blob: 0d79c54d007bd00b1ece4ac4c40e9eb8e11412ba [file] [log] [blame]
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "codegen-inl.h"
#include "ic-inl.h"
#include "runtime.h"
#include "stub-cache.h"
#include "utils.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
#define __ ACCESS_MASM(masm)
// Helper function used to load a property from a dictionary backing storage.
// This function may return false negatives, so miss_label
// must always call a backup property load that is complete.
// This function is safe to call if the receiver has fast properties,
// or if name is not a symbol, and will jump to the miss_label in that case.
static void GenerateDictionaryLoad(MacroAssembler* masm,
Label* miss_label,
Register receiver,
Register name,
Register r0,
Register r1,
Register r2,
DictionaryCheck check_dictionary) {
// Register use:
//
// name - holds the name of the property and is unchanged.
// receiver - holds the receiver and is unchanged.
// Scratch registers:
// r0 - used to hold the property dictionary.
//
// r1 - used for the index into the property dictionary
// - holds the result on exit.
//
// r2 - used to hold the capacity of the property dictionary.
Label done;
// Check for the absence of an interceptor.
// Load the map into r0.
__ mov(r0, FieldOperand(receiver, JSObject::kMapOffset));
// Test the has_named_interceptor bit in the map.
__ test(FieldOperand(r0, Map::kInstanceAttributesOffset),
Immediate(1 << (Map::kHasNamedInterceptor + (3 * 8))));
// Jump to miss if the interceptor bit is set.
__ j(not_zero, miss_label, not_taken);
// Bail out if we have a JS global proxy object.
__ movzx_b(r0, FieldOperand(r0, Map::kInstanceTypeOffset));
__ cmp(r0, JS_GLOBAL_PROXY_TYPE);
__ j(equal, miss_label, not_taken);
// Possible work-around for http://crbug.com/16276.
__ cmp(r0, JS_GLOBAL_OBJECT_TYPE);
__ j(equal, miss_label, not_taken);
__ cmp(r0, JS_BUILTINS_OBJECT_TYPE);
__ j(equal, miss_label, not_taken);
// Load properties array.
__ mov(r0, FieldOperand(receiver, JSObject::kPropertiesOffset));
// Check that the properties array is a dictionary.
if (check_dictionary == CHECK_DICTIONARY) {
__ cmp(FieldOperand(r0, HeapObject::kMapOffset),
Immediate(Factory::hash_table_map()));
__ j(not_equal, miss_label);
}
// Compute the capacity mask.
const int kCapacityOffset =
StringDictionary::kHeaderSize +
StringDictionary::kCapacityIndex * kPointerSize;
__ mov(r2, FieldOperand(r0, kCapacityOffset));
__ shr(r2, kSmiTagSize); // convert smi to int
__ dec(r2);
// Generate an unrolled loop that performs a few probes before
// giving up. Measurements done on Gmail indicate that 2 probes
// cover ~93% of loads from dictionaries.
static const int kProbes = 4;
const int kElementsStartOffset =
StringDictionary::kHeaderSize +
StringDictionary::kElementsStartIndex * kPointerSize;
for (int i = 0; i < kProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
__ mov(r1, FieldOperand(name, String::kHashFieldOffset));
__ shr(r1, String::kHashShift);
if (i > 0) {
__ add(Operand(r1), Immediate(StringDictionary::GetProbeOffset(i)));
}
__ and_(r1, Operand(r2));
// Scale the index by multiplying by the entry size.
ASSERT(StringDictionary::kEntrySize == 3);
__ lea(r1, Operand(r1, r1, times_2, 0)); // r1 = r1 * 3
// Check if the key is identical to the name.
__ cmp(name,
Operand(r0, r1, times_4, kElementsStartOffset - kHeapObjectTag));
if (i != kProbes - 1) {
__ j(equal, &done, taken);
} else {
__ j(not_equal, miss_label, not_taken);
}
}
// Check that the value is a normal property.
__ bind(&done);
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
__ test(Operand(r0, r1, times_4, kDetailsOffset - kHeapObjectTag),
Immediate(PropertyDetails::TypeField::mask() << kSmiTagSize));
__ j(not_zero, miss_label, not_taken);
// Get the value at the masked, scaled index.
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ mov(r1, Operand(r0, r1, times_4, kValueOffset - kHeapObjectTag));
}
// The offset from the inlined patch site to the start of the
// inlined load instruction. It is 7 bytes (test eax, imm) plus
// 6 bytes (jne slow_label).
const int LoadIC::kOffsetToLoadInstruction = 13;
void LoadIC::GenerateArrayLength(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
Label miss;
StubCompiler::GenerateLoadArrayLength(masm, eax, edx, &miss);
__ bind(&miss);
StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}
void LoadIC::GenerateStringLength(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
Label miss;
StubCompiler::GenerateLoadStringLength(masm, eax, edx, ebx, &miss);
__ bind(&miss);
StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}
void LoadIC::GenerateFunctionPrototype(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
Label miss;
StubCompiler::GenerateLoadFunctionPrototype(masm, eax, edx, ebx, &miss);
__ bind(&miss);
StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}
void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label slow, check_string, index_int, index_string;
Label check_pixel_array, probe_dictionary;
// Check that the object isn't a smi.
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &slow, not_taken);
// Get the map of the receiver.
__ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
// Check bit field.
__ movzx_b(ebx, FieldOperand(ecx, Map::kBitFieldOffset));
__ test(ebx, Immediate(kSlowCaseBitFieldMask));
__ j(not_zero, &slow, not_taken);
// Check that the object is some kind of JS object EXCEPT JS Value type.
// In the case that the object is a value-wrapper object,
// we enter the runtime system to make sure that indexing
// into string objects work as intended.
ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE);
__ CmpInstanceType(ecx, JS_OBJECT_TYPE);
__ j(below, &slow, not_taken);
// Check that the key is a smi.
__ test(eax, Immediate(kSmiTagMask));
__ j(not_zero, &check_string, not_taken);
__ mov(ebx, eax);
__ SmiUntag(ebx);
// Get the elements array of the object.
__ bind(&index_int);
__ mov(ecx, FieldOperand(edx, JSObject::kElementsOffset));
// Check that the object is in fast mode (not dictionary).
__ CheckMap(ecx, Factory::fixed_array_map(), &check_pixel_array, true);
// Check that the key (index) is within bounds.
__ cmp(ebx, FieldOperand(ecx, FixedArray::kLengthOffset));
__ j(above_equal, &slow);
// Fast case: Do the load.
__ mov(ecx, FieldOperand(ecx, ebx, times_4, FixedArray::kHeaderSize));
__ cmp(Operand(ecx), Immediate(Factory::the_hole_value()));
// In case the loaded value is the_hole we have to consult GetProperty
// to ensure the prototype chain is searched.
__ j(equal, &slow);
__ mov(eax, ecx);
__ IncrementCounter(&Counters::keyed_load_generic_smi, 1);
__ ret(0);
__ bind(&check_pixel_array);
// Check whether the elements is a pixel array.
// edx: receiver
// ebx: untagged index
// eax: key
// ecx: elements
__ CheckMap(ecx, Factory::pixel_array_map(), &slow, true);
__ cmp(ebx, FieldOperand(ecx, PixelArray::kLengthOffset));
__ j(above_equal, &slow);
__ mov(eax, FieldOperand(ecx, PixelArray::kExternalPointerOffset));
__ movzx_b(eax, Operand(eax, ebx, times_1, 0));
__ SmiTag(eax);
__ ret(0);
__ bind(&slow);
// Slow case: jump to runtime.
// edx: receiver
// eax: key
__ IncrementCounter(&Counters::keyed_load_generic_slow, 1);
GenerateRuntimeGetProperty(masm);
__ bind(&check_string);
// The key is not a smi.
// Is it a string?
// edx: receiver
// eax: key
__ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ecx);
__ j(above_equal, &slow);
// Is the string an array index, with cached numeric value?
__ mov(ebx, FieldOperand(eax, String::kHashFieldOffset));
__ test(ebx, Immediate(String::kIsArrayIndexMask));
__ j(not_zero, &index_string, not_taken);
// Is the string a symbol?
__ movzx_b(ebx, FieldOperand(ecx, Map::kInstanceTypeOffset));
ASSERT(kSymbolTag != 0);
__ test(ebx, Immediate(kIsSymbolMask));
__ j(zero, &slow, not_taken);
// If the receiver is a fast-case object, check the keyed lookup
// cache. Otherwise probe the dictionary.
__ mov(ebx, FieldOperand(edx, JSObject::kPropertiesOffset));
__ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Immediate(Factory::hash_table_map()));
__ j(equal, &probe_dictionary);
// Load the map of the receiver, compute the keyed lookup cache hash
// based on 32 bits of the map pointer and the string hash.
__ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
__ mov(ecx, ebx);
__ shr(ecx, KeyedLookupCache::kMapHashShift);
__ mov(edi, FieldOperand(eax, String::kHashFieldOffset));
__ shr(edi, String::kHashShift);
__ xor_(ecx, Operand(edi));
__ and_(ecx, KeyedLookupCache::kCapacityMask);
// Load the key (consisting of map and symbol) from the cache and
// check for match.
ExternalReference cache_keys
= ExternalReference::keyed_lookup_cache_keys();
__ mov(edi, ecx);
__ shl(edi, kPointerSizeLog2 + 1);
__ cmp(ebx, Operand::StaticArray(edi, times_1, cache_keys));
__ j(not_equal, &slow);
__ add(Operand(edi), Immediate(kPointerSize));
__ cmp(eax, Operand::StaticArray(edi, times_1, cache_keys));
__ j(not_equal, &slow);
// Get field offset and check that it is an in-object property.
// edx : receiver
// ebx : receiver's map
// eax : key
// ecx : lookup cache index
ExternalReference cache_field_offsets
= ExternalReference::keyed_lookup_cache_field_offsets();
__ mov(edi,
Operand::StaticArray(ecx, times_pointer_size, cache_field_offsets));
__ movzx_b(ecx, FieldOperand(ebx, Map::kInObjectPropertiesOffset));
__ cmp(edi, Operand(ecx));
__ j(above_equal, &slow);
// Load in-object property.
__ sub(edi, Operand(ecx));
__ movzx_b(ecx, FieldOperand(ebx, Map::kInstanceSizeOffset));
__ add(ecx, Operand(edi));
__ mov(eax, FieldOperand(edx, ecx, times_pointer_size, 0));
__ ret(0);
// Do a quick inline probe of the receiver's dictionary, if it
// exists.
__ bind(&probe_dictionary);
GenerateDictionaryLoad(masm,
&slow,
edx,
eax,
ebx,
ecx,
edi,
DICTIONARY_CHECK_DONE);
__ mov(eax, Operand(ecx));
__ IncrementCounter(&Counters::keyed_load_generic_symbol, 1);
__ ret(0);
// If the hash field contains an array index pick it out. The assert checks
// that the constants for the maximum number of digits for an array index
// cached in the hash field and the number of bits reserved for it does not
// conflict.
ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
(1 << String::kArrayIndexValueBits));
__ bind(&index_string);
__ and_(ebx, String::kArrayIndexHashMask);
__ shr(ebx, String::kHashShift);
__ jmp(&index_int);
}
void KeyedLoadIC::GenerateString(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss, index_ok;
// Pop return address.
// Performing the load early is better in the common case.
__ pop(ebx);
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &miss);
__ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
__ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
__ test(ecx, Immediate(kIsNotStringMask));
__ j(not_zero, &miss);
// Check if key is a smi or a heap number.
__ test(eax, Immediate(kSmiTagMask));
__ j(zero, &index_ok);
__ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset));
__ cmp(ecx, Factory::heap_number_map());
__ j(not_equal, &miss);
__ bind(&index_ok);
// Push receiver and key on the stack, and make a tail call.
__ push(edx); // receiver
__ push(eax); // key
__ push(ebx); // return address
__ InvokeBuiltin(Builtins::STRING_CHAR_AT, JUMP_FUNCTION);
__ bind(&miss);
__ push(ebx);
GenerateMiss(masm);
}
void KeyedLoadIC::GenerateExternalArray(MacroAssembler* masm,
ExternalArrayType array_type) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label slow, failed_allocation;
// Check that the object isn't a smi.
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &slow, not_taken);
// Check that the key is a smi.
__ test(eax, Immediate(kSmiTagMask));
__ j(not_zero, &slow, not_taken);
// Get the map of the receiver.
__ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
// Check that the receiver does not require access checks. We need
// to check this explicitly since this generic stub does not perform
// map checks.
__ movzx_b(ebx, FieldOperand(ecx, Map::kBitFieldOffset));
__ test(ebx, Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_zero, &slow, not_taken);
__ CmpInstanceType(ecx, JS_OBJECT_TYPE);
__ j(not_equal, &slow, not_taken);
// Check that the elements array is the appropriate type of
// ExternalArray.
__ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset));
Handle<Map> map(Heap::MapForExternalArrayType(array_type));
__ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Immediate(map));
__ j(not_equal, &slow, not_taken);
// eax: key, known to be a smi.
// edx: receiver, known to be a JSObject.
// ebx: elements object, known to be an external array.
// Check that the index is in range.
__ mov(ecx, eax);
__ SmiUntag(ecx); // Untag the index.
__ cmp(ecx, FieldOperand(ebx, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ j(above_equal, &slow);
__ mov(ebx, FieldOperand(ebx, ExternalArray::kExternalPointerOffset));
// ebx: base pointer of external storage
switch (array_type) {
case kExternalByteArray:
__ movsx_b(ecx, Operand(ebx, ecx, times_1, 0));
break;
case kExternalUnsignedByteArray:
__ movzx_b(ecx, Operand(ebx, ecx, times_1, 0));
break;
case kExternalShortArray:
__ movsx_w(ecx, Operand(ebx, ecx, times_2, 0));
break;
case kExternalUnsignedShortArray:
__ movzx_w(ecx, Operand(ebx, ecx, times_2, 0));
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ mov(ecx, Operand(ebx, ecx, times_4, 0));
break;
case kExternalFloatArray:
__ fld_s(Operand(ebx, ecx, times_4, 0));
break;
default:
UNREACHABLE();
break;
}
// For integer array types:
// ecx: value
// For floating-point array type:
// FP(0): value
if (array_type == kExternalIntArray ||
array_type == kExternalUnsignedIntArray) {
// For the Int and UnsignedInt array types, we need to see whether
// the value can be represented in a Smi. If not, we need to convert
// it to a HeapNumber.
Label box_int;
if (array_type == kExternalIntArray) {
__ cmp(ecx, 0xC0000000);
__ j(sign, &box_int);
} else {
ASSERT_EQ(array_type, kExternalUnsignedIntArray);
// The test is different for unsigned int values. Since we need
// the value to be in the range of a positive smi, we can't
// handle either of the top two bits being set in the value.
__ test(ecx, Immediate(0xC0000000));
__ j(not_zero, &box_int);
}
__ mov(eax, ecx);
__ SmiTag(eax);
__ ret(0);
__ bind(&box_int);
// Allocate a HeapNumber for the int and perform int-to-double
// conversion.
if (array_type == kExternalIntArray) {
__ push(ecx);
__ fild_s(Operand(esp, 0));
__ pop(ecx);
} else {
ASSERT(array_type == kExternalUnsignedIntArray);
// Need to zero-extend the value.
// There's no fild variant for unsigned values, so zero-extend
// to a 64-bit int manually.
__ push(Immediate(0));
__ push(ecx);
__ fild_d(Operand(esp, 0));
__ pop(ecx);
__ pop(ecx);
}
// FP(0): value
__ AllocateHeapNumber(ecx, ebx, edi, &failed_allocation);
// Set the value.
__ mov(eax, ecx);
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ ret(0);
} else if (array_type == kExternalFloatArray) {
// For the floating-point array type, we need to always allocate a
// HeapNumber.
__ AllocateHeapNumber(ecx, ebx, edi, &failed_allocation);
// Set the value.
__ mov(eax, ecx);
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ ret(0);
} else {
__ mov(eax, ecx);
__ SmiTag(eax);
__ ret(0);
}
// If we fail allocation of the HeapNumber, we still have a value on
// top of the FPU stack. Remove it.
__ bind(&failed_allocation);
__ ffree();
__ fincstp();
// Fall through to slow case.
// Slow case: Load key and receiver from stack and jump to runtime.
__ bind(&slow);
__ IncrementCounter(&Counters::keyed_load_external_array_slow, 1);
GenerateRuntimeGetProperty(masm);
}
void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label slow;
// Check that the receiver isn't a smi.
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &slow, not_taken);
// Check that the key is a smi.
__ test(eax, Immediate(kSmiTagMask));
__ j(not_zero, &slow, not_taken);
// Get the map of the receiver.
__ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
// Check that it has indexed interceptor and access checks
// are not enabled for this object.
__ movzx_b(ecx, FieldOperand(ecx, Map::kBitFieldOffset));
__ and_(Operand(ecx), Immediate(kSlowCaseBitFieldMask));
__ cmp(Operand(ecx), Immediate(1 << Map::kHasIndexedInterceptor));
__ j(not_zero, &slow, not_taken);
// Everything is fine, call runtime.
__ pop(ecx);
__ push(edx); // receiver
__ push(eax); // key
__ push(ecx); // return address
// Perform tail call to the entry.
__ TailCallRuntime(ExternalReference(
IC_Utility(kKeyedLoadPropertyWithInterceptor)), 2, 1);
__ bind(&slow);
GenerateMiss(masm);
}
void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- esp[0] : return address
// -- esp[4] : key
// -- esp[8] : receiver
// -----------------------------------
Label slow, fast, array, extra, check_pixel_array;
// Get the receiver from the stack.
__ mov(edx, Operand(esp, 2 * kPointerSize)); // 2 ~ return address, key
// Check that the object isn't a smi.
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &slow, not_taken);
// Get the map from the receiver.
__ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
// Check that the receiver does not require access checks. We need
// to do this because this generic stub does not perform map checks.
__ movzx_b(ebx, FieldOperand(ecx, Map::kBitFieldOffset));
__ test(ebx, Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_zero, &slow, not_taken);
// Get the key from the stack.
__ mov(ebx, Operand(esp, 1 * kPointerSize)); // 1 ~ return address
// Check that the key is a smi.
__ test(ebx, Immediate(kSmiTagMask));
__ j(not_zero, &slow, not_taken);
// Get the instance type from the map of the receiver.
__ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
// Check if the object is a JS array or not.
__ cmp(ecx, JS_ARRAY_TYPE);
__ j(equal, &array);
// Check that the object is some kind of JS object.
__ cmp(ecx, FIRST_JS_OBJECT_TYPE);
__ j(less, &slow, not_taken);
// Object case: Check key against length in the elements array.
// eax: value
// edx: JSObject
// ebx: index (as a smi)
__ mov(ecx, FieldOperand(edx, JSObject::kElementsOffset));
// Check that the object is in fast mode (not dictionary).
__ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
Immediate(Factory::fixed_array_map()));
__ j(not_equal, &check_pixel_array, not_taken);
// Untag the key (for checking against untagged length in the fixed array).
__ mov(edx, Operand(ebx));
__ sar(edx, kSmiTagSize); // untag the index and use it for the comparison
__ cmp(edx, FieldOperand(ecx, Array::kLengthOffset));
// eax: value
// ecx: FixedArray
// ebx: index (as a smi)
__ j(below, &fast, taken);
// Slow case: call runtime.
__ bind(&slow);
GenerateRuntimeSetProperty(masm);
// Check whether the elements is a pixel array.
// eax: value
// ecx: elements array
// ebx: index (as a smi)
__ bind(&check_pixel_array);
__ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
Immediate(Factory::pixel_array_map()));
__ j(not_equal, &slow);
// Check that the value is a smi. If a conversion is needed call into the
// runtime to convert and clamp.
__ test(eax, Immediate(kSmiTagMask));
__ j(not_zero, &slow);
__ sar(ebx, kSmiTagSize); // Untag the index.
__ cmp(ebx, FieldOperand(ecx, PixelArray::kLengthOffset));
__ j(above_equal, &slow);
__ mov(edx, eax); // Save the value.
__ sar(eax, kSmiTagSize); // Untag the value.
{ // Clamp the value to [0..255].
Label done;
__ test(eax, Immediate(0xFFFFFF00));
__ j(zero, &done);
__ setcc(negative, eax); // 1 if negative, 0 if positive.
__ dec_b(eax); // 0 if negative, 255 if positive.
__ bind(&done);
}
__ mov(ecx, FieldOperand(ecx, PixelArray::kExternalPointerOffset));
__ mov_b(Operand(ecx, ebx, times_1, 0), eax);
__ mov(eax, edx); // Return the original value.
__ ret(0);
// Extra capacity case: Check if there is extra capacity to
// perform the store and update the length. Used for adding one
// element to the array by writing to array[array.length].
__ bind(&extra);
// eax: value
// edx: JSArray
// ecx: FixedArray
// ebx: index (as a smi)
// flags: compare (ebx, edx.length())
__ j(not_equal, &slow, not_taken); // do not leave holes in the array
__ sar(ebx, kSmiTagSize); // untag
__ cmp(ebx, FieldOperand(ecx, Array::kLengthOffset));
__ j(above_equal, &slow, not_taken);
// Restore tag and increment.
__ lea(ebx, Operand(ebx, times_2, 1 << kSmiTagSize));
__ mov(FieldOperand(edx, JSArray::kLengthOffset), ebx);
__ sub(Operand(ebx), Immediate(1 << kSmiTagSize)); // decrement ebx again
__ jmp(&fast);
// Array case: Get the length and the elements array from the JS
// array. Check that the array is in fast mode; if it is the
// length is always a smi.
__ bind(&array);
// eax: value
// edx: JSArray
// ebx: index (as a smi)
__ mov(ecx, FieldOperand(edx, JSObject::kElementsOffset));
__ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
Immediate(Factory::fixed_array_map()));
__ j(not_equal, &check_pixel_array);
// Check the key against the length in the array, compute the
// address to store into and fall through to fast case.
__ cmp(ebx, FieldOperand(edx, JSArray::kLengthOffset));
__ j(above_equal, &extra, not_taken);
// Fast case: Do the store.
__ bind(&fast);
// eax: value
// ecx: FixedArray
// ebx: index (as a smi)
__ mov(Operand(ecx, ebx, times_2, FixedArray::kHeaderSize - kHeapObjectTag),
eax);
// Update write barrier for the elements array address.
__ mov(edx, Operand(eax));
__ RecordWrite(ecx, 0, edx, ebx);
__ ret(0);
}
void KeyedStoreIC::GenerateExternalArray(MacroAssembler* masm,
ExternalArrayType array_type) {
// ----------- S t a t e -------------
// -- eax : value
// -- esp[0] : return address
// -- esp[4] : key
// -- esp[8] : receiver
// -----------------------------------
Label slow, check_heap_number;
// Get the receiver from the stack.
__ mov(edx, Operand(esp, 2 * kPointerSize));
// Check that the object isn't a smi.
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &slow);
// Get the map from the receiver.
__ mov(ecx, FieldOperand(edx, HeapObject::kMapOffset));
// Check that the receiver does not require access checks. We need
// to do this because this generic stub does not perform map checks.
__ movzx_b(ebx, FieldOperand(ecx, Map::kBitFieldOffset));
__ test(ebx, Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_zero, &slow);
// Get the key from the stack.
__ mov(ebx, Operand(esp, 1 * kPointerSize)); // 1 ~ return address
// Check that the key is a smi.
__ test(ebx, Immediate(kSmiTagMask));
__ j(not_zero, &slow);
// Get the instance type from the map of the receiver.
__ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset));
// Check that the object is a JS object.
__ cmp(ecx, JS_OBJECT_TYPE);
__ j(not_equal, &slow);
// Check that the elements array is the appropriate type of
// ExternalArray.
// eax: value
// edx: JSObject
// ebx: index (as a smi)
__ mov(ecx, FieldOperand(edx, JSObject::kElementsOffset));
Handle<Map> map(Heap::MapForExternalArrayType(array_type));
__ cmp(FieldOperand(ecx, HeapObject::kMapOffset),
Immediate(map));
__ j(not_equal, &slow);
// Check that the index is in range.
__ sar(ebx, kSmiTagSize); // Untag the index.
__ cmp(ebx, FieldOperand(ecx, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ j(above_equal, &slow);
// Handle both smis and HeapNumbers in the fast path. Go to the
// runtime for all other kinds of values.
// eax: value
// ecx: elements array
// ebx: untagged index
__ test(eax, Immediate(kSmiTagMask));
__ j(not_equal, &check_heap_number);
// smi case
__ mov(edx, eax); // Save the value.
__ sar(eax, kSmiTagSize); // Untag the value.
__ mov(ecx, FieldOperand(ecx, ExternalArray::kExternalPointerOffset));
// ecx: base pointer of external storage
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ mov_b(Operand(ecx, ebx, times_1, 0), eax);
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ mov_w(Operand(ecx, ebx, times_2, 0), eax);
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ mov(Operand(ecx, ebx, times_4, 0), eax);
break;
case kExternalFloatArray:
// Need to perform int-to-float conversion.
__ push(eax);
__ fild_s(Operand(esp, 0));
__ pop(eax);
__ fstp_s(Operand(ecx, ebx, times_4, 0));
break;
default:
UNREACHABLE();
break;
}
__ mov(eax, edx); // Return the original value.
__ ret(0);
__ bind(&check_heap_number);
__ cmp(FieldOperand(eax, HeapObject::kMapOffset),
Immediate(Factory::heap_number_map()));
__ j(not_equal, &slow);
// The WebGL specification leaves the behavior of storing NaN and
// +/-Infinity into integer arrays basically undefined. For more
// reproducible behavior, convert these to zero.
__ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ mov(edx, eax); // Save the value.
__ mov(ecx, FieldOperand(ecx, ExternalArray::kExternalPointerOffset));
// ebx: untagged index
// ecx: base pointer of external storage
// top of FPU stack: value
if (array_type == kExternalFloatArray) {
__ fstp_s(Operand(ecx, ebx, times_4, 0));
__ mov(eax, edx); // Return the original value.
__ ret(0);
} else {
// Need to perform float-to-int conversion.
// Test the top of the FP stack for NaN.
Label is_nan;
__ fucomi(0);
__ j(parity_even, &is_nan);
if (array_type != kExternalUnsignedIntArray) {
__ push(eax); // Make room on stack
__ fistp_s(Operand(esp, 0));
__ pop(eax);
} else {
// fistp stores values as signed integers.
// To represent the entire range, we need to store as a 64-bit
// int and discard the high 32 bits.
__ push(eax); // Make room on stack
__ push(eax); // Make room on stack
__ fistp_d(Operand(esp, 0));
__ pop(eax);
__ mov(Operand(esp, 0), eax);
__ pop(eax);
}
// eax: untagged integer value
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ mov_b(Operand(ecx, ebx, times_1, 0), eax);
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ mov_w(Operand(ecx, ebx, times_2, 0), eax);
break;
case kExternalIntArray:
case kExternalUnsignedIntArray: {
// We also need to explicitly check for +/-Infinity. These are
// converted to MIN_INT, but we need to be careful not to
// confuse with legal uses of MIN_INT.
Label not_infinity;
// This test would apparently detect both NaN and Infinity,
// but we've already checked for NaN using the FPU hardware
// above.
__ mov_w(edi, FieldOperand(edx, HeapNumber::kValueOffset + 6));
__ and_(edi, 0x7FF0);
__ cmp(edi, 0x7FF0);
__ j(not_equal, &not_infinity);
__ mov(eax, 0);
__ bind(&not_infinity);
__ mov(Operand(ecx, ebx, times_4, 0), eax);
break;
}
default:
UNREACHABLE();
break;
}
__ mov(eax, edx); // Return the original value.
__ ret(0);
__ bind(&is_nan);
__ ffree();
__ fincstp();
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ mov_b(Operand(ecx, ebx, times_1, 0), 0);
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ mov(eax, 0);
__ mov_w(Operand(ecx, ebx, times_2, 0), eax);
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ mov(Operand(ecx, ebx, times_4, 0), Immediate(0));
break;
default:
UNREACHABLE();
break;
}
__ mov(eax, edx); // Return the original value.
__ ret(0);
}
// Slow case: call runtime.
__ bind(&slow);
GenerateRuntimeSetProperty(masm);
}
// Defined in ic.cc.
Object* CallIC_Miss(Arguments args);
void CallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Label number, non_number, non_string, boolean, probe, miss;
// Get the receiver of the function from the stack; 1 ~ return address.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Probe the stub cache.
Code::Flags flags =
Code::ComputeFlags(Code::CALL_IC, NOT_IN_LOOP, MONOMORPHIC, NORMAL, argc);
StubCache::GenerateProbe(masm, flags, edx, ecx, ebx, eax);
// If the stub cache probing failed, the receiver might be a value.
// For value objects, we use the map of the prototype objects for
// the corresponding JSValue for the cache and that is what we need
// to probe.
//
// Check for number.
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &number, not_taken);
__ CmpObjectType(edx, HEAP_NUMBER_TYPE, ebx);
__ j(not_equal, &non_number, taken);
__ bind(&number);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::NUMBER_FUNCTION_INDEX, edx);
__ jmp(&probe);
// Check for string.
__ bind(&non_number);
__ cmp(ebx, FIRST_NONSTRING_TYPE);
__ j(above_equal, &non_string, taken);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::STRING_FUNCTION_INDEX, edx);
__ jmp(&probe);
// Check for boolean.
__ bind(&non_string);
__ cmp(edx, Factory::true_value());
__ j(equal, &boolean, not_taken);
__ cmp(edx, Factory::false_value());
__ j(not_equal, &miss, taken);
__ bind(&boolean);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::BOOLEAN_FUNCTION_INDEX, edx);
// Probe the stub cache for the value object.
__ bind(&probe);
StubCache::GenerateProbe(masm, flags, edx, ecx, ebx, no_reg);
// Cache miss: Jump to runtime.
__ bind(&miss);
GenerateMiss(masm, argc);
}
static void GenerateNormalHelper(MacroAssembler* masm,
int argc,
bool is_global_object,
Label* miss) {
// ----------- S t a t e -------------
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// Search dictionary - put result in register edi.
__ mov(edi, edx);
GenerateDictionaryLoad(masm, miss, edx, ecx, eax, edi, ebx, CHECK_DICTIONARY);
// Check that the result is not a smi.
__ test(edi, Immediate(kSmiTagMask));
__ j(zero, miss, not_taken);
// Check that the value is a JavaScript function, fetching its map into eax.
__ CmpObjectType(edi, JS_FUNCTION_TYPE, eax);
__ j(not_equal, miss, not_taken);
// Patch the receiver on stack with the global proxy if necessary.
if (is_global_object) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
// Invoke the function.
ParameterCount actual(argc);
__ InvokeFunction(edi, actual, JUMP_FUNCTION);
}
void CallIC::GenerateNormal(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Label miss, global_object, non_global_object;
// Get the receiver of the function from the stack; 1 ~ return address.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &miss, not_taken);
// Check that the receiver is a valid JS object.
__ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
__ movzx_b(eax, FieldOperand(ebx, Map::kInstanceTypeOffset));
__ cmp(eax, FIRST_JS_OBJECT_TYPE);
__ j(below, &miss, not_taken);
// If this assert fails, we have to check upper bound too.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
// Check for access to global object.
__ cmp(eax, JS_GLOBAL_OBJECT_TYPE);
__ j(equal, &global_object);
__ cmp(eax, JS_BUILTINS_OBJECT_TYPE);
__ j(not_equal, &non_global_object);
// Accessing global object: Load and invoke.
__ bind(&global_object);
// Check that the global object does not require access checks.
__ movzx_b(ebx, FieldOperand(ebx, Map::kBitFieldOffset));
__ test(ebx, Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_equal, &miss, not_taken);
GenerateNormalHelper(masm, argc, true, &miss);
// Accessing non-global object: Check for access to global proxy.
Label global_proxy, invoke;
__ bind(&non_global_object);
__ cmp(eax, JS_GLOBAL_PROXY_TYPE);
__ j(equal, &global_proxy, not_taken);
// Check that the non-global, non-global-proxy object does not
// require access checks.
__ movzx_b(ebx, FieldOperand(ebx, Map::kBitFieldOffset));
__ test(ebx, Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_equal, &miss, not_taken);
__ bind(&invoke);
GenerateNormalHelper(masm, argc, false, &miss);
// Global object proxy access: Check access rights.
__ bind(&global_proxy);
__ CheckAccessGlobalProxy(edx, eax, &miss);
__ jmp(&invoke);
// Cache miss: Jump to runtime.
__ bind(&miss);
GenerateMiss(masm, argc);
}
void CallIC::GenerateMiss(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// Get the receiver of the function from the stack; 1 ~ return address.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Enter an internal frame.
__ EnterInternalFrame();
// Push the receiver and the name of the function.
__ push(edx);
__ push(ecx);
// Call the entry.
CEntryStub stub(1);
__ mov(eax, Immediate(2));
__ mov(ebx, Immediate(ExternalReference(IC_Utility(kCallIC_Miss))));
__ CallStub(&stub);
// Move result to edi and exit the internal frame.
__ mov(edi, eax);
__ LeaveInternalFrame();
// Check if the receiver is a global object of some sort.
Label invoke, global;
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize)); // receiver
__ test(edx, Immediate(kSmiTagMask));
__ j(zero, &invoke, not_taken);
__ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset));
__ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset));
__ cmp(ebx, JS_GLOBAL_OBJECT_TYPE);
__ j(equal, &global);
__ cmp(ebx, JS_BUILTINS_OBJECT_TYPE);
__ j(not_equal, &invoke);
// Patch the receiver on the stack.
__ bind(&global);
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
// Invoke the function.
ParameterCount actual(argc);
__ bind(&invoke);
__ InvokeFunction(edi, actual, JUMP_FUNCTION);
}
// Defined in ic.cc.
Object* LoadIC_Miss(Arguments args);
void LoadIC::GenerateMegamorphic(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
// Probe the stub cache.
Code::Flags flags = Code::ComputeFlags(Code::LOAD_IC,
NOT_IN_LOOP,
MONOMORPHIC);
StubCache::GenerateProbe(masm, flags, eax, ecx, ebx, edx);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void LoadIC::GenerateNormal(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
Label miss, probe, global;
// Check that the receiver isn't a smi.
__ test(eax, Immediate(kSmiTagMask));
__ j(zero, &miss, not_taken);
// Check that the receiver is a valid JS object.
__ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset));
__ movzx_b(edx, FieldOperand(ebx, Map::kInstanceTypeOffset));
__ cmp(edx, FIRST_JS_OBJECT_TYPE);
__ j(less, &miss, not_taken);
// If this assert fails, we have to check upper bound too.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
// Check for access to global object (unlikely).
__ cmp(edx, JS_GLOBAL_PROXY_TYPE);
__ j(equal, &global, not_taken);
// Check for non-global object that requires access check.
__ movzx_b(ebx, FieldOperand(ebx, Map::kBitFieldOffset));
__ test(ebx, Immediate(1 << Map::kIsAccessCheckNeeded));
__ j(not_zero, &miss, not_taken);
// Search the dictionary placing the result in eax.
__ bind(&probe);
GenerateDictionaryLoad(masm,
&miss,
eax,
ecx,
edx,
edi,
ebx,
CHECK_DICTIONARY);
__ mov(eax, edi);
__ ret(0);
// Global object access: Check access rights.
__ bind(&global);
__ CheckAccessGlobalProxy(eax, edx, &miss);
__ jmp(&probe);
// Cache miss: Restore receiver from stack and jump to runtime.
__ bind(&miss);
GenerateMiss(masm);
}
void LoadIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
__ pop(ebx);
__ push(eax); // receiver
__ push(ecx); // name
__ push(ebx); // return address
// Perform tail call to the entry.
__ TailCallRuntime(ExternalReference(IC_Utility(kLoadIC_Miss)), 2, 1);
}
// One byte opcode for test eax,0xXXXXXXXX.
static const byte kTestEaxByte = 0xA9;
void LoadIC::ClearInlinedVersion(Address address) {
// Reset the map check of the inlined inobject property load (if
// present) to guarantee failure by holding an invalid map (the null
// value). The offset can be patched to anything.
PatchInlinedLoad(address, Heap::null_value(), kMaxInt);
}
void KeyedLoadIC::ClearInlinedVersion(Address address) {
// Insert null as the map to check for to make sure the map check fails
// sending control flow to the IC instead of the inlined version.
PatchInlinedLoad(address, Heap::null_value());
}
void KeyedStoreIC::ClearInlinedVersion(Address address) {
// Insert null as the elements map to check for. This will make
// sure that the elements fast-case map check fails so that control
// flows to the IC instead of the inlined version.
PatchInlinedStore(address, Heap::null_value());
}
void KeyedStoreIC::RestoreInlinedVersion(Address address) {
// Restore the fast-case elements map check so that the inlined
// version can be used again.
PatchInlinedStore(address, Heap::fixed_array_map());
}
bool LoadIC::PatchInlinedLoad(Address address, Object* map, int offset) {
// The address of the instruction following the call.
Address test_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// If the instruction following the call is not a test eax, nothing
// was inlined.
if (*test_instruction_address != kTestEaxByte) return false;
Address delta_address = test_instruction_address + 1;
// The delta to the start of the map check instruction.
int delta = *reinterpret_cast<int*>(delta_address);
// The map address is the last 4 bytes of the 7-byte
// operand-immediate compare instruction, so we add 3 to get the
// offset to the last 4 bytes.
Address map_address = test_instruction_address + delta + 3;
*(reinterpret_cast<Object**>(map_address)) = map;
// The offset is in the last 4 bytes of a six byte
// memory-to-register move instruction, so we add 2 to get the
// offset to the last 4 bytes.
Address offset_address =
test_instruction_address + delta + kOffsetToLoadInstruction + 2;
*reinterpret_cast<int*>(offset_address) = offset - kHeapObjectTag;
return true;
}
static bool PatchInlinedMapCheck(Address address, Object* map) {
Address test_instruction_address =
address + Assembler::kCallTargetAddressOffset;
// The keyed load has a fast inlined case if the IC call instruction
// is immediately followed by a test instruction.
if (*test_instruction_address != kTestEaxByte) return false;
// Fetch the offset from the test instruction to the map cmp
// instruction. This offset is stored in the last 4 bytes of the 5
// byte test instruction.
Address delta_address = test_instruction_address + 1;
int delta = *reinterpret_cast<int*>(delta_address);
// Compute the map address. The map address is in the last 4 bytes
// of the 7-byte operand-immediate compare instruction, so we add 3
// to the offset to get the map address.
Address map_address = test_instruction_address + delta + 3;
// Patch the map check.
*(reinterpret_cast<Object**>(map_address)) = map;
return true;
}
bool KeyedLoadIC::PatchInlinedLoad(Address address, Object* map) {
return PatchInlinedMapCheck(address, map);
}
bool KeyedStoreIC::PatchInlinedStore(Address address, Object* map) {
return PatchInlinedMapCheck(address, map);
}
// Defined in ic.cc.
Object* KeyedLoadIC_Miss(Arguments args);
void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ pop(ebx);
__ push(edx); // receiver
__ push(eax); // name
__ push(ebx); // return address
// Perform tail call to the entry.
__ TailCallRuntime(ExternalReference(IC_Utility(kKeyedLoadIC_Miss)), 2, 1);
}
void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ pop(ebx);
__ push(edx); // receiver
__ push(eax); // name
__ push(ebx); // return address
// Perform tail call to the entry.
__ TailCallRuntime(ExternalReference(Runtime::kKeyedGetProperty), 2, 1);
}
void StoreIC::GenerateMegamorphic(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Code::Flags flags = Code::ComputeFlags(Code::STORE_IC,
NOT_IN_LOOP,
MONOMORPHIC);
StubCache::GenerateProbe(masm, flags, edx, ecx, ebx, no_reg);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void StoreIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ pop(ebx);
__ push(edx);
__ push(ecx);
__ push(eax);
__ push(ebx);
// Perform tail call to the entry.
__ TailCallRuntime(ExternalReference(IC_Utility(kStoreIC_Miss)), 3, 1);
}
// Defined in ic.cc.
Object* KeyedStoreIC_Miss(Arguments args);
void KeyedStoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- esp[0] : return address
// -- esp[4] : key
// -- esp[8] : receiver
// -----------------------------------
__ pop(ecx);
__ push(Operand(esp, 1 * kPointerSize));
__ push(Operand(esp, 1 * kPointerSize));
__ push(eax);
__ push(ecx);
// Do tail-call to runtime routine.
__ TailCallRuntime(ExternalReference(Runtime::kSetProperty), 3, 1);
}
void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : value
// -- esp[0] : return address
// -- esp[4] : key
// -- esp[8] : receiver
// -----------------------------------
__ pop(ecx);
__ push(Operand(esp, 1 * kPointerSize));
__ push(Operand(esp, 1 * kPointerSize));
__ push(eax);
__ push(ecx);
// Do tail-call to runtime routine.
__ TailCallRuntime(ExternalReference(IC_Utility(kKeyedStoreIC_Miss)), 3, 1);
}
#undef __
} } // namespace v8::internal