blob: 10c327aa143e514fc7698e6a8c095bed30f5e0bb [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_X64)
#include "codegen-inl.h"
#include "register-allocator-inl.h"
#include "scopes.h"
#include "stub-cache.h"
#include "virtual-frame-inl.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm())
void VirtualFrame::Enter() {
// Registers live on entry to a JS frame:
// rsp: stack pointer, points to return address from this function.
// rbp: base pointer, points to previous JS, ArgumentsAdaptor, or
// Trampoline frame.
// rsi: context of this function call.
// rdi: pointer to this function object.
Comment cmnt(masm(), "[ Enter JS frame");
#ifdef DEBUG
if (FLAG_debug_code) {
// Verify that rdi contains a JS function. The following code
// relies on rax being available for use.
Condition not_smi = NegateCondition(masm()->CheckSmi(rdi));
__ Check(not_smi,
"VirtualFrame::Enter - rdi is not a function (smi check).");
__ CmpObjectType(rdi, JS_FUNCTION_TYPE, rax);
__ Check(equal,
"VirtualFrame::Enter - rdi is not a function (map check).");
}
#endif
EmitPush(rbp);
__ movq(rbp, rsp);
// Store the context in the frame. The context is kept in rsi and a
// copy is stored in the frame. The external reference to rsi
// remains.
EmitPush(rsi);
// Store the function in the frame. The frame owns the register
// reference now (ie, it can keep it in rdi or spill it later).
Push(rdi);
SyncElementAt(element_count() - 1);
cgen()->allocator()->Unuse(rdi);
}
void VirtualFrame::Exit() {
Comment cmnt(masm(), "[ Exit JS frame");
// Record the location of the JS exit code for patching when setting
// break point.
__ RecordJSReturn();
// Avoid using the leave instruction here, because it is too
// short. We need the return sequence to be a least the size of a
// call instruction to support patching the exit code in the
// debugger. See GenerateReturnSequence for the full return sequence.
// TODO(X64): A patched call will be very long now. Make sure we
// have enough room.
__ movq(rsp, rbp);
stack_pointer_ = frame_pointer();
for (int i = element_count() - 1; i > stack_pointer_; i--) {
FrameElement last = elements_.RemoveLast();
if (last.is_register()) {
Unuse(last.reg());
}
}
EmitPop(rbp);
}
void VirtualFrame::AllocateStackSlots() {
int count = local_count();
if (count > 0) {
Comment cmnt(masm(), "[ Allocate space for locals");
// The locals are initialized to a constant (the undefined value), but
// we sync them with the actual frame to allocate space for spilling
// them later. First sync everything above the stack pointer so we can
// use pushes to allocate and initialize the locals.
SyncRange(stack_pointer_ + 1, element_count() - 1);
Handle<Object> undefined = FACTORY->undefined_value();
FrameElement initial_value =
FrameElement::ConstantElement(undefined, FrameElement::SYNCED);
if (count < kLocalVarBound) {
// For fewer locals the unrolled loop is more compact.
// Hope for one of the first eight registers, where the push operation
// takes only one byte (kScratchRegister needs the REX.W bit).
Result tmp = cgen()->allocator()->Allocate();
ASSERT(tmp.is_valid());
__ movq(tmp.reg(), undefined, RelocInfo::EMBEDDED_OBJECT);
for (int i = 0; i < count; i++) {
__ push(tmp.reg());
}
} else {
// For more locals a loop in generated code is more compact.
Label alloc_locals_loop;
Result cnt = cgen()->allocator()->Allocate();
ASSERT(cnt.is_valid());
__ movq(kScratchRegister, undefined, RelocInfo::EMBEDDED_OBJECT);
#ifdef DEBUG
Label loop_size;
__ bind(&loop_size);
#endif
if (is_uint8(count)) {
// Loading imm8 is shorter than loading imm32.
// Loading only partial byte register, and using decb below.
__ movb(cnt.reg(), Immediate(count));
} else {
__ movl(cnt.reg(), Immediate(count));
}
__ bind(&alloc_locals_loop);
__ push(kScratchRegister);
if (is_uint8(count)) {
__ decb(cnt.reg());
} else {
__ decl(cnt.reg());
}
__ j(not_zero, &alloc_locals_loop);
#ifdef DEBUG
CHECK(masm()->SizeOfCodeGeneratedSince(&loop_size) < kLocalVarBound);
#endif
}
for (int i = 0; i < count; i++) {
elements_.Add(initial_value);
stack_pointer_++;
}
}
}
void VirtualFrame::SaveContextRegister() {
ASSERT(elements_[context_index()].is_memory());
__ movq(Operand(rbp, fp_relative(context_index())), rsi);
}
void VirtualFrame::RestoreContextRegister() {
ASSERT(elements_[context_index()].is_memory());
__ movq(rsi, Operand(rbp, fp_relative(context_index())));
}
void VirtualFrame::PushReceiverSlotAddress() {
Result temp = cgen()->allocator()->Allocate();
ASSERT(temp.is_valid());
__ lea(temp.reg(), ParameterAt(-1));
Push(&temp);
}
void VirtualFrame::EmitPop(Register reg) {
ASSERT(stack_pointer_ == element_count() - 1);
stack_pointer_--;
elements_.RemoveLast();
__ pop(reg);
}
void VirtualFrame::EmitPop(const Operand& operand) {
ASSERT(stack_pointer_ == element_count() - 1);
stack_pointer_--;
elements_.RemoveLast();
__ pop(operand);
}
void VirtualFrame::EmitPush(Register reg, TypeInfo info) {
ASSERT(stack_pointer_ == element_count() - 1);
elements_.Add(FrameElement::MemoryElement(info));
stack_pointer_++;
__ push(reg);
}
void VirtualFrame::EmitPush(const Operand& operand, TypeInfo info) {
ASSERT(stack_pointer_ == element_count() - 1);
elements_.Add(FrameElement::MemoryElement(info));
stack_pointer_++;
__ push(operand);
}
void VirtualFrame::EmitPush(Immediate immediate, TypeInfo info) {
ASSERT(stack_pointer_ == element_count() - 1);
elements_.Add(FrameElement::MemoryElement(info));
stack_pointer_++;
__ push(immediate);
}
void VirtualFrame::EmitPush(Smi* smi_value) {
ASSERT(stack_pointer_ == element_count() - 1);
elements_.Add(FrameElement::MemoryElement(TypeInfo::Smi()));
stack_pointer_++;
__ Push(smi_value);
}
void VirtualFrame::EmitPush(Handle<Object> value) {
ASSERT(stack_pointer_ == element_count() - 1);
TypeInfo info = TypeInfo::TypeFromValue(value);
elements_.Add(FrameElement::MemoryElement(info));
stack_pointer_++;
__ Push(value);
}
void VirtualFrame::EmitPush(Heap::RootListIndex index, TypeInfo info) {
ASSERT(stack_pointer_ == element_count() - 1);
elements_.Add(FrameElement::MemoryElement(info));
stack_pointer_++;
__ PushRoot(index);
}
void VirtualFrame::Push(Expression* expr) {
ASSERT(expr->IsTrivial());
Literal* lit = expr->AsLiteral();
if (lit != NULL) {
Push(lit->handle());
return;
}
VariableProxy* proxy = expr->AsVariableProxy();
if (proxy != NULL) {
Slot* slot = proxy->var()->AsSlot();
if (slot->type() == Slot::LOCAL) {
PushLocalAt(slot->index());
return;
}
if (slot->type() == Slot::PARAMETER) {
PushParameterAt(slot->index());
return;
}
}
UNREACHABLE();
}
void VirtualFrame::Push(Handle<Object> value) {
if (ConstantPoolOverflowed()) {
Result temp = cgen()->allocator()->Allocate();
ASSERT(temp.is_valid());
if (value->IsSmi()) {
__ Move(temp.reg(), Smi::cast(*value));
} else {
__ movq(temp.reg(), value, RelocInfo::EMBEDDED_OBJECT);
}
Push(&temp);
} else {
FrameElement element =
FrameElement::ConstantElement(value, FrameElement::NOT_SYNCED);
elements_.Add(element);
}
}
void VirtualFrame::Drop(int count) {
ASSERT(count >= 0);
ASSERT(height() >= count);
int num_virtual_elements = (element_count() - 1) - stack_pointer_;
// Emit code to lower the stack pointer if necessary.
if (num_virtual_elements < count) {
int num_dropped = count - num_virtual_elements;
stack_pointer_ -= num_dropped;
__ addq(rsp, Immediate(num_dropped * kPointerSize));
}
// Discard elements from the virtual frame and free any registers.
for (int i = 0; i < count; i++) {
FrameElement dropped = elements_.RemoveLast();
if (dropped.is_register()) {
Unuse(dropped.reg());
}
}
}
int VirtualFrame::InvalidateFrameSlotAt(int index) {
FrameElement original = elements_[index];
// Is this element the backing store of any copies?
int new_backing_index = kIllegalIndex;
if (original.is_copied()) {
// Verify it is copied, and find first copy.
for (int i = index + 1; i < element_count(); i++) {
if (elements_[i].is_copy() && elements_[i].index() == index) {
new_backing_index = i;
break;
}
}
}
if (new_backing_index == kIllegalIndex) {
// No copies found, return kIllegalIndex.
if (original.is_register()) {
Unuse(original.reg());
}
elements_[index] = FrameElement::InvalidElement();
return kIllegalIndex;
}
// This is the backing store of copies.
Register backing_reg;
if (original.is_memory()) {
Result fresh = cgen()->allocator()->Allocate();
ASSERT(fresh.is_valid());
Use(fresh.reg(), new_backing_index);
backing_reg = fresh.reg();
__ movq(backing_reg, Operand(rbp, fp_relative(index)));
} else {
// The original was in a register.
backing_reg = original.reg();
set_register_location(backing_reg, new_backing_index);
}
// Invalidate the element at index.
elements_[index] = FrameElement::InvalidElement();
// Set the new backing element.
if (elements_[new_backing_index].is_synced()) {
elements_[new_backing_index] =
FrameElement::RegisterElement(backing_reg,
FrameElement::SYNCED,
original.type_info());
} else {
elements_[new_backing_index] =
FrameElement::RegisterElement(backing_reg,
FrameElement::NOT_SYNCED,
original.type_info());
}
// Update the other copies.
for (int i = new_backing_index + 1; i < element_count(); i++) {
if (elements_[i].is_copy() && elements_[i].index() == index) {
elements_[i].set_index(new_backing_index);
elements_[new_backing_index].set_copied();
}
}
return new_backing_index;
}
void VirtualFrame::TakeFrameSlotAt(int index) {
ASSERT(index >= 0);
ASSERT(index <= element_count());
FrameElement original = elements_[index];
int new_backing_store_index = InvalidateFrameSlotAt(index);
if (new_backing_store_index != kIllegalIndex) {
elements_.Add(CopyElementAt(new_backing_store_index));
return;
}
switch (original.type()) {
case FrameElement::MEMORY: {
// Emit code to load the original element's data into a register.
// Push that register as a FrameElement on top of the frame.
Result fresh = cgen()->allocator()->Allocate();
ASSERT(fresh.is_valid());
FrameElement new_element =
FrameElement::RegisterElement(fresh.reg(),
FrameElement::NOT_SYNCED,
original.type_info());
Use(fresh.reg(), element_count());
elements_.Add(new_element);
__ movq(fresh.reg(), Operand(rbp, fp_relative(index)));
break;
}
case FrameElement::REGISTER:
Use(original.reg(), element_count());
// Fall through.
case FrameElement::CONSTANT:
case FrameElement::COPY:
original.clear_sync();
elements_.Add(original);
break;
case FrameElement::INVALID:
UNREACHABLE();
break;
}
}
void VirtualFrame::StoreToFrameSlotAt(int index) {
// Store the value on top of the frame to the virtual frame slot at
// a given index. The value on top of the frame is left in place.
// This is a duplicating operation, so it can create copies.
ASSERT(index >= 0);
ASSERT(index < element_count());
int top_index = element_count() - 1;
FrameElement top = elements_[top_index];
FrameElement original = elements_[index];
if (top.is_copy() && top.index() == index) return;
ASSERT(top.is_valid());
InvalidateFrameSlotAt(index);
// InvalidateFrameSlotAt can potentially change any frame element, due
// to spilling registers to allocate temporaries in order to preserve
// the copy-on-write semantics of aliased elements. Reload top from
// the frame.
top = elements_[top_index];
if (top.is_copy()) {
// There are two cases based on the relative positions of the
// stored-to slot and the backing slot of the top element.
int backing_index = top.index();
ASSERT(backing_index != index);
if (backing_index < index) {
// 1. The top element is a copy of a slot below the stored-to
// slot. The stored-to slot becomes an unsynced copy of that
// same backing slot.
elements_[index] = CopyElementAt(backing_index);
} else {
// 2. The top element is a copy of a slot above the stored-to
// slot. The stored-to slot becomes the new (unsynced) backing
// slot and both the top element and the element at the former
// backing slot become copies of it. The sync state of the top
// and former backing elements is preserved.
FrameElement backing_element = elements_[backing_index];
ASSERT(backing_element.is_memory() || backing_element.is_register());
if (backing_element.is_memory()) {
// Because sets of copies are canonicalized to be backed by
// their lowest frame element, and because memory frame
// elements are backed by the corresponding stack address, we
// have to move the actual value down in the stack.
//
// TODO(209): considering allocating the stored-to slot to the
// temp register. Alternatively, allow copies to appear in
// any order in the frame and lazily move the value down to
// the slot.
__ movq(kScratchRegister, Operand(rbp, fp_relative(backing_index)));
__ movq(Operand(rbp, fp_relative(index)), kScratchRegister);
} else {
set_register_location(backing_element.reg(), index);
if (backing_element.is_synced()) {
// If the element is a register, we will not actually move
// anything on the stack but only update the virtual frame
// element.
backing_element.clear_sync();
}
}
elements_[index] = backing_element;
// The old backing element becomes a copy of the new backing
// element.
FrameElement new_element = CopyElementAt(index);
elements_[backing_index] = new_element;
if (backing_element.is_synced()) {
elements_[backing_index].set_sync();
}
// All the copies of the old backing element (including the top
// element) become copies of the new backing element.
for (int i = backing_index + 1; i < element_count(); i++) {
if (elements_[i].is_copy() && elements_[i].index() == backing_index) {
elements_[i].set_index(index);
}
}
}
return;
}
// Move the top element to the stored-to slot and replace it (the
// top element) with a copy.
elements_[index] = top;
if (top.is_memory()) {
// TODO(209): consider allocating the stored-to slot to the temp
// register. Alternatively, allow copies to appear in any order
// in the frame and lazily move the value down to the slot.
FrameElement new_top = CopyElementAt(index);
new_top.set_sync();
elements_[top_index] = new_top;
// The sync state of the former top element is correct (synced).
// Emit code to move the value down in the frame.
__ movq(kScratchRegister, Operand(rsp, 0));
__ movq(Operand(rbp, fp_relative(index)), kScratchRegister);
} else if (top.is_register()) {
set_register_location(top.reg(), index);
// The stored-to slot has the (unsynced) register reference and
// the top element becomes a copy. The sync state of the top is
// preserved.
FrameElement new_top = CopyElementAt(index);
if (top.is_synced()) {
new_top.set_sync();
elements_[index].clear_sync();
}
elements_[top_index] = new_top;
} else {
// The stored-to slot holds the same value as the top but
// unsynced. (We do not have copies of constants yet.)
ASSERT(top.is_constant());
elements_[index].clear_sync();
}
}
void VirtualFrame::MakeMergable() {
for (int i = 0; i < element_count(); i++) {
FrameElement element = elements_[i];
// In all cases we have to reset the number type information
// to unknown for a mergable frame because of incoming back edges.
if (element.is_constant() || element.is_copy()) {
if (element.is_synced()) {
// Just spill.
elements_[i] = FrameElement::MemoryElement(TypeInfo::Unknown());
} else {
// Allocate to a register.
FrameElement backing_element; // Invalid if not a copy.
if (element.is_copy()) {
backing_element = elements_[element.index()];
}
Result fresh = cgen()->allocator()->Allocate();
ASSERT(fresh.is_valid()); // A register was spilled if all were in use.
elements_[i] =
FrameElement::RegisterElement(fresh.reg(),
FrameElement::NOT_SYNCED,
TypeInfo::Unknown());
Use(fresh.reg(), i);
// Emit a move.
if (element.is_constant()) {
__ Move(fresh.reg(), element.handle());
} else {
ASSERT(element.is_copy());
// Copies are only backed by register or memory locations.
if (backing_element.is_register()) {
// The backing store may have been spilled by allocating,
// but that's OK. If it was, the value is right where we
// want it.
if (!fresh.reg().is(backing_element.reg())) {
__ movq(fresh.reg(), backing_element.reg());
}
} else {
ASSERT(backing_element.is_memory());
__ movq(fresh.reg(), Operand(rbp, fp_relative(element.index())));
}
}
}
// No need to set the copied flag --- there are no copies.
} else {
// Clear the copy flag of non-constant, non-copy elements.
// They cannot be copied because copies are not allowed.
// The copy flag is not relied on before the end of this loop,
// including when registers are spilled.
elements_[i].clear_copied();
elements_[i].set_type_info(TypeInfo::Unknown());
}
}
}
void VirtualFrame::MergeTo(VirtualFrame* expected) {
Comment cmnt(masm(), "[ Merge frame");
// We should always be merging the code generator's current frame to an
// expected frame.
ASSERT(cgen()->frame() == this);
// Adjust the stack pointer upward (toward the top of the virtual
// frame) if necessary.
if (stack_pointer_ < expected->stack_pointer_) {
int difference = expected->stack_pointer_ - stack_pointer_;
stack_pointer_ = expected->stack_pointer_;
__ subq(rsp, Immediate(difference * kPointerSize));
}
MergeMoveRegistersToMemory(expected);
MergeMoveRegistersToRegisters(expected);
MergeMoveMemoryToRegisters(expected);
// Adjust the stack pointer downward if necessary.
if (stack_pointer_ > expected->stack_pointer_) {
int difference = stack_pointer_ - expected->stack_pointer_;
stack_pointer_ = expected->stack_pointer_;
__ addq(rsp, Immediate(difference * kPointerSize));
}
// At this point, the frames should be identical.
ASSERT(Equals(expected));
}
void VirtualFrame::MergeMoveRegistersToMemory(VirtualFrame* expected) {
ASSERT(stack_pointer_ >= expected->stack_pointer_);
// Move registers, constants, and copies to memory. Perform moves
// from the top downward in the frame in order to leave the backing
// stores of copies in registers.
for (int i = element_count() - 1; i >= 0; i--) {
FrameElement target = expected->elements_[i];
if (target.is_register()) continue; // Handle registers later.
if (target.is_memory()) {
FrameElement source = elements_[i];
switch (source.type()) {
case FrameElement::INVALID:
// Not a legal merge move.
UNREACHABLE();
break;
case FrameElement::MEMORY:
// Already in place.
break;
case FrameElement::REGISTER:
Unuse(source.reg());
if (!source.is_synced()) {
__ movq(Operand(rbp, fp_relative(i)), source.reg());
}
break;
case FrameElement::CONSTANT:
if (!source.is_synced()) {
__ Move(Operand(rbp, fp_relative(i)), source.handle());
}
break;
case FrameElement::COPY:
if (!source.is_synced()) {
int backing_index = source.index();
FrameElement backing_element = elements_[backing_index];
if (backing_element.is_memory()) {
__ movq(kScratchRegister,
Operand(rbp, fp_relative(backing_index)));
__ movq(Operand(rbp, fp_relative(i)), kScratchRegister);
} else {
ASSERT(backing_element.is_register());
__ movq(Operand(rbp, fp_relative(i)), backing_element.reg());
}
}
break;
}
}
elements_[i] = target;
}
}
void VirtualFrame::MergeMoveRegistersToRegisters(VirtualFrame* expected) {
// We have already done X-to-memory moves.
ASSERT(stack_pointer_ >= expected->stack_pointer_);
for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
// Move the right value into register i if it is currently in a register.
int index = expected->register_location(i);
int use_index = register_location(i);
// Skip if register i is unused in the target or else if source is
// not a register (this is not a register-to-register move).
if (index == kIllegalIndex || !elements_[index].is_register()) continue;
Register target = RegisterAllocator::ToRegister(i);
Register source = elements_[index].reg();
if (index != use_index) {
if (use_index == kIllegalIndex) { // Target is currently unused.
// Copy contents of source from source to target.
// Set frame element register to target.
Use(target, index);
Unuse(source);
__ movq(target, source);
} else {
// Exchange contents of registers source and target.
// Nothing except the register backing use_index has changed.
elements_[use_index].set_reg(source);
set_register_location(target, index);
set_register_location(source, use_index);
__ xchg(source, target);
}
}
if (!elements_[index].is_synced() &&
expected->elements_[index].is_synced()) {
__ movq(Operand(rbp, fp_relative(index)), target);
}
elements_[index] = expected->elements_[index];
}
}
void VirtualFrame::MergeMoveMemoryToRegisters(VirtualFrame* expected) {
// Move memory, constants, and copies to registers. This is the
// final step and since it is not done from the bottom up, but in
// register code order, we have special code to ensure that the backing
// elements of copies are in their correct locations when we
// encounter the copies.
for (int i = 0; i < RegisterAllocator::kNumRegisters; i++) {
int index = expected->register_location(i);
if (index != kIllegalIndex) {
FrameElement source = elements_[index];
FrameElement target = expected->elements_[index];
Register target_reg = RegisterAllocator::ToRegister(i);
ASSERT(target.reg().is(target_reg));
switch (source.type()) {
case FrameElement::INVALID: // Fall through.
UNREACHABLE();
break;
case FrameElement::REGISTER:
ASSERT(source.Equals(target));
// Go to next iteration. Skips Use(target_reg) and syncing
// below. It is safe to skip syncing because a target
// register frame element would only be synced if all source
// elements were.
continue;
break;
case FrameElement::MEMORY:
ASSERT(index <= stack_pointer_);
__ movq(target_reg, Operand(rbp, fp_relative(index)));
break;
case FrameElement::CONSTANT:
__ Move(target_reg, source.handle());
break;
case FrameElement::COPY: {
int backing_index = source.index();
FrameElement backing = elements_[backing_index];
ASSERT(backing.is_memory() || backing.is_register());
if (backing.is_memory()) {
ASSERT(backing_index <= stack_pointer_);
// Code optimization if backing store should also move
// to a register: move backing store to its register first.
if (expected->elements_[backing_index].is_register()) {
FrameElement new_backing = expected->elements_[backing_index];
Register new_backing_reg = new_backing.reg();
ASSERT(!is_used(new_backing_reg));
elements_[backing_index] = new_backing;
Use(new_backing_reg, backing_index);
__ movq(new_backing_reg,
Operand(rbp, fp_relative(backing_index)));
__ movq(target_reg, new_backing_reg);
} else {
__ movq(target_reg, Operand(rbp, fp_relative(backing_index)));
}
} else {
__ movq(target_reg, backing.reg());
}
}
}
// Ensure the proper sync state.
if (target.is_synced() && !source.is_synced()) {
__ movq(Operand(rbp, fp_relative(index)), target_reg);
}
Use(target_reg, index);
elements_[index] = target;
}
}
}
Result VirtualFrame::Pop() {
FrameElement element = elements_.RemoveLast();
int index = element_count();
ASSERT(element.is_valid());
// Get number type information of the result.
TypeInfo info;
if (!element.is_copy()) {
info = element.type_info();
} else {
info = elements_[element.index()].type_info();
}
bool pop_needed = (stack_pointer_ == index);
if (pop_needed) {
stack_pointer_--;
if (element.is_memory()) {
Result temp = cgen()->allocator()->Allocate();
ASSERT(temp.is_valid());
__ pop(temp.reg());
temp.set_type_info(info);
return temp;
}
__ addq(rsp, Immediate(kPointerSize));
}
ASSERT(!element.is_memory());
// The top element is a register, constant, or a copy. Unuse
// registers and follow copies to their backing store.
if (element.is_register()) {
Unuse(element.reg());
} else if (element.is_copy()) {
ASSERT(element.index() < index);
index = element.index();
element = elements_[index];
}
ASSERT(!element.is_copy());
// The element is memory, a register, or a constant.
if (element.is_memory()) {
// Memory elements could only be the backing store of a copy.
// Allocate the original to a register.
ASSERT(index <= stack_pointer_);
Result temp = cgen()->allocator()->Allocate();
ASSERT(temp.is_valid());
Use(temp.reg(), index);
FrameElement new_element =
FrameElement::RegisterElement(temp.reg(),
FrameElement::SYNCED,
element.type_info());
// Preserve the copy flag on the element.
if (element.is_copied()) new_element.set_copied();
elements_[index] = new_element;
__ movq(temp.reg(), Operand(rbp, fp_relative(index)));
return Result(temp.reg(), info);
} else if (element.is_register()) {
return Result(element.reg(), info);
} else {
ASSERT(element.is_constant());
return Result(element.handle());
}
}
Result VirtualFrame::RawCallStub(CodeStub* stub) {
ASSERT(cgen()->HasValidEntryRegisters());
__ CallStub(stub);
Result result = cgen()->allocator()->Allocate(rax);
ASSERT(result.is_valid());
return result;
}
Result VirtualFrame::CallStub(CodeStub* stub, Result* arg) {
PrepareForCall(0, 0);
arg->ToRegister(rax);
arg->Unuse();
return RawCallStub(stub);
}
Result VirtualFrame::CallStub(CodeStub* stub, Result* arg0, Result* arg1) {
PrepareForCall(0, 0);
if (arg0->is_register() && arg0->reg().is(rax)) {
if (arg1->is_register() && arg1->reg().is(rdx)) {
// Wrong registers.
__ xchg(rax, rdx);
} else {
// Register rdx is free for arg0, which frees rax for arg1.
arg0->ToRegister(rdx);
arg1->ToRegister(rax);
}
} else {
// Register rax is free for arg1, which guarantees rdx is free for
// arg0.
arg1->ToRegister(rax);
arg0->ToRegister(rdx);
}
arg0->Unuse();
arg1->Unuse();
return RawCallStub(stub);
}
Result VirtualFrame::CallJSFunction(int arg_count) {
Result function = Pop();
// InvokeFunction requires function in rdi. Move it in there.
function.ToRegister(rdi);
function.Unuse();
// +1 for receiver.
PrepareForCall(arg_count + 1, arg_count + 1);
ASSERT(cgen()->HasValidEntryRegisters());
ParameterCount count(arg_count);
__ InvokeFunction(rdi, count, CALL_FUNCTION);
RestoreContextRegister();
Result result = cgen()->allocator()->Allocate(rax);
ASSERT(result.is_valid());
return result;
}
void VirtualFrame::SyncElementBelowStackPointer(int index) {
// Emit code to write elements below the stack pointer to their
// (already allocated) stack address.
ASSERT(index <= stack_pointer_);
FrameElement element = elements_[index];
ASSERT(!element.is_synced());
switch (element.type()) {
case FrameElement::INVALID:
break;
case FrameElement::MEMORY:
// This function should not be called with synced elements.
// (memory elements are always synced).
UNREACHABLE();
break;
case FrameElement::REGISTER:
__ movq(Operand(rbp, fp_relative(index)), element.reg());
break;
case FrameElement::CONSTANT:
__ Move(Operand(rbp, fp_relative(index)), element.handle());
break;
case FrameElement::COPY: {
int backing_index = element.index();
FrameElement backing_element = elements_[backing_index];
if (backing_element.is_memory()) {
__ movq(kScratchRegister, Operand(rbp, fp_relative(backing_index)));
__ movq(Operand(rbp, fp_relative(index)), kScratchRegister);
} else {
ASSERT(backing_element.is_register());
__ movq(Operand(rbp, fp_relative(index)), backing_element.reg());
}
break;
}
}
elements_[index].set_sync();
}
void VirtualFrame::SyncElementByPushing(int index) {
// Sync an element of the frame that is just above the stack pointer
// by pushing it.
ASSERT(index == stack_pointer_ + 1);
stack_pointer_++;
FrameElement element = elements_[index];
switch (element.type()) {
case FrameElement::INVALID:
__ Push(Smi::FromInt(0));
break;
case FrameElement::MEMORY:
// No memory elements exist above the stack pointer.
UNREACHABLE();
break;
case FrameElement::REGISTER:
__ push(element.reg());
break;
case FrameElement::CONSTANT:
__ Move(kScratchRegister, element.handle());
__ push(kScratchRegister);
break;
case FrameElement::COPY: {
int backing_index = element.index();
FrameElement backing = elements_[backing_index];
ASSERT(backing.is_memory() || backing.is_register());
if (backing.is_memory()) {
__ push(Operand(rbp, fp_relative(backing_index)));
} else {
__ push(backing.reg());
}
break;
}
}
elements_[index].set_sync();
}
// Clear the dirty bits for the range of elements in
// [min(stack_pointer_ + 1,begin), end].
void VirtualFrame::SyncRange(int begin, int end) {
ASSERT(begin >= 0);
ASSERT(end < element_count());
// Sync elements below the range if they have not been materialized
// on the stack.
int start = Min(begin, stack_pointer_ + 1);
int end_or_stack_pointer = Min(stack_pointer_, end);
// Emit normal push instructions for elements above stack pointer
// and use mov instructions if we are below stack pointer.
int i = start;
while (i <= end_or_stack_pointer) {
if (!elements_[i].is_synced()) SyncElementBelowStackPointer(i);
i++;
}
while (i <= end) {
SyncElementByPushing(i);
i++;
}
}
//------------------------------------------------------------------------------
// Virtual frame stub and IC calling functions.
Result VirtualFrame::CallRuntime(const Runtime::Function* f, int arg_count) {
PrepareForCall(arg_count, arg_count);
ASSERT(cgen()->HasValidEntryRegisters());
__ CallRuntime(f, arg_count);
Result result = cgen()->allocator()->Allocate(rax);
ASSERT(result.is_valid());
return result;
}
Result VirtualFrame::CallRuntime(Runtime::FunctionId id, int arg_count) {
PrepareForCall(arg_count, arg_count);
ASSERT(cgen()->HasValidEntryRegisters());
__ CallRuntime(id, arg_count);
Result result = cgen()->allocator()->Allocate(rax);
ASSERT(result.is_valid());
return result;
}
#ifdef ENABLE_DEBUGGER_SUPPORT
void VirtualFrame::DebugBreak() {
PrepareForCall(0, 0);
ASSERT(cgen()->HasValidEntryRegisters());
__ DebugBreak();
Result result = cgen()->allocator()->Allocate(rax);
ASSERT(result.is_valid());
}
#endif
Result VirtualFrame::InvokeBuiltin(Builtins::JavaScript id,
InvokeFlag flag,
int arg_count) {
PrepareForCall(arg_count, arg_count);
ASSERT(cgen()->HasValidEntryRegisters());
__ InvokeBuiltin(id, flag);
Result result = cgen()->allocator()->Allocate(rax);
ASSERT(result.is_valid());
return result;
}
Result VirtualFrame::RawCallCodeObject(Handle<Code> code,
RelocInfo::Mode rmode) {
ASSERT(cgen()->HasValidEntryRegisters());
__ Call(code, rmode);
Result result = cgen()->allocator()->Allocate(rax);
ASSERT(result.is_valid());
return result;
}
// This function assumes that the only results that could be in a_reg or b_reg
// are a and b. Other results can be live, but must not be in a_reg or b_reg.
void VirtualFrame::MoveResultsToRegisters(Result* a,
Result* b,
Register a_reg,
Register b_reg) {
ASSERT(!a_reg.is(b_reg));
// Assert that cgen()->allocator()->count(a_reg) is accounted for by a and b.
ASSERT(cgen()->allocator()->count(a_reg) <= 2);
ASSERT(cgen()->allocator()->count(a_reg) != 2 || a->reg().is(a_reg));
ASSERT(cgen()->allocator()->count(a_reg) != 2 || b->reg().is(a_reg));
ASSERT(cgen()->allocator()->count(a_reg) != 1 ||
(a->is_register() && a->reg().is(a_reg)) ||
(b->is_register() && b->reg().is(a_reg)));
// Assert that cgen()->allocator()->count(b_reg) is accounted for by a and b.
ASSERT(cgen()->allocator()->count(b_reg) <= 2);
ASSERT(cgen()->allocator()->count(b_reg) != 2 || a->reg().is(b_reg));
ASSERT(cgen()->allocator()->count(b_reg) != 2 || b->reg().is(b_reg));
ASSERT(cgen()->allocator()->count(b_reg) != 1 ||
(a->is_register() && a->reg().is(b_reg)) ||
(b->is_register() && b->reg().is(b_reg)));
if (a->is_register() && a->reg().is(a_reg)) {
b->ToRegister(b_reg);
} else if (!cgen()->allocator()->is_used(a_reg)) {
a->ToRegister(a_reg);
b->ToRegister(b_reg);
} else if (cgen()->allocator()->is_used(b_reg)) {
// a must be in b_reg, b in a_reg.
__ xchg(a_reg, b_reg);
// Results a and b will be invalidated, so it is ok if they are switched.
} else {
b->ToRegister(b_reg);
a->ToRegister(a_reg);
}
a->Unuse();
b->Unuse();
}
Result VirtualFrame::CallLoadIC(RelocInfo::Mode mode) {
// Name and receiver are on the top of the frame. Both are dropped.
// The IC expects name in rcx and receiver in rax.
Handle<Code> ic(Isolate::Current()->builtins()->builtin(
Builtins::kLoadIC_Initialize));
Result name = Pop();
Result receiver = Pop();
PrepareForCall(0, 0);
MoveResultsToRegisters(&name, &receiver, rcx, rax);
return RawCallCodeObject(ic, mode);
}
Result VirtualFrame::CallKeyedLoadIC(RelocInfo::Mode mode) {
// Key and receiver are on top of the frame. Put them in rax and rdx.
Result key = Pop();
Result receiver = Pop();
PrepareForCall(0, 0);
MoveResultsToRegisters(&key, &receiver, rax, rdx);
Handle<Code> ic(Isolate::Current()->builtins()->builtin(
Builtins::kKeyedLoadIC_Initialize));
return RawCallCodeObject(ic, mode);
}
Result VirtualFrame::CallStoreIC(Handle<String> name,
bool is_contextual,
StrictModeFlag strict_mode) {
// Value and (if not contextual) receiver are on top of the frame.
// The IC expects name in rcx, value in rax, and receiver in rdx.
Handle<Code> ic(Isolate::Current()->builtins()->builtin(
(strict_mode == kStrictMode) ? Builtins::kStoreIC_Initialize_Strict
: Builtins::kStoreIC_Initialize));
Result value = Pop();
RelocInfo::Mode mode;
if (is_contextual) {
PrepareForCall(0, 0);
value.ToRegister(rax);
__ movq(rdx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX)));
value.Unuse();
mode = RelocInfo::CODE_TARGET_CONTEXT;
} else {
Result receiver = Pop();
PrepareForCall(0, 0);
MoveResultsToRegisters(&value, &receiver, rax, rdx);
mode = RelocInfo::CODE_TARGET;
}
__ Move(rcx, name);
return RawCallCodeObject(ic, mode);
}
Result VirtualFrame::CallKeyedStoreIC(StrictModeFlag strict_mode) {
// Value, key, and receiver are on the top of the frame. The IC
// expects value in rax, key in rcx, and receiver in rdx.
Result value = Pop();
Result key = Pop();
Result receiver = Pop();
PrepareForCall(0, 0);
if (!cgen()->allocator()->is_used(rax) ||
(value.is_register() && value.reg().is(rax))) {
if (!cgen()->allocator()->is_used(rax)) {
value.ToRegister(rax);
}
MoveResultsToRegisters(&key, &receiver, rcx, rdx);
value.Unuse();
} else if (!cgen()->allocator()->is_used(rcx) ||
(key.is_register() && key.reg().is(rcx))) {
if (!cgen()->allocator()->is_used(rcx)) {
key.ToRegister(rcx);
}
MoveResultsToRegisters(&value, &receiver, rax, rdx);
key.Unuse();
} else if (!cgen()->allocator()->is_used(rdx) ||
(receiver.is_register() && receiver.reg().is(rdx))) {
if (!cgen()->allocator()->is_used(rdx)) {
receiver.ToRegister(rdx);
}
MoveResultsToRegisters(&key, &value, rcx, rax);
receiver.Unuse();
} else {
// All three registers are used, and no value is in the correct place.
// We have one of the two circular permutations of rax, rcx, rdx.
ASSERT(value.is_register());
if (value.reg().is(rcx)) {
__ xchg(rax, rdx);
__ xchg(rax, rcx);
} else {
__ xchg(rax, rcx);
__ xchg(rax, rdx);
}
value.Unuse();
key.Unuse();
receiver.Unuse();
}
Handle<Code> ic(Isolate::Current()->builtins()->builtin(
(strict_mode == kStrictMode) ? Builtins::kKeyedStoreIC_Initialize_Strict
: Builtins::kKeyedStoreIC_Initialize));
return RawCallCodeObject(ic, RelocInfo::CODE_TARGET);
}
Result VirtualFrame::CallCallIC(RelocInfo::Mode mode,
int arg_count,
int loop_nesting) {
// Function name, arguments, and receiver are found on top of the frame
// and dropped by the call. The IC expects the name in rcx and the rest
// on the stack, and drops them all.
InLoopFlag in_loop = loop_nesting > 0 ? IN_LOOP : NOT_IN_LOOP;
Handle<Code> ic =
ISOLATE->stub_cache()->ComputeCallInitialize(arg_count, in_loop);
Result name = Pop();
// Spill args, receiver, and function. The call will drop args and
// receiver.
PrepareForCall(arg_count + 1, arg_count + 1);
name.ToRegister(rcx);
name.Unuse();
return RawCallCodeObject(ic, mode);
}
Result VirtualFrame::CallKeyedCallIC(RelocInfo::Mode mode,
int arg_count,
int loop_nesting) {
// Function name, arguments, and receiver are found on top of the frame
// and dropped by the call. The IC expects the name in rcx and the rest
// on the stack, and drops them all.
InLoopFlag in_loop = loop_nesting > 0 ? IN_LOOP : NOT_IN_LOOP;
Handle<Code> ic =
ISOLATE->stub_cache()->ComputeKeyedCallInitialize(arg_count, in_loop);
Result name = Pop();
// Spill args, receiver, and function. The call will drop args and
// receiver.
PrepareForCall(arg_count + 1, arg_count + 1);
name.ToRegister(rcx);
name.Unuse();
return RawCallCodeObject(ic, mode);
}
Result VirtualFrame::CallConstructor(int arg_count) {
// Arguments, receiver, and function are on top of the frame. The
// IC expects arg count in rax, function in rdi, and the arguments
// and receiver on the stack.
Handle<Code> ic(Isolate::Current()->builtins()->builtin(
Builtins::kJSConstructCall));
// Duplicate the function before preparing the frame.
PushElementAt(arg_count);
Result function = Pop();
PrepareForCall(arg_count + 1, arg_count + 1); // Spill function and args.
function.ToRegister(rdi);
// Constructors are called with the number of arguments in register
// rax for now. Another option would be to have separate construct
// call trampolines per different arguments counts encountered.
Result num_args = cgen()->allocator()->Allocate(rax);
ASSERT(num_args.is_valid());
__ Set(num_args.reg(), arg_count);
function.Unuse();
num_args.Unuse();
return RawCallCodeObject(ic, RelocInfo::CONSTRUCT_CALL);
}
void VirtualFrame::PushTryHandler(HandlerType type) {
ASSERT(cgen()->HasValidEntryRegisters());
// Grow the expression stack by handler size less one (the return
// address is already pushed by a call instruction).
Adjust(kHandlerSize - 1);
__ PushTryHandler(IN_JAVASCRIPT, type);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_X64