blob: 02a2cd9cfe53369abb64a296090dd04907c1a510 [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "flow-graph.h"
#include "scopes.h"
namespace v8 {
namespace internal {
void BasicBlock::BuildTraversalOrder(ZoneList<BasicBlock*>* preorder,
ZoneList<BasicBlock*>* postorder,
bool mark) {
if (mark_ == mark) return;
mark_ = mark;
preorder->Add(this);
if (right_successor_ != NULL) {
right_successor_->BuildTraversalOrder(preorder, postorder, mark);
}
if (left_successor_ != NULL) {
left_successor_->BuildTraversalOrder(preorder, postorder, mark);
}
postorder->Add(this);
}
FlowGraph* FlowGraphBuilder::Build(FunctionLiteral* lit) {
// Create new entry and exit nodes. These will not change during
// construction.
entry_ = new BasicBlock(NULL);
exit_ = new BasicBlock(NULL);
// Begin accumulating instructions in the entry block.
current_ = entry_;
VisitDeclarations(lit->scope()->declarations());
VisitStatements(lit->body());
// In the event of stack overflow or failure to handle a syntactic
// construct, return an invalid flow graph.
if (HasStackOverflow()) return new FlowGraph(NULL, NULL);
// If current is not the exit, add a link to the exit.
if (current_ != exit_) {
// If current already has a successor (i.e., will be a branch node) and
// if the exit already has a predecessor, insert an empty block to
// maintain edge split form.
if (current_->HasSuccessor() && exit_->HasPredecessor()) {
current_ = new BasicBlock(current_);
}
Literal* undefined = new Literal(Factory::undefined_value());
current_->AddInstruction(new ReturnStatement(undefined));
exit_->AddPredecessor(current_);
}
FlowGraph* graph = new FlowGraph(entry_, exit_);
bool mark = !entry_->GetMark();
entry_->BuildTraversalOrder(graph->preorder(), graph->postorder(), mark);
#ifdef DEBUG
// Number the nodes in reverse postorder.
int n = 0;
for (int i = graph->postorder()->length() - 1; i >= 0; --i) {
graph->postorder()->at(i)->set_number(n++);
}
#endif
return graph;
}
void FlowGraphBuilder::VisitDeclaration(Declaration* decl) {
Variable* var = decl->proxy()->AsVariable();
Slot* slot = var->slot();
// We allow only declarations that do not require code generation.
// The following all require code generation: global variables and
// functions, variables with slot type LOOKUP, declarations with
// mode CONST, and functions.
if (var->is_global() ||
(slot != NULL && slot->type() == Slot::LOOKUP) ||
decl->mode() == Variable::CONST ||
decl->fun() != NULL) {
// Here and in the rest of the flow graph builder we indicate an
// unsupported syntactic construct by setting the stack overflow
// flag on the visitor. This causes bailout of the visitor.
SetStackOverflow();
}
}
void FlowGraphBuilder::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void FlowGraphBuilder::VisitExpressionStatement(ExpressionStatement* stmt) {
Visit(stmt->expression());
}
void FlowGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
// Nothing to do.
}
void FlowGraphBuilder::VisitIfStatement(IfStatement* stmt) {
// Build a diamond in the flow graph. First accumulate the instructions
// of the test in the current basic block.
Visit(stmt->condition());
// Remember the branch node and accumulate the true branch as its left
// successor. This relies on the successors being added left to right.
BasicBlock* branch = current_;
current_ = new BasicBlock(branch);
Visit(stmt->then_statement());
// Construct a join node and then accumulate the false branch in a fresh
// successor of the branch node.
BasicBlock* join = new BasicBlock(current_);
current_ = new BasicBlock(branch);
Visit(stmt->else_statement());
join->AddPredecessor(current_);
current_ = join;
}
void FlowGraphBuilder::VisitContinueStatement(ContinueStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitWithEnterStatement(WithEnterStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitWithExitStatement(WithExitStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitForStatement(ForStatement* stmt) {
// Build a loop in the flow graph. First accumulate the instructions of
// the initializer in the current basic block.
if (stmt->init() != NULL) Visit(stmt->init());
// Create a new basic block for the test. This will be the join node.
BasicBlock* join = new BasicBlock(current_);
current_ = join;
if (stmt->cond() != NULL) Visit(stmt->cond());
// The current node is the branch node. Create a new basic block to begin
// the body.
BasicBlock* branch = current_;
current_ = new BasicBlock(branch);
Visit(stmt->body());
if (stmt->next() != NULL) Visit(stmt->next());
// Add the backward edge from the end of the body and continue with the
// false arm of the branch.
join->AddPredecessor(current_);
current_ = new BasicBlock(branch);
}
void FlowGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitConditional(Conditional* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitSlot(Slot* expr) {
// Slots do not appear in the AST.
UNREACHABLE();
}
void FlowGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
current_->AddInstruction(expr);
}
void FlowGraphBuilder::VisitLiteral(Literal* expr) {
current_->AddInstruction(expr);
}
void FlowGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitCatchExtensionObject(CatchExtensionObject* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitAssignment(Assignment* expr) {
// There are three basic kinds of assignment: variable assignments,
// property assignments, and invalid left-hand sides (which are translated
// to "throw ReferenceError" by the parser).
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
Property* prop = expr->target()->AsProperty();
ASSERT(var == NULL || prop == NULL);
if (var != NULL) {
if (expr->is_compound() && !expr->target()->IsTrivial()) {
Visit(expr->target());
}
if (!expr->value()->IsTrivial()) Visit(expr->value());
current_->AddInstruction(expr);
} else if (prop != NULL) {
if (!prop->obj()->IsTrivial()) Visit(prop->obj());
if (!prop->key()->IsPropertyName() && !prop->key()->IsTrivial()) {
Visit(prop->key());
}
if (!expr->value()->IsTrivial()) Visit(expr->value());
current_->AddInstruction(expr);
} else {
Visit(expr->target());
}
}
void FlowGraphBuilder::VisitThrow(Throw* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitProperty(Property* expr) {
if (!expr->obj()->IsTrivial()) Visit(expr->obj());
if (!expr->key()->IsPropertyName() && !expr->key()->IsTrivial()) {
Visit(expr->key());
}
current_->AddInstruction(expr);
}
void FlowGraphBuilder::VisitCall(Call* expr) {
Visit(expr->expression());
VisitExpressions(expr->arguments());
current_->AddInstruction(expr);
}
void FlowGraphBuilder::VisitCallNew(CallNew* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
SetStackOverflow();
}
void FlowGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
switch (expr->op()) {
case Token::NOT:
case Token::BIT_NOT:
case Token::DELETE:
case Token::TYPEOF:
case Token::VOID:
SetStackOverflow();
break;
case Token::ADD:
case Token::SUB:
Visit(expr->expression());
current_->AddInstruction(expr);
break;
default:
UNREACHABLE();
}
}
void FlowGraphBuilder::VisitCountOperation(CountOperation* expr) {
Visit(expr->expression());
current_->AddInstruction(expr);
}
void FlowGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
switch (expr->op()) {
case Token::COMMA:
case Token::OR:
case Token::AND:
SetStackOverflow();
break;
case Token::BIT_OR:
case Token::BIT_XOR:
case Token::BIT_AND:
case Token::SHL:
case Token::SAR:
case Token::SHR:
case Token::ADD:
case Token::SUB:
case Token::MUL:
case Token::DIV:
case Token::MOD:
if (!expr->left()->IsTrivial()) Visit(expr->left());
if (!expr->right()->IsTrivial()) Visit(expr->right());
current_->AddInstruction(expr);
break;
default:
UNREACHABLE();
}
}
void FlowGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
switch (expr->op()) {
case Token::EQ:
case Token::NE:
case Token::EQ_STRICT:
case Token::NE_STRICT:
case Token::INSTANCEOF:
case Token::IN:
SetStackOverflow();
break;
case Token::LT:
case Token::GT:
case Token::LTE:
case Token::GTE:
if (!expr->left()->IsTrivial()) Visit(expr->left());
if (!expr->right()->IsTrivial()) Visit(expr->right());
current_->AddInstruction(expr);
break;
default:
UNREACHABLE();
}
}
void FlowGraphBuilder::VisitThisFunction(ThisFunction* expr) {
SetStackOverflow();
}
#ifdef DEBUG
// Print a textual representation of an instruction in a flow graph.
class InstructionPrinter: public AstVisitor {
public:
InstructionPrinter() {}
private:
// Overridden from the base class.
virtual void VisitExpressions(ZoneList<Expression*>* exprs);
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
DISALLOW_COPY_AND_ASSIGN(InstructionPrinter);
};
static void PrintSubexpression(Expression* expr) {
if (!expr->IsTrivial()) {
PrintF("@%d", expr->num());
} else if (expr->AsLiteral() != NULL) {
expr->AsLiteral()->handle()->Print();
} else if (expr->AsVariableProxy() != NULL) {
PrintF("%s", *expr->AsVariableProxy()->name()->ToCString());
} else {
UNREACHABLE();
}
}
void InstructionPrinter::VisitExpressions(ZoneList<Expression*>* exprs) {
for (int i = 0; i < exprs->length(); ++i) {
if (i != 0) PrintF(", ");
PrintF("@%d", exprs->at(i)->num());
}
}
// We only define printing functions for the node types that can occur as
// instructions in a flow graph. The rest are unreachable.
void InstructionPrinter::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
void InstructionPrinter::VisitBlock(Block* stmt) {
UNREACHABLE();
}
void InstructionPrinter::VisitExpressionStatement(ExpressionStatement* stmt) {
UNREACHABLE();
}
void InstructionPrinter::VisitEmptyStatement(EmptyStatement* stmt) {
UNREACHABLE();
}
void InstructionPrinter::VisitIfStatement(IfStatement* stmt) {
UNREACHABLE();
}
void InstructionPrinter::VisitContinueStatement(ContinueStatement* stmt) {
UNREACHABLE();
}
void InstructionPrinter::VisitBreakStatement(BreakStatement* stmt) {
UNREACHABLE();
}
void InstructionPrinter::VisitReturnStatement(ReturnStatement* stmt) {
PrintF("return ");
PrintSubexpression(stmt->expression());
}
void InstructionPrinter::VisitWithEnterStatement(WithEnterStatement* stmt) {
UNREACHABLE();
}
void InstructionPrinter::VisitWithExitStatement(WithExitStatement* stmt) {
UNREACHABLE();
}
void InstructionPrinter::VisitSwitchStatement(SwitchStatement* stmt) {
UNREACHABLE();
}
void InstructionPrinter::VisitDoWhileStatement(DoWhileStatement* stmt) {
UNREACHABLE();
}
void InstructionPrinter::VisitWhileStatement(WhileStatement* stmt) {
UNREACHABLE();
}
void InstructionPrinter::VisitForStatement(ForStatement* stmt) {
UNREACHABLE();
}
void InstructionPrinter::VisitForInStatement(ForInStatement* stmt) {
UNREACHABLE();
}
void InstructionPrinter::VisitTryCatchStatement(TryCatchStatement* stmt) {
UNREACHABLE();
}
void InstructionPrinter::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
UNREACHABLE();
}
void InstructionPrinter::VisitDebuggerStatement(DebuggerStatement* stmt) {
UNREACHABLE();
}
void InstructionPrinter::VisitFunctionLiteral(FunctionLiteral* expr) {
UNREACHABLE();
}
void InstructionPrinter::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* expr) {
UNREACHABLE();
}
void InstructionPrinter::VisitConditional(Conditional* expr) {
UNREACHABLE();
}
void InstructionPrinter::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void InstructionPrinter::VisitVariableProxy(VariableProxy* expr) {
Variable* var = expr->AsVariable();
if (var != NULL) {
PrintF("%s", *var->name()->ToCString());
} else {
ASSERT(expr->AsProperty() != NULL);
Visit(expr->AsProperty());
}
}
void InstructionPrinter::VisitLiteral(Literal* expr) {
expr->handle()->Print();
}
void InstructionPrinter::VisitRegExpLiteral(RegExpLiteral* expr) {
UNREACHABLE();
}
void InstructionPrinter::VisitObjectLiteral(ObjectLiteral* expr) {
UNREACHABLE();
}
void InstructionPrinter::VisitArrayLiteral(ArrayLiteral* expr) {
UNREACHABLE();
}
void InstructionPrinter::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
UNREACHABLE();
}
void InstructionPrinter::VisitAssignment(Assignment* expr) {
Variable* var = expr->target()->AsVariableProxy()->AsVariable();
Property* prop = expr->target()->AsProperty();
// Print the left-hand side.
Visit(expr->target());
if (var == NULL && prop == NULL) return; // Throw reference error.
PrintF(" = ");
// For compound assignments, print the left-hand side again and the
// corresponding binary operator.
if (expr->is_compound()) {
PrintSubexpression(expr->target());
PrintF(" %s ", Token::String(expr->binary_op()));
}
// Print the right-hand side.
PrintSubexpression(expr->value());
}
void InstructionPrinter::VisitThrow(Throw* expr) {
UNREACHABLE();
}
void InstructionPrinter::VisitProperty(Property* expr) {
PrintSubexpression(expr->obj());
if (expr->key()->IsPropertyName()) {
PrintF(".");
ASSERT(expr->key()->AsLiteral() != NULL);
expr->key()->AsLiteral()->handle()->Print();
} else {
PrintF("[");
PrintSubexpression(expr->key());
PrintF("]");
}
}
void InstructionPrinter::VisitCall(Call* expr) {
PrintF("@%d(", expr->expression()->num());
VisitExpressions(expr->arguments());
PrintF(")");
}
void InstructionPrinter::VisitCallNew(CallNew* expr) {
UNREACHABLE();
}
void InstructionPrinter::VisitCallRuntime(CallRuntime* expr) {
UNREACHABLE();
}
void InstructionPrinter::VisitUnaryOperation(UnaryOperation* expr) {
PrintF("%s(@%d)", Token::String(expr->op()), expr->expression()->num());
}
void InstructionPrinter::VisitCountOperation(CountOperation* expr) {
if (expr->is_prefix()) {
PrintF("%s@%d", Token::String(expr->op()), expr->expression()->num());
} else {
PrintF("@%d%s", expr->expression()->num(), Token::String(expr->op()));
}
}
void InstructionPrinter::VisitBinaryOperation(BinaryOperation* expr) {
PrintSubexpression(expr->left());
PrintF(" %s ", Token::String(expr->op()));
PrintSubexpression(expr->right());
}
void InstructionPrinter::VisitCompareOperation(CompareOperation* expr) {
PrintSubexpression(expr->left());
PrintF(" %s ", Token::String(expr->op()));
PrintSubexpression(expr->right());
}
void InstructionPrinter::VisitThisFunction(ThisFunction* expr) {
UNREACHABLE();
}
int BasicBlock::PrintAsText(int instruction_number) {
// Print a label for all blocks except the entry.
if (HasPredecessor()) {
PrintF("L%d:", number());
}
// Number and print the instructions. Since AST child nodes are visited
// before their parents, the parent nodes can refer to them by number.
InstructionPrinter printer;
for (int i = 0; i < instructions_.length(); ++i) {
PrintF("\n%d ", instruction_number);
instructions_[i]->set_num(instruction_number++);
instructions_[i]->Accept(&printer);
}
// If this is the exit, print "exit". If there is a single successor,
// print "goto" successor on a separate line. If there are two
// successors, print "goto" successor on the same line as the last
// instruction in the block. There is a blank line between blocks (and
// after the last one).
if (left_successor_ == NULL) {
PrintF("\nexit\n\n");
} else if (right_successor_ == NULL) {
PrintF("\ngoto L%d\n\n", left_successor_->number());
} else {
PrintF(", goto (L%d, L%d)\n\n",
left_successor_->number(),
right_successor_->number());
}
return instruction_number;
}
void FlowGraph::PrintAsText(Handle<String> name) {
PrintF("\n==== name = \"%s\" ====\n", *name->ToCString());
// Print nodes in reverse postorder. Note that AST node numbers are used
// during printing of instructions and thus their current values are
// destroyed.
int number = 0;
for (int i = postorder_.length() - 1; i >= 0; --i) {
number = postorder_[i]->PrintAsText(number);
}
}
#endif // DEBUG
} } // namespace v8::internal