| // Copyright 2009 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // This benchmark is based on a JavaScript log processing module used |
| // by the V8 profiler to generate execution time profiles for runs of |
| // JavaScript applications, and it effectively measures how fast the |
| // JavaScript engine is at allocating nodes and reclaiming the memory |
| // used for old nodes. Because of the way splay trees work, the engine |
| // also has to deal with a lot of changes to the large tree object |
| // graph. |
| |
| var Splay = new BenchmarkSuite('Splay', 21915, [ |
| new Benchmark("Splay", SplayRun, SplaySetup, SplayTearDown) |
| ]); |
| |
| |
| // Configuration. |
| var kSplayTreeSize = 8000; |
| var kSplayTreeModifications = 80; |
| var kSplayTreePayloadDepth = 5; |
| |
| var splayTree = null; |
| |
| |
| function GeneratePayloadTree(depth, tag) { |
| if (depth == 0) { |
| return { |
| array : [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 ], |
| string : 'String for key ' + tag + ' in leaf node' |
| }; |
| } else { |
| return { |
| left: GeneratePayloadTree(depth - 1, tag), |
| right: GeneratePayloadTree(depth - 1, tag) |
| }; |
| } |
| } |
| |
| |
| function GenerateKey() { |
| // The benchmark framework guarantees that Math.random is |
| // deterministic; see base.js. |
| return Math.random(); |
| } |
| |
| |
| function InsertNewNode() { |
| // Insert new node with a unique key. |
| var key; |
| do { |
| key = GenerateKey(); |
| } while (splayTree.find(key) != null); |
| var payload = GeneratePayloadTree(kSplayTreePayloadDepth, String(key)); |
| splayTree.insert(key, payload); |
| return key; |
| } |
| |
| |
| |
| function SplaySetup() { |
| splayTree = new SplayTree(); |
| for (var i = 0; i < kSplayTreeSize; i++) InsertNewNode(); |
| } |
| |
| |
| function SplayTearDown() { |
| // Allow the garbage collector to reclaim the memory |
| // used by the splay tree no matter how we exit the |
| // tear down function. |
| var keys = splayTree.exportKeys(); |
| splayTree = null; |
| |
| // Verify that the splay tree has the right size. |
| var length = keys.length; |
| if (length != kSplayTreeSize) { |
| throw new Error("Splay tree has wrong size"); |
| } |
| |
| // Verify that the splay tree has sorted, unique keys. |
| for (var i = 0; i < length - 1; i++) { |
| if (keys[i] >= keys[i + 1]) { |
| throw new Error("Splay tree not sorted"); |
| } |
| } |
| } |
| |
| |
| function SplayRun() { |
| // Replace a few nodes in the splay tree. |
| for (var i = 0; i < kSplayTreeModifications; i++) { |
| var key = InsertNewNode(); |
| var greatest = splayTree.findGreatestLessThan(key); |
| if (greatest == null) splayTree.remove(key); |
| else splayTree.remove(greatest.key); |
| } |
| } |
| |
| |
| /** |
| * Constructs a Splay tree. A splay tree is a self-balancing binary |
| * search tree with the additional property that recently accessed |
| * elements are quick to access again. It performs basic operations |
| * such as insertion, look-up and removal in O(log(n)) amortized time. |
| * |
| * @constructor |
| */ |
| function SplayTree() { |
| }; |
| |
| |
| /** |
| * Pointer to the root node of the tree. |
| * |
| * @type {SplayTree.Node} |
| * @private |
| */ |
| SplayTree.prototype.root_ = null; |
| |
| |
| /** |
| * @return {boolean} Whether the tree is empty. |
| */ |
| SplayTree.prototype.isEmpty = function() { |
| return !this.root_; |
| }; |
| |
| |
| /** |
| * Inserts a node into the tree with the specified key and value if |
| * the tree does not already contain a node with the specified key. If |
| * the value is inserted, it becomes the root of the tree. |
| * |
| * @param {number} key Key to insert into the tree. |
| * @param {*} value Value to insert into the tree. |
| */ |
| SplayTree.prototype.insert = function(key, value) { |
| if (this.isEmpty()) { |
| this.root_ = new SplayTree.Node(key, value); |
| return; |
| } |
| // Splay on the key to move the last node on the search path for |
| // the key to the root of the tree. |
| this.splay_(key); |
| if (this.root_.key == key) { |
| return; |
| } |
| var node = new SplayTree.Node(key, value); |
| if (key > this.root_.key) { |
| node.left = this.root_; |
| node.right = this.root_.right; |
| this.root_.right = null; |
| } else { |
| node.right = this.root_; |
| node.left = this.root_.left; |
| this.root_.left = null; |
| } |
| this.root_ = node; |
| }; |
| |
| |
| /** |
| * Removes a node with the specified key from the tree if the tree |
| * contains a node with this key. The removed node is returned. If the |
| * key is not found, an exception is thrown. |
| * |
| * @param {number} key Key to find and remove from the tree. |
| * @return {SplayTree.Node} The removed node. |
| */ |
| SplayTree.prototype.remove = function(key) { |
| if (this.isEmpty()) { |
| throw Error('Key not found: ' + key); |
| } |
| this.splay_(key); |
| if (this.root_.key != key) { |
| throw Error('Key not found: ' + key); |
| } |
| var removed = this.root_; |
| if (!this.root_.left) { |
| this.root_ = this.root_.right; |
| } else { |
| var right = this.root_.right; |
| this.root_ = this.root_.left; |
| // Splay to make sure that the new root has an empty right child. |
| this.splay_(key); |
| // Insert the original right child as the right child of the new |
| // root. |
| this.root_.right = right; |
| } |
| return removed; |
| }; |
| |
| |
| /** |
| * Returns the node having the specified key or null if the tree doesn't contain |
| * a node with the specified key. |
| * |
| * @param {number} key Key to find in the tree. |
| * @return {SplayTree.Node} Node having the specified key. |
| */ |
| SplayTree.prototype.find = function(key) { |
| if (this.isEmpty()) { |
| return null; |
| } |
| this.splay_(key); |
| return this.root_.key == key ? this.root_ : null; |
| }; |
| |
| |
| /** |
| * @return {SplayTree.Node} Node having the maximum key value. |
| */ |
| SplayTree.prototype.findMax = function(opt_startNode) { |
| if (this.isEmpty()) { |
| return null; |
| } |
| var current = opt_startNode || this.root_; |
| while (current.right) { |
| current = current.right; |
| } |
| return current; |
| }; |
| |
| |
| /** |
| * @return {SplayTree.Node} Node having the maximum key value that |
| * is less than the specified key value. |
| */ |
| SplayTree.prototype.findGreatestLessThan = function(key) { |
| if (this.isEmpty()) { |
| return null; |
| } |
| // Splay on the key to move the node with the given key or the last |
| // node on the search path to the top of the tree. |
| this.splay_(key); |
| // Now the result is either the root node or the greatest node in |
| // the left subtree. |
| if (this.root_.key < key) { |
| return this.root_; |
| } else if (this.root_.left) { |
| return this.findMax(this.root_.left); |
| } else { |
| return null; |
| } |
| }; |
| |
| |
| /** |
| * @return {Array<*>} An array containing all the keys of tree's nodes. |
| */ |
| SplayTree.prototype.exportKeys = function() { |
| var result = []; |
| if (!this.isEmpty()) { |
| this.root_.traverse_(function(node) { result.push(node.key); }); |
| } |
| return result; |
| }; |
| |
| |
| /** |
| * Perform the splay operation for the given key. Moves the node with |
| * the given key to the top of the tree. If no node has the given |
| * key, the last node on the search path is moved to the top of the |
| * tree. This is the simplified top-down splaying algorithm from: |
| * "Self-adjusting Binary Search Trees" by Sleator and Tarjan |
| * |
| * @param {number} key Key to splay the tree on. |
| * @private |
| */ |
| SplayTree.prototype.splay_ = function(key) { |
| if (this.isEmpty()) { |
| return; |
| } |
| // Create a dummy node. The use of the dummy node is a bit |
| // counter-intuitive: The right child of the dummy node will hold |
| // the L tree of the algorithm. The left child of the dummy node |
| // will hold the R tree of the algorithm. Using a dummy node, left |
| // and right will always be nodes and we avoid special cases. |
| var dummy, left, right; |
| dummy = left = right = new SplayTree.Node(null, null); |
| var current = this.root_; |
| while (true) { |
| if (key < current.key) { |
| if (!current.left) { |
| break; |
| } |
| if (key < current.left.key) { |
| // Rotate right. |
| var tmp = current.left; |
| current.left = tmp.right; |
| tmp.right = current; |
| current = tmp; |
| if (!current.left) { |
| break; |
| } |
| } |
| // Link right. |
| right.left = current; |
| right = current; |
| current = current.left; |
| } else if (key > current.key) { |
| if (!current.right) { |
| break; |
| } |
| if (key > current.right.key) { |
| // Rotate left. |
| var tmp = current.right; |
| current.right = tmp.left; |
| tmp.left = current; |
| current = tmp; |
| if (!current.right) { |
| break; |
| } |
| } |
| // Link left. |
| left.right = current; |
| left = current; |
| current = current.right; |
| } else { |
| break; |
| } |
| } |
| // Assemble. |
| left.right = current.left; |
| right.left = current.right; |
| current.left = dummy.right; |
| current.right = dummy.left; |
| this.root_ = current; |
| }; |
| |
| |
| /** |
| * Constructs a Splay tree node. |
| * |
| * @param {number} key Key. |
| * @param {*} value Value. |
| */ |
| SplayTree.Node = function(key, value) { |
| this.key = key; |
| this.value = value; |
| }; |
| |
| |
| /** |
| * @type {SplayTree.Node} |
| */ |
| SplayTree.Node.prototype.left = null; |
| |
| |
| /** |
| * @type {SplayTree.Node} |
| */ |
| SplayTree.Node.prototype.right = null; |
| |
| |
| /** |
| * Performs an ordered traversal of the subtree starting at |
| * this SplayTree.Node. |
| * |
| * @param {function(SplayTree.Node)} f Visitor function. |
| * @private |
| */ |
| SplayTree.Node.prototype.traverse_ = function(f) { |
| var current = this; |
| while (current) { |
| var left = current.left; |
| if (left) left.traverse_(f); |
| f(current); |
| current = current.right; |
| } |
| }; |