| // Copyright 2009 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_X64) |
| |
| #include "codegen-inl.h" |
| #include "macro-assembler.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| #define __ ACCESS_MASM(masm) |
| |
| |
| void Builtins::Generate_Adaptor(MacroAssembler* masm, |
| CFunctionId id, |
| BuiltinExtraArguments extra_args) { |
| // ----------- S t a t e ------------- |
| // -- rax : number of arguments excluding receiver |
| // -- rdi : called function (only guaranteed when |
| // extra_args requires it) |
| // -- rsi : context |
| // -- rsp[0] : return address |
| // -- rsp[8] : last argument |
| // -- ... |
| // -- rsp[8 * argc] : first argument (argc == rax) |
| // -- rsp[8 * (argc +1)] : receiver |
| // ----------------------------------- |
| |
| // Insert extra arguments. |
| int num_extra_args = 0; |
| if (extra_args == NEEDS_CALLED_FUNCTION) { |
| num_extra_args = 1; |
| __ pop(kScratchRegister); // Save return address. |
| __ push(rdi); |
| __ push(kScratchRegister); // Restore return address. |
| } else { |
| ASSERT(extra_args == NO_EXTRA_ARGUMENTS); |
| } |
| |
| // JumpToExternalReference expects rax to contain the number of arguments |
| // including the receiver and the extra arguments. |
| __ addq(rax, Immediate(num_extra_args + 1)); |
| __ JumpToExternalReference(ExternalReference(id), 1); |
| } |
| |
| |
| static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { |
| __ push(rbp); |
| __ movq(rbp, rsp); |
| |
| // Store the arguments adaptor context sentinel. |
| __ Push(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); |
| |
| // Push the function on the stack. |
| __ push(rdi); |
| |
| // Preserve the number of arguments on the stack. Must preserve both |
| // rax and rbx because these registers are used when copying the |
| // arguments and the receiver. |
| __ Integer32ToSmi(rcx, rax); |
| __ push(rcx); |
| } |
| |
| |
| static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { |
| // Retrieve the number of arguments from the stack. Number is a Smi. |
| __ movq(rbx, Operand(rbp, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
| |
| // Leave the frame. |
| __ movq(rsp, rbp); |
| __ pop(rbp); |
| |
| // Remove caller arguments from the stack. |
| __ pop(rcx); |
| SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); |
| __ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize)); |
| __ push(rcx); |
| } |
| |
| |
| void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : actual number of arguments |
| // -- rbx : expected number of arguments |
| // -- rdx : code entry to call |
| // ----------------------------------- |
| |
| Label invoke, dont_adapt_arguments; |
| __ IncrementCounter(&Counters::arguments_adaptors, 1); |
| |
| Label enough, too_few; |
| __ cmpq(rax, rbx); |
| __ j(less, &too_few); |
| __ cmpq(rbx, Immediate(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); |
| __ j(equal, &dont_adapt_arguments); |
| |
| { // Enough parameters: Actual >= expected. |
| __ bind(&enough); |
| EnterArgumentsAdaptorFrame(masm); |
| |
| // Copy receiver and all expected arguments. |
| const int offset = StandardFrameConstants::kCallerSPOffset; |
| __ lea(rax, Operand(rbp, rax, times_pointer_size, offset)); |
| __ movq(rcx, Immediate(-1)); // account for receiver |
| |
| Label copy; |
| __ bind(©); |
| __ incq(rcx); |
| __ push(Operand(rax, 0)); |
| __ subq(rax, Immediate(kPointerSize)); |
| __ cmpq(rcx, rbx); |
| __ j(less, ©); |
| __ jmp(&invoke); |
| } |
| |
| { // Too few parameters: Actual < expected. |
| __ bind(&too_few); |
| EnterArgumentsAdaptorFrame(masm); |
| |
| // Copy receiver and all actual arguments. |
| const int offset = StandardFrameConstants::kCallerSPOffset; |
| __ lea(rdi, Operand(rbp, rax, times_pointer_size, offset)); |
| __ movq(rcx, Immediate(-1)); // account for receiver |
| |
| Label copy; |
| __ bind(©); |
| __ incq(rcx); |
| __ push(Operand(rdi, 0)); |
| __ subq(rdi, Immediate(kPointerSize)); |
| __ cmpq(rcx, rax); |
| __ j(less, ©); |
| |
| // Fill remaining expected arguments with undefined values. |
| Label fill; |
| __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex); |
| __ bind(&fill); |
| __ incq(rcx); |
| __ push(kScratchRegister); |
| __ cmpq(rcx, rbx); |
| __ j(less, &fill); |
| |
| // Restore function pointer. |
| __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); |
| } |
| |
| // Call the entry point. |
| __ bind(&invoke); |
| __ call(rdx); |
| |
| // Leave frame and return. |
| LeaveArgumentsAdaptorFrame(masm); |
| __ ret(0); |
| |
| // ------------------------------------------- |
| // Dont adapt arguments. |
| // ------------------------------------------- |
| __ bind(&dont_adapt_arguments); |
| __ jmp(rdx); |
| } |
| |
| |
| void Builtins::Generate_FunctionCall(MacroAssembler* masm) { |
| // Stack Layout: |
| // rsp[0]: Return address |
| // rsp[1]: Argument n |
| // rsp[2]: Argument n-1 |
| // ... |
| // rsp[n]: Argument 1 |
| // rsp[n+1]: Receiver (function to call) |
| // |
| // rax contains the number of arguments, n, not counting the receiver. |
| // |
| // 1. Make sure we have at least one argument. |
| { Label done; |
| __ testq(rax, rax); |
| __ j(not_zero, &done); |
| __ pop(rbx); |
| __ Push(Factory::undefined_value()); |
| __ push(rbx); |
| __ incq(rax); |
| __ bind(&done); |
| } |
| |
| // 2. Get the function to call (passed as receiver) from the stack, check |
| // if it is a function. |
| Label non_function; |
| // The function to call is at position n+1 on the stack. |
| __ movq(rdi, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize)); |
| __ JumpIfSmi(rdi, &non_function); |
| __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); |
| __ j(not_equal, &non_function); |
| |
| // 3a. Patch the first argument if necessary when calling a function. |
| Label shift_arguments; |
| { Label convert_to_object, use_global_receiver, patch_receiver; |
| // Change context eagerly in case we need the global receiver. |
| __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); |
| |
| __ movq(rbx, Operand(rsp, rax, times_pointer_size, 0)); |
| __ JumpIfSmi(rbx, &convert_to_object); |
| |
| __ CompareRoot(rbx, Heap::kNullValueRootIndex); |
| __ j(equal, &use_global_receiver); |
| __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); |
| __ j(equal, &use_global_receiver); |
| |
| __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, rcx); |
| __ j(below, &convert_to_object); |
| __ CmpInstanceType(rcx, LAST_JS_OBJECT_TYPE); |
| __ j(below_equal, &shift_arguments); |
| |
| __ bind(&convert_to_object); |
| __ EnterInternalFrame(); // In order to preserve argument count. |
| __ Integer32ToSmi(rax, rax); |
| __ push(rax); |
| |
| __ push(rbx); |
| __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
| __ movq(rbx, rax); |
| |
| __ pop(rax); |
| __ SmiToInteger32(rax, rax); |
| __ LeaveInternalFrame(); |
| // Restore the function to rdi. |
| __ movq(rdi, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize)); |
| __ jmp(&patch_receiver); |
| |
| // Use the global receiver object from the called function as the |
| // receiver. |
| __ bind(&use_global_receiver); |
| const int kGlobalIndex = |
| Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; |
| __ movq(rbx, FieldOperand(rsi, kGlobalIndex)); |
| __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalContextOffset)); |
| __ movq(rbx, FieldOperand(rbx, kGlobalIndex)); |
| __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset)); |
| |
| __ bind(&patch_receiver); |
| __ movq(Operand(rsp, rax, times_pointer_size, 0), rbx); |
| |
| __ jmp(&shift_arguments); |
| } |
| |
| |
| // 3b. Patch the first argument when calling a non-function. The |
| // CALL_NON_FUNCTION builtin expects the non-function callee as |
| // receiver, so overwrite the first argument which will ultimately |
| // become the receiver. |
| __ bind(&non_function); |
| __ movq(Operand(rsp, rax, times_pointer_size, 0), rdi); |
| __ xor_(rdi, rdi); |
| |
| // 4. Shift arguments and return address one slot down on the stack |
| // (overwriting the original receiver). Adjust argument count to make |
| // the original first argument the new receiver. |
| __ bind(&shift_arguments); |
| { Label loop; |
| __ movq(rcx, rax); |
| __ bind(&loop); |
| __ movq(rbx, Operand(rsp, rcx, times_pointer_size, 0)); |
| __ movq(Operand(rsp, rcx, times_pointer_size, 1 * kPointerSize), rbx); |
| __ decq(rcx); |
| __ j(not_sign, &loop); // While non-negative (to copy return address). |
| __ pop(rbx); // Discard copy of return address. |
| __ decq(rax); // One fewer argument (first argument is new receiver). |
| } |
| |
| // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin. |
| { Label function; |
| __ testq(rdi, rdi); |
| __ j(not_zero, &function); |
| __ xor_(rbx, rbx); |
| __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION); |
| __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)), |
| RelocInfo::CODE_TARGET); |
| __ bind(&function); |
| } |
| |
| // 5b. Get the code to call from the function and check that the number of |
| // expected arguments matches what we're providing. If so, jump |
| // (tail-call) to the code in register edx without checking arguments. |
| __ movq(rdx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movsxlq(rbx, |
| FieldOperand(rdx, |
| SharedFunctionInfo::kFormalParameterCountOffset)); |
| __ movq(rdx, FieldOperand(rdi, JSFunction::kCodeEntryOffset)); |
| __ cmpq(rax, rbx); |
| __ j(not_equal, |
| Handle<Code>(builtin(ArgumentsAdaptorTrampoline)), |
| RelocInfo::CODE_TARGET); |
| |
| ParameterCount expected(0); |
| __ InvokeCode(rdx, expected, expected, JUMP_FUNCTION); |
| } |
| |
| |
| void Builtins::Generate_FunctionApply(MacroAssembler* masm) { |
| // Stack at entry: |
| // rsp: return address |
| // rsp+8: arguments |
| // rsp+16: receiver ("this") |
| // rsp+24: function |
| __ EnterInternalFrame(); |
| // Stack frame: |
| // rbp: Old base pointer |
| // rbp[1]: return address |
| // rbp[2]: function arguments |
| // rbp[3]: receiver |
| // rbp[4]: function |
| static const int kArgumentsOffset = 2 * kPointerSize; |
| static const int kReceiverOffset = 3 * kPointerSize; |
| static const int kFunctionOffset = 4 * kPointerSize; |
| __ push(Operand(rbp, kFunctionOffset)); |
| __ push(Operand(rbp, kArgumentsOffset)); |
| __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION); |
| |
| // Check the stack for overflow. We are not trying need to catch |
| // interruptions (e.g. debug break and preemption) here, so the "real stack |
| // limit" is checked. |
| Label okay; |
| __ LoadRoot(kScratchRegister, Heap::kRealStackLimitRootIndex); |
| __ movq(rcx, rsp); |
| // Make rcx the space we have left. The stack might already be overflowed |
| // here which will cause rcx to become negative. |
| __ subq(rcx, kScratchRegister); |
| // Make rdx the space we need for the array when it is unrolled onto the |
| // stack. |
| __ PositiveSmiTimesPowerOfTwoToInteger64(rdx, rax, kPointerSizeLog2); |
| // Check if the arguments will overflow the stack. |
| __ cmpq(rcx, rdx); |
| __ j(greater, &okay); // Signed comparison. |
| |
| // Out of stack space. |
| __ push(Operand(rbp, kFunctionOffset)); |
| __ push(rax); |
| __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION); |
| __ bind(&okay); |
| // End of stack check. |
| |
| // Push current index and limit. |
| const int kLimitOffset = |
| StandardFrameConstants::kExpressionsOffset - 1 * kPointerSize; |
| const int kIndexOffset = kLimitOffset - 1 * kPointerSize; |
| __ push(rax); // limit |
| __ push(Immediate(0)); // index |
| |
| // Change context eagerly to get the right global object if |
| // necessary. |
| __ movq(rdi, Operand(rbp, kFunctionOffset)); |
| __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); |
| |
| // Compute the receiver. |
| Label call_to_object, use_global_receiver, push_receiver; |
| __ movq(rbx, Operand(rbp, kReceiverOffset)); |
| __ JumpIfSmi(rbx, &call_to_object); |
| __ CompareRoot(rbx, Heap::kNullValueRootIndex); |
| __ j(equal, &use_global_receiver); |
| __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); |
| __ j(equal, &use_global_receiver); |
| |
| // If given receiver is already a JavaScript object then there's no |
| // reason for converting it. |
| __ CmpObjectType(rbx, FIRST_JS_OBJECT_TYPE, rcx); |
| __ j(below, &call_to_object); |
| __ CmpInstanceType(rcx, LAST_JS_OBJECT_TYPE); |
| __ j(below_equal, &push_receiver); |
| |
| // Convert the receiver to an object. |
| __ bind(&call_to_object); |
| __ push(rbx); |
| __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
| __ movq(rbx, rax); |
| __ jmp(&push_receiver); |
| |
| // Use the current global receiver object as the receiver. |
| __ bind(&use_global_receiver); |
| const int kGlobalOffset = |
| Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; |
| __ movq(rbx, FieldOperand(rsi, kGlobalOffset)); |
| __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalContextOffset)); |
| __ movq(rbx, FieldOperand(rbx, kGlobalOffset)); |
| __ movq(rbx, FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset)); |
| |
| // Push the receiver. |
| __ bind(&push_receiver); |
| __ push(rbx); |
| |
| // Copy all arguments from the array to the stack. |
| Label entry, loop; |
| __ movq(rax, Operand(rbp, kIndexOffset)); |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ movq(rdx, Operand(rbp, kArgumentsOffset)); // load arguments |
| |
| // Use inline caching to speed up access to arguments. |
| Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); |
| __ Call(ic, RelocInfo::CODE_TARGET); |
| // It is important that we do not have a test instruction after the |
| // call. A test instruction after the call is used to indicate that |
| // we have generated an inline version of the keyed load. In this |
| // case, we know that we are not generating a test instruction next. |
| |
| // Push the nth argument. |
| __ push(rax); |
| |
| // Update the index on the stack and in register rax. |
| __ movq(rax, Operand(rbp, kIndexOffset)); |
| __ SmiAddConstant(rax, rax, Smi::FromInt(1)); |
| __ movq(Operand(rbp, kIndexOffset), rax); |
| |
| __ bind(&entry); |
| __ cmpq(rax, Operand(rbp, kLimitOffset)); |
| __ j(not_equal, &loop); |
| |
| // Invoke the function. |
| ParameterCount actual(rax); |
| __ SmiToInteger32(rax, rax); |
| __ movq(rdi, Operand(rbp, kFunctionOffset)); |
| __ InvokeFunction(rdi, actual, CALL_FUNCTION); |
| |
| __ LeaveInternalFrame(); |
| __ ret(3 * kPointerSize); // remove function, receiver, and arguments |
| } |
| |
| |
| // Load the built-in Array function from the current context. |
| static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { |
| // Load the global context. |
| __ movq(result, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| __ movq(result, FieldOperand(result, GlobalObject::kGlobalContextOffset)); |
| // Load the Array function from the global context. |
| __ movq(result, |
| Operand(result, Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX))); |
| } |
| |
| |
| // Number of empty elements to allocate for an empty array. |
| static const int kPreallocatedArrayElements = 4; |
| |
| |
| // Allocate an empty JSArray. The allocated array is put into the result |
| // register. If the parameter initial_capacity is larger than zero an elements |
| // backing store is allocated with this size and filled with the hole values. |
| // Otherwise the elements backing store is set to the empty FixedArray. |
| static void AllocateEmptyJSArray(MacroAssembler* masm, |
| Register array_function, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| int initial_capacity, |
| Label* gc_required) { |
| ASSERT(initial_capacity >= 0); |
| |
| // Load the initial map from the array function. |
| __ movq(scratch1, FieldOperand(array_function, |
| JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Allocate the JSArray object together with space for a fixed array with the |
| // requested elements. |
| int size = JSArray::kSize; |
| if (initial_capacity > 0) { |
| size += FixedArray::SizeFor(initial_capacity); |
| } |
| __ AllocateInNewSpace(size, |
| result, |
| scratch2, |
| scratch3, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Allocated the JSArray. Now initialize the fields except for the elements |
| // array. |
| // result: JSObject |
| // scratch1: initial map |
| // scratch2: start of next object |
| __ movq(FieldOperand(result, JSObject::kMapOffset), scratch1); |
| __ Move(FieldOperand(result, JSArray::kPropertiesOffset), |
| Factory::empty_fixed_array()); |
| // Field JSArray::kElementsOffset is initialized later. |
| __ Move(FieldOperand(result, JSArray::kLengthOffset), Smi::FromInt(0)); |
| |
| // If no storage is requested for the elements array just set the empty |
| // fixed array. |
| if (initial_capacity == 0) { |
| __ Move(FieldOperand(result, JSArray::kElementsOffset), |
| Factory::empty_fixed_array()); |
| return; |
| } |
| |
| // Calculate the location of the elements array and set elements array member |
| // of the JSArray. |
| // result: JSObject |
| // scratch2: start of next object |
| __ lea(scratch1, Operand(result, JSArray::kSize)); |
| __ movq(FieldOperand(result, JSArray::kElementsOffset), scratch1); |
| |
| // Initialize the FixedArray and fill it with holes. FixedArray length is |
| // stored as a smi. |
| // result: JSObject |
| // scratch1: elements array |
| // scratch2: start of next object |
| __ Move(FieldOperand(scratch1, HeapObject::kMapOffset), |
| Factory::fixed_array_map()); |
| __ Move(FieldOperand(scratch1, FixedArray::kLengthOffset), |
| Smi::FromInt(initial_capacity)); |
| |
| // Fill the FixedArray with the hole value. Inline the code if short. |
| // Reconsider loop unfolding if kPreallocatedArrayElements gets changed. |
| static const int kLoopUnfoldLimit = 4; |
| ASSERT(kPreallocatedArrayElements <= kLoopUnfoldLimit); |
| __ Move(scratch3, Factory::the_hole_value()); |
| if (initial_capacity <= kLoopUnfoldLimit) { |
| // Use a scratch register here to have only one reloc info when unfolding |
| // the loop. |
| for (int i = 0; i < initial_capacity; i++) { |
| __ movq(FieldOperand(scratch1, |
| FixedArray::kHeaderSize + i * kPointerSize), |
| scratch3); |
| } |
| } else { |
| Label loop, entry; |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ movq(Operand(scratch1, 0), scratch3); |
| __ addq(scratch1, Immediate(kPointerSize)); |
| __ bind(&entry); |
| __ cmpq(scratch1, scratch2); |
| __ j(below, &loop); |
| } |
| } |
| |
| |
| // Allocate a JSArray with the number of elements stored in a register. The |
| // register array_function holds the built-in Array function and the register |
| // array_size holds the size of the array as a smi. The allocated array is put |
| // into the result register and beginning and end of the FixedArray elements |
| // storage is put into registers elements_array and elements_array_end (see |
| // below for when that is not the case). If the parameter fill_with_holes is |
| // true the allocated elements backing store is filled with the hole values |
| // otherwise it is left uninitialized. When the backing store is filled the |
| // register elements_array is scratched. |
| static void AllocateJSArray(MacroAssembler* masm, |
| Register array_function, // Array function. |
| Register array_size, // As a smi. |
| Register result, |
| Register elements_array, |
| Register elements_array_end, |
| Register scratch, |
| bool fill_with_hole, |
| Label* gc_required) { |
| Label not_empty, allocated; |
| |
| // Load the initial map from the array function. |
| __ movq(elements_array, |
| FieldOperand(array_function, |
| JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // Check whether an empty sized array is requested. |
| __ testq(array_size, array_size); |
| __ j(not_zero, ¬_empty); |
| |
| // If an empty array is requested allocate a small elements array anyway. This |
| // keeps the code below free of special casing for the empty array. |
| int size = JSArray::kSize + FixedArray::SizeFor(kPreallocatedArrayElements); |
| __ AllocateInNewSpace(size, |
| result, |
| elements_array_end, |
| scratch, |
| gc_required, |
| TAG_OBJECT); |
| __ jmp(&allocated); |
| |
| // Allocate the JSArray object together with space for a FixedArray with the |
| // requested elements. |
| __ bind(¬_empty); |
| SmiIndex index = |
| masm->SmiToIndex(kScratchRegister, array_size, kPointerSizeLog2); |
| __ AllocateInNewSpace(JSArray::kSize + FixedArray::kHeaderSize, |
| index.scale, |
| index.reg, |
| result, |
| elements_array_end, |
| scratch, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Allocated the JSArray. Now initialize the fields except for the elements |
| // array. |
| // result: JSObject |
| // elements_array: initial map |
| // elements_array_end: start of next object |
| // array_size: size of array (smi) |
| __ bind(&allocated); |
| __ movq(FieldOperand(result, JSObject::kMapOffset), elements_array); |
| __ Move(elements_array, Factory::empty_fixed_array()); |
| __ movq(FieldOperand(result, JSArray::kPropertiesOffset), elements_array); |
| // Field JSArray::kElementsOffset is initialized later. |
| __ movq(FieldOperand(result, JSArray::kLengthOffset), array_size); |
| |
| // Calculate the location of the elements array and set elements array member |
| // of the JSArray. |
| // result: JSObject |
| // elements_array_end: start of next object |
| // array_size: size of array (smi) |
| __ lea(elements_array, Operand(result, JSArray::kSize)); |
| __ movq(FieldOperand(result, JSArray::kElementsOffset), elements_array); |
| |
| // Initialize the fixed array. FixedArray length is stored as a smi. |
| // result: JSObject |
| // elements_array: elements array |
| // elements_array_end: start of next object |
| // array_size: size of array (smi) |
| __ Move(FieldOperand(elements_array, JSObject::kMapOffset), |
| Factory::fixed_array_map()); |
| Label not_empty_2, fill_array; |
| __ SmiTest(array_size); |
| __ j(not_zero, ¬_empty_2); |
| // Length of the FixedArray is the number of pre-allocated elements even |
| // though the actual JSArray has length 0. |
| __ Move(FieldOperand(elements_array, FixedArray::kLengthOffset), |
| Smi::FromInt(kPreallocatedArrayElements)); |
| __ jmp(&fill_array); |
| __ bind(¬_empty_2); |
| // For non-empty JSArrays the length of the FixedArray and the JSArray is the |
| // same. |
| __ movq(FieldOperand(elements_array, FixedArray::kLengthOffset), array_size); |
| |
| // Fill the allocated FixedArray with the hole value if requested. |
| // result: JSObject |
| // elements_array: elements array |
| // elements_array_end: start of next object |
| __ bind(&fill_array); |
| if (fill_with_hole) { |
| Label loop, entry; |
| __ Move(scratch, Factory::the_hole_value()); |
| __ lea(elements_array, Operand(elements_array, |
| FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ movq(Operand(elements_array, 0), scratch); |
| __ addq(elements_array, Immediate(kPointerSize)); |
| __ bind(&entry); |
| __ cmpq(elements_array, elements_array_end); |
| __ j(below, &loop); |
| } |
| } |
| |
| |
| // Create a new array for the built-in Array function. This function allocates |
| // the JSArray object and the FixedArray elements array and initializes these. |
| // If the Array cannot be constructed in native code the runtime is called. This |
| // function assumes the following state: |
| // rdi: constructor (built-in Array function) |
| // rax: argc |
| // rsp[0]: return address |
| // rsp[8]: last argument |
| // This function is used for both construct and normal calls of Array. The only |
| // difference between handling a construct call and a normal call is that for a |
| // construct call the constructor function in rdi needs to be preserved for |
| // entering the generic code. In both cases argc in rax needs to be preserved. |
| // Both registers are preserved by this code so no need to differentiate between |
| // a construct call and a normal call. |
| static void ArrayNativeCode(MacroAssembler* masm, |
| Label *call_generic_code) { |
| Label argc_one_or_more, argc_two_or_more; |
| |
| // Check for array construction with zero arguments. |
| __ testq(rax, rax); |
| __ j(not_zero, &argc_one_or_more); |
| |
| // Handle construction of an empty array. |
| AllocateEmptyJSArray(masm, |
| rdi, |
| rbx, |
| rcx, |
| rdx, |
| r8, |
| kPreallocatedArrayElements, |
| call_generic_code); |
| __ IncrementCounter(&Counters::array_function_native, 1); |
| __ movq(rax, rbx); |
| __ ret(kPointerSize); |
| |
| // Check for one argument. Bail out if argument is not smi or if it is |
| // negative. |
| __ bind(&argc_one_or_more); |
| __ cmpq(rax, Immediate(1)); |
| __ j(not_equal, &argc_two_or_more); |
| __ movq(rdx, Operand(rsp, kPointerSize)); // Get the argument from the stack. |
| __ JumpIfNotPositiveSmi(rdx, call_generic_code); |
| |
| // Handle construction of an empty array of a certain size. Bail out if size |
| // is to large to actually allocate an elements array. |
| __ SmiCompare(rdx, Smi::FromInt(JSObject::kInitialMaxFastElementArray)); |
| __ j(greater_equal, call_generic_code); |
| |
| // rax: argc |
| // rdx: array_size (smi) |
| // rdi: constructor |
| // esp[0]: return address |
| // esp[8]: argument |
| AllocateJSArray(masm, |
| rdi, |
| rdx, |
| rbx, |
| rcx, |
| r8, |
| r9, |
| true, |
| call_generic_code); |
| __ IncrementCounter(&Counters::array_function_native, 1); |
| __ movq(rax, rbx); |
| __ ret(2 * kPointerSize); |
| |
| // Handle construction of an array from a list of arguments. |
| __ bind(&argc_two_or_more); |
| __ movq(rdx, rax); |
| __ Integer32ToSmi(rdx, rdx); // Convet argc to a smi. |
| // rax: argc |
| // rdx: array_size (smi) |
| // rdi: constructor |
| // esp[0] : return address |
| // esp[8] : last argument |
| AllocateJSArray(masm, |
| rdi, |
| rdx, |
| rbx, |
| rcx, |
| r8, |
| r9, |
| false, |
| call_generic_code); |
| __ IncrementCounter(&Counters::array_function_native, 1); |
| |
| // rax: argc |
| // rbx: JSArray |
| // rcx: elements_array |
| // r8: elements_array_end (untagged) |
| // esp[0]: return address |
| // esp[8]: last argument |
| |
| // Location of the last argument |
| __ lea(r9, Operand(rsp, kPointerSize)); |
| |
| // Location of the first array element (Parameter fill_with_holes to |
| // AllocateJSArrayis false, so the FixedArray is returned in rcx). |
| __ lea(rdx, Operand(rcx, FixedArray::kHeaderSize - kHeapObjectTag)); |
| |
| // rax: argc |
| // rbx: JSArray |
| // rdx: location of the first array element |
| // r9: location of the last argument |
| // esp[0]: return address |
| // esp[8]: last argument |
| Label loop, entry; |
| __ movq(rcx, rax); |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ movq(kScratchRegister, Operand(r9, rcx, times_pointer_size, 0)); |
| __ movq(Operand(rdx, 0), kScratchRegister); |
| __ addq(rdx, Immediate(kPointerSize)); |
| __ bind(&entry); |
| __ decq(rcx); |
| __ j(greater_equal, &loop); |
| |
| // Remove caller arguments from the stack and return. |
| // rax: argc |
| // rbx: JSArray |
| // esp[0]: return address |
| // esp[8]: last argument |
| __ pop(rcx); |
| __ lea(rsp, Operand(rsp, rax, times_pointer_size, 1 * kPointerSize)); |
| __ push(rcx); |
| __ movq(rax, rbx); |
| __ ret(0); |
| } |
| |
| |
| void Builtins::Generate_ArrayCode(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rsp[0] : return address |
| // -- rsp[8] : last argument |
| // ----------------------------------- |
| Label generic_array_code; |
| |
| // Get the Array function. |
| GenerateLoadArrayFunction(masm, rdi); |
| |
| if (FLAG_debug_code) { |
| // Initial map for the builtin Array function shoud be a map. |
| __ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a NULL and a Smi. |
| ASSERT(kSmiTag == 0); |
| Condition not_smi = NegateCondition(masm->CheckSmi(rbx)); |
| __ Check(not_smi, "Unexpected initial map for Array function"); |
| __ CmpObjectType(rbx, MAP_TYPE, rcx); |
| __ Check(equal, "Unexpected initial map for Array function"); |
| } |
| |
| // Run the native code for the Array function called as a normal function. |
| ArrayNativeCode(masm, &generic_array_code); |
| |
| // Jump to the generic array code in case the specialized code cannot handle |
| // the construction. |
| __ bind(&generic_array_code); |
| Code* code = Builtins::builtin(Builtins::ArrayCodeGeneric); |
| Handle<Code> array_code(code); |
| __ Jump(array_code, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax : argc |
| // -- rdi : constructor |
| // -- rsp[0] : return address |
| // -- rsp[8] : last argument |
| // ----------------------------------- |
| Label generic_constructor; |
| |
| if (FLAG_debug_code) { |
| // The array construct code is only set for the builtin Array function which |
| // does always have a map. |
| GenerateLoadArrayFunction(masm, rbx); |
| __ cmpq(rdi, rbx); |
| __ Check(equal, "Unexpected Array function"); |
| // Initial map for the builtin Array function should be a map. |
| __ movq(rbx, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a NULL and a Smi. |
| ASSERT(kSmiTag == 0); |
| Condition not_smi = NegateCondition(masm->CheckSmi(rbx)); |
| __ Check(not_smi, "Unexpected initial map for Array function"); |
| __ CmpObjectType(rbx, MAP_TYPE, rcx); |
| __ Check(equal, "Unexpected initial map for Array function"); |
| } |
| |
| // Run the native code for the Array function called as constructor. |
| ArrayNativeCode(masm, &generic_constructor); |
| |
| // Jump to the generic construct code in case the specialized code cannot |
| // handle the construction. |
| __ bind(&generic_constructor); |
| Code* code = Builtins::builtin(Builtins::JSConstructStubGeneric); |
| Handle<Code> generic_construct_stub(code); |
| __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET); |
| } |
| |
| |
| void Builtins::Generate_StringConstructCode(MacroAssembler* masm) { |
| // TODO(849): implement custom construct stub. |
| // Generate a copy of the generic stub for now. |
| Generate_JSConstructStubGeneric(masm); |
| } |
| |
| |
| void Builtins::Generate_JSConstructCall(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- rax: number of arguments |
| // -- rdi: constructor function |
| // ----------------------------------- |
| |
| Label non_function_call; |
| // Check that function is not a smi. |
| __ JumpIfSmi(rdi, &non_function_call); |
| // Check that function is a JSFunction. |
| __ CmpObjectType(rdi, JS_FUNCTION_TYPE, rcx); |
| __ j(not_equal, &non_function_call); |
| |
| // Jump to the function-specific construct stub. |
| __ movq(rbx, FieldOperand(rdi, JSFunction::kSharedFunctionInfoOffset)); |
| __ movq(rbx, FieldOperand(rbx, SharedFunctionInfo::kConstructStubOffset)); |
| __ lea(rbx, FieldOperand(rbx, Code::kHeaderSize)); |
| __ jmp(rbx); |
| |
| // rdi: called object |
| // rax: number of arguments |
| __ bind(&non_function_call); |
| // Set expected number of arguments to zero (not changing rax). |
| __ movq(rbx, Immediate(0)); |
| __ GetBuiltinEntry(rdx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); |
| __ Jump(Handle<Code>(builtin(ArgumentsAdaptorTrampoline)), |
| RelocInfo::CODE_TARGET); |
| } |
| |
| |
| static void Generate_JSConstructStubHelper(MacroAssembler* masm, |
| bool is_api_function) { |
| // Enter a construct frame. |
| __ EnterConstructFrame(); |
| |
| // Store a smi-tagged arguments count on the stack. |
| __ Integer32ToSmi(rax, rax); |
| __ push(rax); |
| |
| // Push the function to invoke on the stack. |
| __ push(rdi); |
| |
| // Try to allocate the object without transitioning into C code. If any of the |
| // preconditions is not met, the code bails out to the runtime call. |
| Label rt_call, allocated; |
| if (FLAG_inline_new) { |
| Label undo_allocation; |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| ExternalReference debug_step_in_fp = |
| ExternalReference::debug_step_in_fp_address(); |
| __ movq(kScratchRegister, debug_step_in_fp); |
| __ cmpq(Operand(kScratchRegister, 0), Immediate(0)); |
| __ j(not_equal, &rt_call); |
| #endif |
| |
| // Verified that the constructor is a JSFunction. |
| // Load the initial map and verify that it is in fact a map. |
| // rdi: constructor |
| __ movq(rax, FieldOperand(rdi, JSFunction::kPrototypeOrInitialMapOffset)); |
| // Will both indicate a NULL and a Smi |
| ASSERT(kSmiTag == 0); |
| __ JumpIfSmi(rax, &rt_call); |
| // rdi: constructor |
| // rax: initial map (if proven valid below) |
| __ CmpObjectType(rax, MAP_TYPE, rbx); |
| __ j(not_equal, &rt_call); |
| |
| // Check that the constructor is not constructing a JSFunction (see comments |
| // in Runtime_NewObject in runtime.cc). In which case the initial map's |
| // instance type would be JS_FUNCTION_TYPE. |
| // rdi: constructor |
| // rax: initial map |
| __ CmpInstanceType(rax, JS_FUNCTION_TYPE); |
| __ j(equal, &rt_call); |
| |
| // Now allocate the JSObject on the heap. |
| __ movzxbq(rdi, FieldOperand(rax, Map::kInstanceSizeOffset)); |
| __ shl(rdi, Immediate(kPointerSizeLog2)); |
| // rdi: size of new object |
| __ AllocateInNewSpace(rdi, |
| rbx, |
| rdi, |
| no_reg, |
| &rt_call, |
| NO_ALLOCATION_FLAGS); |
| // Allocated the JSObject, now initialize the fields. |
| // rax: initial map |
| // rbx: JSObject (not HeapObject tagged - the actual address). |
| // rdi: start of next object |
| __ movq(Operand(rbx, JSObject::kMapOffset), rax); |
| __ LoadRoot(rcx, Heap::kEmptyFixedArrayRootIndex); |
| __ movq(Operand(rbx, JSObject::kPropertiesOffset), rcx); |
| __ movq(Operand(rbx, JSObject::kElementsOffset), rcx); |
| // Set extra fields in the newly allocated object. |
| // rax: initial map |
| // rbx: JSObject |
| // rdi: start of next object |
| { Label loop, entry; |
| __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); |
| __ lea(rcx, Operand(rbx, JSObject::kHeaderSize)); |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ movq(Operand(rcx, 0), rdx); |
| __ addq(rcx, Immediate(kPointerSize)); |
| __ bind(&entry); |
| __ cmpq(rcx, rdi); |
| __ j(less, &loop); |
| } |
| |
| // Add the object tag to make the JSObject real, so that we can continue and |
| // jump into the continuation code at any time from now on. Any failures |
| // need to undo the allocation, so that the heap is in a consistent state |
| // and verifiable. |
| // rax: initial map |
| // rbx: JSObject |
| // rdi: start of next object |
| __ or_(rbx, Immediate(kHeapObjectTag)); |
| |
| // Check if a non-empty properties array is needed. |
| // Allocate and initialize a FixedArray if it is. |
| // rax: initial map |
| // rbx: JSObject |
| // rdi: start of next object |
| // Calculate total properties described map. |
| __ movzxbq(rdx, FieldOperand(rax, Map::kUnusedPropertyFieldsOffset)); |
| __ movzxbq(rcx, FieldOperand(rax, Map::kPreAllocatedPropertyFieldsOffset)); |
| __ addq(rdx, rcx); |
| // Calculate unused properties past the end of the in-object properties. |
| __ movzxbq(rcx, FieldOperand(rax, Map::kInObjectPropertiesOffset)); |
| __ subq(rdx, rcx); |
| // Done if no extra properties are to be allocated. |
| __ j(zero, &allocated); |
| __ Assert(positive, "Property allocation count failed."); |
| |
| // Scale the number of elements by pointer size and add the header for |
| // FixedArrays to the start of the next object calculation from above. |
| // rbx: JSObject |
| // rdi: start of next object (will be start of FixedArray) |
| // rdx: number of elements in properties array |
| __ AllocateInNewSpace(FixedArray::kHeaderSize, |
| times_pointer_size, |
| rdx, |
| rdi, |
| rax, |
| no_reg, |
| &undo_allocation, |
| RESULT_CONTAINS_TOP); |
| |
| // Initialize the FixedArray. |
| // rbx: JSObject |
| // rdi: FixedArray |
| // rdx: number of elements |
| // rax: start of next object |
| __ LoadRoot(rcx, Heap::kFixedArrayMapRootIndex); |
| __ movq(Operand(rdi, HeapObject::kMapOffset), rcx); // setup the map |
| __ Integer32ToSmi(rdx, rdx); |
| __ movq(Operand(rdi, FixedArray::kLengthOffset), rdx); // and length |
| |
| // Initialize the fields to undefined. |
| // rbx: JSObject |
| // rdi: FixedArray |
| // rax: start of next object |
| // rdx: number of elements |
| { Label loop, entry; |
| __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); |
| __ lea(rcx, Operand(rdi, FixedArray::kHeaderSize)); |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ movq(Operand(rcx, 0), rdx); |
| __ addq(rcx, Immediate(kPointerSize)); |
| __ bind(&entry); |
| __ cmpq(rcx, rax); |
| __ j(below, &loop); |
| } |
| |
| // Store the initialized FixedArray into the properties field of |
| // the JSObject |
| // rbx: JSObject |
| // rdi: FixedArray |
| __ or_(rdi, Immediate(kHeapObjectTag)); // add the heap tag |
| __ movq(FieldOperand(rbx, JSObject::kPropertiesOffset), rdi); |
| |
| |
| // Continue with JSObject being successfully allocated |
| // rbx: JSObject |
| __ jmp(&allocated); |
| |
| // Undo the setting of the new top so that the heap is verifiable. For |
| // example, the map's unused properties potentially do not match the |
| // allocated objects unused properties. |
| // rbx: JSObject (previous new top) |
| __ bind(&undo_allocation); |
| __ UndoAllocationInNewSpace(rbx); |
| } |
| |
| // Allocate the new receiver object using the runtime call. |
| // rdi: function (constructor) |
| __ bind(&rt_call); |
| // Must restore rdi (constructor) before calling runtime. |
| __ movq(rdi, Operand(rsp, 0)); |
| __ push(rdi); |
| __ CallRuntime(Runtime::kNewObject, 1); |
| __ movq(rbx, rax); // store result in rbx |
| |
| // New object allocated. |
| // rbx: newly allocated object |
| __ bind(&allocated); |
| // Retrieve the function from the stack. |
| __ pop(rdi); |
| |
| // Retrieve smi-tagged arguments count from the stack. |
| __ movq(rax, Operand(rsp, 0)); |
| __ SmiToInteger32(rax, rax); |
| |
| // Push the allocated receiver to the stack. We need two copies |
| // because we may have to return the original one and the calling |
| // conventions dictate that the called function pops the receiver. |
| __ push(rbx); |
| __ push(rbx); |
| |
| // Setup pointer to last argument. |
| __ lea(rbx, Operand(rbp, StandardFrameConstants::kCallerSPOffset)); |
| |
| // Copy arguments and receiver to the expression stack. |
| Label loop, entry; |
| __ movq(rcx, rax); |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ push(Operand(rbx, rcx, times_pointer_size, 0)); |
| __ bind(&entry); |
| __ decq(rcx); |
| __ j(greater_equal, &loop); |
| |
| // Call the function. |
| if (is_api_function) { |
| __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); |
| Handle<Code> code = Handle<Code>( |
| Builtins::builtin(Builtins::HandleApiCallConstruct)); |
| ParameterCount expected(0); |
| __ InvokeCode(code, expected, expected, |
| RelocInfo::CODE_TARGET, CALL_FUNCTION); |
| } else { |
| ParameterCount actual(rax); |
| __ InvokeFunction(rdi, actual, CALL_FUNCTION); |
| } |
| |
| // Restore context from the frame. |
| __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); |
| |
| // If the result is an object (in the ECMA sense), we should get rid |
| // of the receiver and use the result; see ECMA-262 section 13.2.2-7 |
| // on page 74. |
| Label use_receiver, exit; |
| // If the result is a smi, it is *not* an object in the ECMA sense. |
| __ JumpIfSmi(rax, &use_receiver); |
| |
| // If the type of the result (stored in its map) is less than |
| // FIRST_JS_OBJECT_TYPE, it is not an object in the ECMA sense. |
| __ CmpObjectType(rax, FIRST_JS_OBJECT_TYPE, rcx); |
| __ j(above_equal, &exit); |
| |
| // Throw away the result of the constructor invocation and use the |
| // on-stack receiver as the result. |
| __ bind(&use_receiver); |
| __ movq(rax, Operand(rsp, 0)); |
| |
| // Restore the arguments count and leave the construct frame. |
| __ bind(&exit); |
| __ movq(rbx, Operand(rsp, kPointerSize)); // get arguments count |
| __ LeaveConstructFrame(); |
| |
| // Remove caller arguments from the stack and return. |
| __ pop(rcx); |
| SmiIndex index = masm->SmiToIndex(rbx, rbx, kPointerSizeLog2); |
| __ lea(rsp, Operand(rsp, index.reg, index.scale, 1 * kPointerSize)); |
| __ push(rcx); |
| __ IncrementCounter(&Counters::constructed_objects, 1); |
| __ ret(0); |
| } |
| |
| |
| void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { |
| Generate_JSConstructStubHelper(masm, false); |
| } |
| |
| |
| void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { |
| Generate_JSConstructStubHelper(masm, true); |
| } |
| |
| |
| static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, |
| bool is_construct) { |
| // Expects five C++ function parameters. |
| // - Address entry (ignored) |
| // - JSFunction* function ( |
| // - Object* receiver |
| // - int argc |
| // - Object*** argv |
| // (see Handle::Invoke in execution.cc). |
| |
| // Platform specific argument handling. After this, the stack contains |
| // an internal frame and the pushed function and receiver, and |
| // register rax and rbx holds the argument count and argument array, |
| // while rdi holds the function pointer and rsi the context. |
| #ifdef _WIN64 |
| // MSVC parameters in: |
| // rcx : entry (ignored) |
| // rdx : function |
| // r8 : receiver |
| // r9 : argc |
| // [rsp+0x20] : argv |
| |
| // Clear the context before we push it when entering the JS frame. |
| __ xor_(rsi, rsi); |
| __ EnterInternalFrame(); |
| |
| // Load the function context into rsi. |
| __ movq(rsi, FieldOperand(rdx, JSFunction::kContextOffset)); |
| |
| // Push the function and the receiver onto the stack. |
| __ push(rdx); |
| __ push(r8); |
| |
| // Load the number of arguments and setup pointer to the arguments. |
| __ movq(rax, r9); |
| // Load the previous frame pointer to access C argument on stack |
| __ movq(kScratchRegister, Operand(rbp, 0)); |
| __ movq(rbx, Operand(kScratchRegister, EntryFrameConstants::kArgvOffset)); |
| // Load the function pointer into rdi. |
| __ movq(rdi, rdx); |
| #else // _WIN64 |
| // GCC parameters in: |
| // rdi : entry (ignored) |
| // rsi : function |
| // rdx : receiver |
| // rcx : argc |
| // r8 : argv |
| |
| __ movq(rdi, rsi); |
| // rdi : function |
| |
| // Clear the context before we push it when entering the JS frame. |
| __ xor_(rsi, rsi); |
| // Enter an internal frame. |
| __ EnterInternalFrame(); |
| |
| // Push the function and receiver and setup the context. |
| __ push(rdi); |
| __ push(rdx); |
| __ movq(rsi, FieldOperand(rdi, JSFunction::kContextOffset)); |
| |
| // Load the number of arguments and setup pointer to the arguments. |
| __ movq(rax, rcx); |
| __ movq(rbx, r8); |
| #endif // _WIN64 |
| |
| // Current stack contents: |
| // [rsp + 2 * kPointerSize ... ]: Internal frame |
| // [rsp + kPointerSize] : function |
| // [rsp] : receiver |
| // Current register contents: |
| // rax : argc |
| // rbx : argv |
| // rsi : context |
| // rdi : function |
| |
| // Copy arguments to the stack in a loop. |
| // Register rbx points to array of pointers to handle locations. |
| // Push the values of these handles. |
| Label loop, entry; |
| __ xor_(rcx, rcx); // Set loop variable to 0. |
| __ jmp(&entry); |
| __ bind(&loop); |
| __ movq(kScratchRegister, Operand(rbx, rcx, times_pointer_size, 0)); |
| __ push(Operand(kScratchRegister, 0)); // dereference handle |
| __ addq(rcx, Immediate(1)); |
| __ bind(&entry); |
| __ cmpq(rcx, rax); |
| __ j(not_equal, &loop); |
| |
| // Invoke the code. |
| if (is_construct) { |
| // Expects rdi to hold function pointer. |
| __ Call(Handle<Code>(Builtins::builtin(Builtins::JSConstructCall)), |
| RelocInfo::CODE_TARGET); |
| } else { |
| ParameterCount actual(rax); |
| // Function must be in rdi. |
| __ InvokeFunction(rdi, actual, CALL_FUNCTION); |
| } |
| |
| // Exit the JS frame. Notice that this also removes the empty |
| // context and the function left on the stack by the code |
| // invocation. |
| __ LeaveInternalFrame(); |
| // TODO(X64): Is argument correct? Is there a receiver to remove? |
| __ ret(1 * kPointerSize); // remove receiver |
| } |
| |
| |
| void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, false); |
| } |
| |
| |
| void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { |
| Generate_JSEntryTrampolineHelper(masm, true); |
| } |
| |
| |
| void Builtins::Generate_LazyCompile(MacroAssembler* masm) { |
| // Enter an internal frame. |
| __ EnterInternalFrame(); |
| |
| // Push a copy of the function onto the stack. |
| __ push(rdi); |
| |
| __ push(rdi); // Function is also the parameter to the runtime call. |
| __ CallRuntime(Runtime::kLazyCompile, 1); |
| __ pop(rdi); |
| |
| // Tear down temporary frame. |
| __ LeaveInternalFrame(); |
| |
| // Do a tail-call of the compiled function. |
| __ lea(rcx, FieldOperand(rax, Code::kHeaderSize)); |
| __ jmp(rcx); |
| } |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_X64 |