |
| BranchOnSmi(obj, fail); |
| } |
| ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
| mov(ip, Operand(map)); |
| cmp(scratch, ip); |
| b(ne, fail); |
| } |
| |
| |
| void MacroAssembler::CheckMap(Register obj, |
| Register scratch, |
| Heap::RootListIndex index, |
| Label* fail, |
| bool is_heap_object) { |
| if (!is_heap_object) { |
| BranchOnSmi(obj, fail); |
| } |
| ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
| LoadRoot(ip, index); |
| cmp(scratch, ip); |
| b(ne, fail); |
| } |
| |
| |
| void MacroAssembler::TryGetFunctionPrototype(Register function, |
| Register result, |
| Register scratch, |
| Label* miss) { |
| // Check that the receiver isn't a smi. |
| BranchOnSmi(function, miss); |
| |
| // Check that the function really is a function. Load map into result reg. |
| CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE); |
| b(ne, miss); |
| |
| // Make sure that the function has an instance prototype. |
| Label non_instance; |
| ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); |
| tst(scratch, Operand(1 << Map::kHasNonInstancePrototype)); |
| b(ne, &non_instance); |
| |
| // Get the prototype or initial map from the function. |
| ldr(result, |
| FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // If the prototype or initial map is the hole, don't return it and |
| // simply miss the cache instead. This will allow us to allocate a |
| // prototype object on-demand in the runtime system. |
| LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| cmp(result, ip); |
| b(eq, miss); |
| |
| // If the function does not have an initial map, we're done. |
| Label done; |
| CompareObjectType(result, scratch, scratch, MAP_TYPE); |
| b(ne, &done); |
| |
| // Get the prototype from the initial map. |
| ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); |
| jmp(&done); |
| |
| // Non-instance prototype: Fetch prototype from constructor field |
| // in initial map. |
| bind(&non_instance); |
| ldr(result, FieldMemOperand(result, Map::kConstructorOffset)); |
| |
| // All done. |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::CallStub(CodeStub* stub, Condition cond) { |
| ASSERT(allow_stub_calls()); // stub calls are not allowed in some stubs |
| Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond); |
| } |
| |
| |
| void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) { |
| ASSERT(allow_stub_calls()); // stub calls are not allowed in some stubs |
| Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond); |
| } |
| |
| |
| void MacroAssembler::IllegalOperation(int num_arguments) { |
| if (num_arguments > 0) { |
| add(sp, sp, Operand(num_arguments * kPointerSize)); |
| } |
| LoadRoot(r0, Heap::kUndefinedValueRootIndex); |
| } |
| |
| |
| void MacroAssembler::IndexFromHash(Register hash, Register index) { |
| // If the hash field contains an array index pick it out. The assert checks |
| // that the constants for the maximum number of digits for an array index |
| // cached in the hash field and the number of bits reserved for it does not |
| // conflict. |
| ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < |
| (1 << String::kArrayIndexValueBits)); |
| // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in |
| // the low kHashShift bits. |
| STATIC_ASSERT(kSmiTag == 0); |
| Ubfx(hash, hash, String::kHashShift, String::kArrayIndexValueBits); |
| mov(index, Operand(hash, LSL, kSmiTagSize)); |
| } |
| |
| |
| void MacroAssembler::IntegerToDoubleConversionWithVFP3(Register inReg, |
| Register outHighReg, |
| Register outLowReg) { |
| // ARMv7 VFP3 instructions to implement integer to double conversion. |
| mov(r7, Operand(inReg, ASR, kSmiTagSize)); |
| vmov(s15, r7); |
| vcvt_f64_s32(d7, s15); |
| vmov(outLowReg, outHighReg, d7); |
| } |
| |
| |
| void MacroAssembler::ObjectToDoubleVFPRegister(Register object, |
| DwVfpRegister result, |
| Register scratch1, |
| Register scratch2, |
| Register heap_number_map, |
| SwVfpRegister scratch3, |
| Label* not_number, |
| ObjectToDoubleFlags flags) { |
| Label done; |
| if ((flags & OBJECT_NOT_SMI) == 0) { |
| Label not_smi; |
| BranchOnNotSmi(object, ¬_smi); |
| // Remove smi tag and convert to double. |
| mov(scratch1, Operand(object, ASR, kSmiTagSize)); |
| vmov(scratch3, scratch1); |
| vcvt_f64_s32(result, scratch3); |
| b(&done); |
| bind(¬_smi); |
| } |
| // Check for heap number and load double value from it. |
| ldr(scratch1, FieldMemOperand(object, HeapObject::kMapOffset)); |
| sub(scratch2, object, Operand(kHeapObjectTag)); |
| cmp(scratch1, heap_number_map); |
| b(ne, not_number); |
| if ((flags & AVOID_NANS_AND_INFINITIES) != 0) { |
| // If exponent is all ones the number is either a NaN or +/-Infinity. |
| ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
| Sbfx(scratch1, |
| scratch1, |
| HeapNumber::kExponentShift, |
| HeapNumber::kExponentBits); |
| // All-one value sign extend to -1. |
| cmp(scratch1, Operand(-1)); |
| b(eq, not_number); |
| } |
| vldr(result, scratch2, HeapNumber::kValueOffset); |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::SmiToDoubleVFPRegister(Register smi, |
| DwVfpRegister value, |
| Register scratch1, |
| SwVfpRegister scratch2) { |
| mov(scratch1, Operand(smi, ASR, kSmiTagSize)); |
| vmov(scratch2, scratch1); |
| vcvt_f64_s32(value, scratch2); |
| } |
| |
| |
| // Tries to get a signed int32 out of a double precision floating point heap |
| // number. Rounds towards 0. Branch to 'not_int32' if the double is out of the |
| // 32bits signed integer range. |
| void MacroAssembler::ConvertToInt32(Register source, |
| Register dest, |
| Register scratch, |
| Register scratch2, |
| Label *not_int32) { |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| sub(scratch, source, Operand(kHeapObjectTag)); |
| vldr(d0, scratch, HeapNumber::kValueOffset); |
| vcvt_s32_f64(s0, d0); |
| vmov(dest, s0); |
| // Signed vcvt instruction will saturate to the minimum (0x80000000) or |
| // maximun (0x7fffffff) signed 32bits integer when the double is out of |
| // range. When substracting one, the minimum signed integer becomes the |
| // maximun signed integer. |
| sub(scratch, dest, Operand(1)); |
| cmp(scratch, Operand(LONG_MAX - 1)); |
| // If equal then dest was LONG_MAX, if greater dest was LONG_MIN. |
| b(ge, not_int32); |
| } else { |
| // This code is faster for doubles that are in the ranges -0x7fffffff to |
| // -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds almost to |
| // the range of signed int32 values that are not Smis. Jumps to the label |
| // 'not_int32' if the double isn't in the range -0x80000000.0 to |
| // 0x80000000.0 (excluding the endpoints). |
| Label right_exponent, done; |
| // Get exponent word. |
| ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset)); |
| // Get exponent alone in scratch2. |
| Ubfx(scratch2, |
| scratch, |
| HeapNumber::kExponentShift, |
| HeapNumber::kExponentBits); |
| // Load dest with zero. We use this either for the final shift or |
| // for the answer. |
| mov(dest, Operand(0, RelocInfo::NONE)); |
| // Check whether the exponent matches a 32 bit signed int that is not a Smi. |
| // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is |
| // the exponent that we are fastest at and also the highest exponent we can |
| // handle here. |
| const uint32_t non_smi_exponent = HeapNumber::kExponentBias + 30; |
| // The non_smi_exponent, 0x41d, is too big for ARM's immediate field so we |
| // split it up to avoid a constant pool entry. You can't do that in general |
| // for cmp because of the overflow flag, but we know the exponent is in the |
| // range 0-2047 so there is no overflow. |
| int fudge_factor = 0x400; |
| sub(scratch2, scratch2, Operand(fudge_factor)); |
| cmp(scratch2, Operand(non_smi_exponent - fudge_factor)); |
| // If we have a match of the int32-but-not-Smi exponent then skip some |
| // logic. |
| b(eq, &right_exponent); |
| // If the exponent is higher than that then go to slow case. This catches |
| // numbers that don't fit in a signed int32, infinities and NaNs. |
| b(gt, not_int32); |
| |
| // We know the exponent is smaller than 30 (biased). If it is less than |
| // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie |
| // it rounds to zero. |
| const uint32_t zero_exponent = HeapNumber::kExponentBias + 0; |
| sub(scratch2, scratch2, Operand(zero_exponent - fudge_factor), SetCC); |
| // Dest already has a Smi zero. |
| b(lt, &done); |
| |
| // We have an exponent between 0 and 30 in scratch2. Subtract from 30 to |
| // get how much to shift down. |
| rsb(dest, scratch2, Operand(30)); |
| |
| bind(&right_exponent); |
| // Get the top bits of the mantissa. |
| and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask)); |
| // Put back the implicit 1. |
| orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift)); |
| // Shift up the mantissa bits to take up the space the exponent used to |
| // take. We just orred in the implicit bit so that took care of one and |
| // we want to leave the sign bit 0 so we subtract 2 bits from the shift |
| // distance. |
| const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
| mov(scratch2, Operand(scratch2, LSL, shift_distance)); |
| // Put sign in zero flag. |
| tst(scratch, Operand(HeapNumber::kSignMask)); |
| // Get the second half of the double. For some exponents we don't |
| // actually need this because the bits get shifted out again, but |
| // it's probably slower to test than just to do it. |
| ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset)); |
| // Shift down 22 bits to get the last 10 bits. |
| orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance)); |
| // Move down according to the exponent. |
| mov(dest, Operand(scratch, LSR, dest)); |
| // Fix sign if sign bit was set. |
| rsb(dest, dest, Operand(0, RelocInfo::NONE), LeaveCC, ne); |
| bind(&done); |
| } |
| } |
| |
| |
| void MacroAssembler::GetLeastBitsFromSmi(Register dst, |
| Register src, |
| int num_least_bits) { |
| if (CpuFeatures::IsSupported(ARMv7)) { |
| ubfx(dst, src, kSmiTagSize, num_least_bits); |
| } else { |
| mov(dst, Operand(src, ASR, kSmiTagSize)); |
| and_(dst, dst, Operand((1 << num_least_bits) - 1)); |
| } |
| } |
| |
| |
| void MacroAssembler::CallRuntime(Runtime::Function* f, int num_arguments) { |
| // All parameters are on the stack. r0 has the return value after call. |
| |
| // If the expected number of arguments of the runtime function is |
| // constant, we check that the actual number of arguments match the |
| // expectation. |
| if (f->nargs >= 0 && f->nargs != num_arguments) { |
| IllegalOperation(num_arguments); |
| return; |
| } |
| |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| mov(r0, Operand(num_arguments)); |
| mov(r1, Operand(ExternalReference(f))); |
| CEntryStub stub(1); |
| CallStub(&stub); |
| } |
| |
| |
| void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) { |
| CallRuntime(Runtime::FunctionForId(fid), num_arguments); |
| } |
| |
| |
| void MacroAssembler::CallExternalReference(const ExternalReference& ext, |
| int num_arguments) { |
| mov(r0, Operand(num_arguments)); |
| mov(r1, Operand(ext)); |
| |
| CEntryStub stub(1); |
| CallStub(&stub); |
| } |
| |
| |
| void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, |
| int num_arguments, |
| int result_size) { |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| mov(r0, Operand(num_arguments)); |
| JumpToExternalReference(ext); |
| } |
| |
| |
| void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, |
| int num_arguments, |
| int result_size) { |
| TailCallExternalReference(ExternalReference(fid), num_arguments, result_size); |
| } |
| |
| |
| void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) { |
| #if defined(__thumb__) |
| // Thumb mode builtin. |
| ASSERT((reinterpret_cast<intptr_t>(builtin.address()) & 1) == 1); |
| #endif |
| mov(r1, Operand(builtin)); |
| CEntryStub stub(1); |
| Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, |
| InvokeJSFlags flags) { |
| GetBuiltinEntry(r2, id); |
| if (flags == CALL_JS) { |
| Call(r2); |
| } else { |
| ASSERT(flags == JUMP_JS); |
| Jump(r2); |
| } |
| } |
| |
| |
| void MacroAssembler::GetBuiltinFunction(Register target, |
| Builtins::JavaScript id) { |
| // Load the builtins object into target register. |
| ldr(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset)); |
| // Load the JavaScript builtin function from the builtins object. |
| ldr(target, FieldMemOperand(target, |
| JSBuiltinsObject::OffsetOfFunctionWithId(id))); |
| } |
| |
| |
| void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { |
| ASSERT(!target.is(r1)); |
| GetBuiltinFunction(r1, id); |
| // Load the code entry point from the builtins object. |
| ldr(target, FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); |
| } |
| |
| |
| void MacroAssembler::SetCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| mov(scratch1, Operand(value)); |
| mov(scratch2, Operand(ExternalReference(counter))); |
| str(scratch1, MemOperand(scratch2)); |
| } |
| } |
| |
| |
| void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| ASSERT(value > 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| mov(scratch2, Operand(ExternalReference(counter))); |
| ldr(scratch1, MemOperand(scratch2)); |
| add(scratch1, scratch1, Operand(value)); |
| str(scratch1, MemOperand(scratch2)); |
| } |
| } |
| |
| |
| void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| ASSERT(value > 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| mov(scratch2, Operand(ExternalReference(counter))); |
| ldr(scratch1, MemOperand(scratch2)); |
| sub(scratch1, scratch1, Operand(value)); |
| str(scratch1, MemOperand(scratch2)); |
| } |
| } |
| |
| |
| void MacroAssembler::Assert(Condition cc, const char* msg) { |
| if (FLAG_debug_code) |
| Check(cc, msg); |
| } |
| |
| |
| void MacroAssembler::AssertRegisterIsRoot(Register reg, |
| Heap::RootListIndex index) { |
| if (FLAG_debug_code) { |
| LoadRoot(ip, index); |
| cmp(reg, ip); |
| Check(eq, "Register did not match expected root"); |
| } |
| } |
| |
| |
| void MacroAssembler::AssertFastElements(Register elements) { |
| if (FLAG_debug_code) { |
| ASSERT(!elements.is(ip)); |
| Label ok; |
| push(elements); |
| ldr(elements, FieldMemOperand(elements, HeapObject::kMapOffset)); |
| LoadRoot(ip, Heap::kFixedArrayMapRootIndex); |
| cmp(elements, ip); |
| b(eq, &ok); |
| LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex); |
| cmp(elements, ip); |
| b(eq, &ok); |
| Abort("JSObject with fast elements map has slow elements"); |
| bind(&ok); |
| pop(elements); |
| } |
| } |
| |
| |
| void MacroAssembler::Check(Condition cc, const char* msg) { |
| Label L; |
| b(cc, &L); |
| Abort(msg); |
| // will not return here |
| bind(&L); |
| } |
| |
| |
| void MacroAssembler::Abort(const char* msg) { |
| Label abort_start; |
| bind(&abort_start); |
| // We want to pass the msg string like a smi to avoid GC |
| // problems, however msg is not guaranteed to be aligned |
| // properly. Instead, we pass an aligned pointer that is |
| // a proper v8 smi, but also pass the alignment difference |
| // from the real pointer as a smi. |
| intptr_t p1 = reinterpret_cast<intptr_t>(msg); |
| intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; |
| ASSERT(reinterpret_cast<Object*>(p0)->IsSmi()); |
| #ifdef DEBUG |
| if (msg != NULL) { |
| RecordComment("Abort message: "); |
| RecordComment(msg); |
| } |
| #endif |
| // Disable stub call restrictions to always allow calls to abort. |
| set_allow_stub_calls(true); |
| |
| mov(r0, Operand(p0)); |
| push(r0); |
| mov(r0, Operand(Smi::FromInt(p1 - p0))); |
| push(r0); |
| CallRuntime(Runtime::kAbort, 2); |
| // will not return here |
| if (is_const_pool_blocked()) { |
| // If the calling code cares about the exact number of |
| // instructions generated, we insert padding here to keep the size |
| // of the Abort macro constant. |
| static const int kExpectedAbortInstructions = 10; |
| int abort_instructions = InstructionsGeneratedSince(&abort_start); |
| ASSERT(abort_instructions <= kExpectedAbortInstructions); |
| while (abort_instructions++ < kExpectedAbortInstructions) { |
| nop(); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::LoadContext(Register dst, int context_chain_length) { |
| if (context_chain_length > 0) { |
| // Move up the chain of contexts to the context containing the slot. |
| ldr(dst, MemOperand(cp, Context::SlotOffset(Context::CLOSURE_INDEX))); |
| // Load the function context (which is the incoming, outer context). |
| ldr(dst, FieldMemOperand(dst, JSFunction::kContextOffset)); |
| for (int i = 1; i < context_chain_length; i++) { |
| ldr(dst, MemOperand(dst, Context::SlotOffset(Context::CLOSURE_INDEX))); |
| ldr(dst, FieldMemOperand(dst, JSFunction::kContextOffset)); |
| } |
| // The context may be an intermediate context, not a function context. |
| ldr(dst, MemOperand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX))); |
| } else { // Slot is in the current function context. |
| // The context may be an intermediate context, not a function context. |
| ldr(dst, MemOperand(cp, Context::SlotOffset(Context::FCONTEXT_INDEX))); |
| } |
| } |
| |
| |
| void MacroAssembler::JumpIfNotBothSmi(Register reg1, |
| Register reg2, |
| Label* on_not_both_smi) { |
| ASSERT_EQ(0, kSmiTag); |
| tst(reg1, Operand(kSmiTagMask)); |
| tst(reg2, Operand(kSmiTagMask), eq); |
| b(ne, on_not_both_smi); |
| } |
| |
| |
| void MacroAssembler::JumpIfEitherSmi(Register reg1, |
| Register reg2, |
| Label* on_either_smi) { |
| ASSERT_EQ(0, kSmiTag); |
| tst(reg1, Operand(kSmiTagMask)); |
| tst(reg2, Operand(kSmiTagMask), ne); |
| b(eq, on_either_smi); |
| } |
| |
| |
| void MacroAssembler::AbortIfSmi(Register object) { |
| ASSERT_EQ(0, kSmiTag); |
| tst(object, Operand(kSmiTagMask)); |
| Assert(ne, "Operand is a smi"); |
| } |
| |
| |
| void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings( |
| Register first, |
| Register second, |
| Register scratch1, |
| Register scratch2, |
| Label* failure) { |
| // Test that both first and second are sequential ASCII strings. |
| // Assume that they are non-smis. |
| ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); |
| ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); |
| ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); |
| ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); |
| |
| JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1, |
| scratch2, |
| scratch1, |
| scratch2, |
| failure); |
| } |
| |
| void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first, |
| Register second, |
| Register scratch1, |
| Register scratch2, |
| Label* failure) { |
| // Check that neither is a smi. |
| ASSERT_EQ(0, kSmiTag); |
| and_(scratch1, first, Operand(second)); |
| tst(scratch1, Operand(kSmiTagMask)); |
| b(eq, failure); |
| JumpIfNonSmisNotBothSequentialAsciiStrings(first, |
| second, |
| scratch1, |
| scratch2, |
| failure); |
| } |
| |
| |
| // Allocates a heap number or jumps to the need_gc label if the young space |
| // is full and a scavenge is needed. |
| void MacroAssembler::AllocateHeapNumber(Register result, |
| Register scratch1, |
| Register scratch2, |
| Register heap_number_map, |
| Label* gc_required) { |
| // Allocate an object in the heap for the heap number and tag it as a heap |
| // object. |
| AllocateInNewSpace(HeapNumber::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Store heap number map in the allocated object. |
| AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset)); |
| } |
| |
| |
| void MacroAssembler::AllocateHeapNumberWithValue(Register result, |
| DwVfpRegister value, |
| Register scratch1, |
| Register scratch2, |
| Register heap_number_map, |
| Label* gc_required) { |
| AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required); |
| sub(scratch1, result, Operand(kHeapObjectTag)); |
| vstr(value, scratch1, HeapNumber::kValueOffset); |
| } |
| |
| |
| // Copies a fixed number of fields of heap objects from src to dst. |
| void MacroAssembler::CopyFields(Register dst, |
| Register src, |
| RegList temps, |
| int field_count) { |
| // At least one bit set in the first 15 registers. |
| ASSERT((temps & ((1 << 15) - 1)) != 0); |
| ASSERT((temps & dst.bit()) == 0); |
| ASSERT((temps & src.bit()) == 0); |
| // Primitive implementation using only one temporary register. |
| |
| Register tmp = no_reg; |
| // Find a temp register in temps list. |
| for (int i = 0; i < 15; i++) { |
| if ((temps & (1 << i)) != 0) { |
| tmp.set_code(i); |
| break; |
| } |
| } |
| ASSERT(!tmp.is(no_reg)); |
| |
| for (int i = 0; i < field_count; i++) { |
| ldr(tmp, FieldMemOperand(src, i * kPointerSize)); |
| str(tmp, FieldMemOperand(dst, i * kPointerSize)); |
| } |
| } |
| |
| |
| void MacroAssembler::CountLeadingZeros(Register zeros, // Answer. |
| Register source, // Input. |
| Register scratch) { |
| ASSERT(!zeros.is(source) || !source.is(zeros)); |
| ASSERT(!zeros.is(scratch)); |
| ASSERT(!scratch.is(ip)); |
| ASSERT(!source.is(ip)); |
| ASSERT(!zeros.is(ip)); |
| #ifdef CAN_USE_ARMV5_INSTRUCTIONS |
| clz(zeros, source); // This instruction is only supported after ARM5. |
| #else |
| mov(zeros, Operand(0, RelocInfo::NONE)); |
| Move(scratch, source); |
| // Top 16. |
| tst(scratch, Operand(0xffff0000)); |
| add(zeros, zeros, Operand(16), LeaveCC, eq); |
| mov(scratch, Operand(scratch, LSL, 16), LeaveCC, eq); |
| // Top 8. |
| tst(scratch, Operand(0xff000000)); |
| add(zeros, zeros, Operand(8), LeaveCC, eq); |
| mov(scratch, Operand(scratch, LSL, 8), LeaveCC, eq); |
| // Top 4. |
| tst(scratch, Operand(0xf0000000)); |
| add(zeros, zeros, Operand(4), LeaveCC, eq); |
| mov(scratch, Operand(scratch, LSL, 4), LeaveCC, eq); |
| // Top 2. |
| tst(scratch, Operand(0xc0000000)); |
| add(zeros, zeros, Operand(2), LeaveCC, eq); |
| mov(scratch, Operand(scratch, LSL, 2), LeaveCC, eq); |
| // Top bit. |
| tst(scratch, Operand(0x80000000u)); |
| add(zeros, zeros, Operand(1), LeaveCC, eq); |
| #endif |
| } |
| |
| |
| void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii( |
| Register first, |
| Register second, |
| Register scratch1, |
| Register scratch2, |
| Label* failure) { |
| int kFlatAsciiStringMask = |
| kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; |
| int kFlatAsciiStringTag = ASCII_STRING_TYPE; |
| and_(scratch1, first, Operand(kFlatAsciiStringMask)); |
| and_(scratch2, second, Operand(kFlatAsciiStringMask)); |
| cmp(scratch1, Operand(kFlatAsciiStringTag)); |
| // Ignore second test if first test failed. |
| cmp(scratch2, Operand(kFlatAsciiStringTag), eq); |
| b(ne, failure); |
| } |
| |
| |
| void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type, |
| Register scratch, |
| Label* failure) { |
| int kFlatAsciiStringMask = |
| kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; |
| int kFlatAsciiStringTag = ASCII_STRING_TYPE; |
| and_(scratch, type, Operand(kFlatAsciiStringMask)); |
| cmp(scratch, Operand(kFlatAsciiStringTag)); |
| b(ne, failure); |
| } |
| |
| |
| void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) { |
| int frame_alignment = ActivationFrameAlignment(); |
| // Up to four simple arguments are passed in registers r0..r3. |
| int stack_passed_arguments = (num_arguments <= 4) ? 0 : num_arguments - 4; |
| if (frame_alignment > kPointerSize) { |
| // Make stack end at alignment and make room for num_arguments - 4 words |
| // and the original value of sp. |
| mov(scratch, sp); |
| sub(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); |
| ASSERT(IsPowerOf2(frame_alignment)); |
| and_(sp, sp, Operand(-frame_alignment)); |
| str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); |
| } else { |
| sub(sp, sp, Operand(stack_passed_arguments * kPointerSize)); |
| } |
| } |
| |
| |
| void MacroAssembler::CallCFunction(ExternalReference function, |
| int num_arguments) { |
| mov(ip, Operand(function)); |
| CallCFunction(ip, num_arguments); |
| } |
| |
| |
| void MacroAssembler::CallCFunction(Register function, int num_arguments) { |
| // Make sure that the stack is aligned before calling a C function unless |
| // running in the simulator. The simulator has its own alignment check which |
| // provides more information. |
| #if defined(V8_HOST_ARCH_ARM) |
| if (FLAG_debug_code) { |
| int frame_alignment = OS::ActivationFrameAlignment(); |
| int frame_alignment_mask = frame_alignment - 1; |
| if (frame_alignment > kPointerSize) { |
| ASSERT(IsPowerOf2(frame_alignment)); |
| Label alignment_as_expected; |
| tst(sp, Operand(frame_alignment_mask)); |
| b(eq, &alignment_as_expected); |
| // Don't use Check here, as it will call Runtime_Abort possibly |
| // re-entering here. |
| stop("Unexpected alignment"); |
| bind(&alignment_as_expected); |
| } |
| } |
| #endif |
| |
| // Just call directly. The function called cannot cause a GC, or |
| // allow preemption, so the return address in the link register |
| // stays correct. |
| Call(function); |
| int stack_passed_arguments = (num_arguments <= 4) ? 0 : num_arguments - 4; |
| if (OS::ActivationFrameAlignment() > kPointerSize) { |
| ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); |
| } else { |
| add(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize))); |
| } |
| } |
| |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| CodePatcher::CodePatcher(byte* address, int instructions) |
| : address_(address), |
| instructions_(instructions), |
| size_(instructions * Assembler::kInstrSize), |
| masm_(address, size_ + Assembler::kGap) { |
| // Create a new macro assembler pointing to the address of the code to patch. |
| // The size is adjusted with kGap on order for the assembler to generate size |
| // bytes of instructions without failing with buffer size constraints. |
| ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
| } |
| |
| |
| CodePatcher::~CodePatcher() { |
| // Indicate that code has changed. |
| CPU::FlushICache(address_, size_); |
| |
| // Check that the code was patched as expected. |
| ASSERT(masm_.pc_ == address_ + size_); |
| ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
| } |
| |
| |
| void CodePatcher::Emit(Instr x) { |
| masm()->emit(x); |
| } |
| |
| |
| void CodePatcher::Emit(Address addr) { |
| masm()->emit(reinterpret_cast<Instr>(addr)); |
| } |
| #endif // ENABLE_DEBUGGER_SUPPORT |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_ARM |