blob: 6120bba458830516736277e90935ebe30ee86c17 [file] [log] [blame]
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_ARM)
#include "assembler-arm.h"
#include "code-stubs.h"
#include "codegen-inl.h"
#include "disasm.h"
#include "ic-inl.h"
#include "runtime.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Static IC stub generators.
//
#define __ ACCESS_MASM(masm)
static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm,
Register type,
Label* global_object) {
// Register usage:
// type: holds the receiver instance type on entry.
__ cmp(type, Operand(JS_GLOBAL_OBJECT_TYPE));
__ b(eq, global_object);
__ cmp(type, Operand(JS_BUILTINS_OBJECT_TYPE));
__ b(eq, global_object);
__ cmp(type, Operand(JS_GLOBAL_PROXY_TYPE));
__ b(eq, global_object);
}
// Generated code falls through if the receiver is a regular non-global
// JS object with slow properties and no interceptors.
static void GenerateStringDictionaryReceiverCheck(MacroAssembler* masm,
Register receiver,
Register elements,
Register t0,
Register t1,
Label* miss) {
// Register usage:
// receiver: holds the receiver on entry and is unchanged.
// elements: holds the property dictionary on fall through.
// Scratch registers:
// t0: used to holds the receiver map.
// t1: used to holds the receiver instance type, receiver bit mask and
// elements map.
// Check that the receiver isn't a smi.
__ tst(receiver, Operand(kSmiTagMask));
__ b(eq, miss);
// Check that the receiver is a valid JS object.
__ CompareObjectType(receiver, t0, t1, FIRST_JS_OBJECT_TYPE);
__ b(lt, miss);
// If this assert fails, we have to check upper bound too.
ASSERT(LAST_TYPE == JS_FUNCTION_TYPE);
GenerateGlobalInstanceTypeCheck(masm, t1, miss);
// Check that the global object does not require access checks.
__ ldrb(t1, FieldMemOperand(t0, Map::kBitFieldOffset));
__ tst(t1, Operand((1 << Map::kIsAccessCheckNeeded) |
(1 << Map::kHasNamedInterceptor)));
__ b(nz, miss);
__ ldr(elements, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
__ ldr(t1, FieldMemOperand(elements, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHashTableMapRootIndex);
__ cmp(t1, ip);
__ b(nz, miss);
}
// Probe the string dictionary in the |elements| register. Jump to the
// |done| label if a property with the given name is found. Jump to
// the |miss| label otherwise.
static void GenerateStringDictionaryProbes(MacroAssembler* masm,
Label* miss,
Label* done,
Register elements,
Register name,
Register scratch1,
Register scratch2) {
// Compute the capacity mask.
const int kCapacityOffset = StringDictionary::kHeaderSize +
StringDictionary::kCapacityIndex * kPointerSize;
__ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset));
__ mov(scratch1, Operand(scratch1, ASR, kSmiTagSize)); // convert smi to int
__ sub(scratch1, scratch1, Operand(1));
const int kElementsStartOffset = StringDictionary::kHeaderSize +
StringDictionary::kElementsStartIndex * kPointerSize;
// Generate an unrolled loop that performs a few probes before
// giving up. Measurements done on Gmail indicate that 2 probes
// cover ~93% of loads from dictionaries.
static const int kProbes = 4;
for (int i = 0; i < kProbes; i++) {
// Compute the masked index: (hash + i + i * i) & mask.
__ ldr(scratch2, FieldMemOperand(name, String::kHashFieldOffset));
if (i > 0) {
// Add the probe offset (i + i * i) left shifted to avoid right shifting
// the hash in a separate instruction. The value hash + i + i * i is right
// shifted in the following and instruction.
ASSERT(StringDictionary::GetProbeOffset(i) <
1 << (32 - String::kHashFieldOffset));
__ add(scratch2, scratch2, Operand(
StringDictionary::GetProbeOffset(i) << String::kHashShift));
}
__ and_(scratch2, scratch1, Operand(scratch2, LSR, String::kHashShift));
// Scale the index by multiplying by the element size.
ASSERT(StringDictionary::kEntrySize == 3);
// scratch2 = scratch2 * 3.
__ add(scratch2, scratch2, Operand(scratch2, LSL, 1));
// Check if the key is identical to the name.
__ add(scratch2, elements, Operand(scratch2, LSL, 2));
__ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset));
__ cmp(name, Operand(ip));
if (i != kProbes - 1) {
__ b(eq, done);
} else {
__ b(ne, miss);
}
}
}
// Helper function used from LoadIC/CallIC GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
// label is done.
// name: Property name. It is not clobbered if a jump to the miss label is
// done
// result: Register for the result. It is only updated if a jump to the miss
// label is not done. Can be the same as elements or name clobbering
// one of these in the case of not jumping to the miss label.
// The two scratch registers need to be different from elements, name and
// result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
static void GenerateDictionaryLoad(MacroAssembler* masm,
Label* miss,
Register elements,
Register name,
Register result,
Register scratch1,
Register scratch2) {
// Main use of the scratch registers.
// scratch1: Used as temporary and to hold the capacity of the property
// dictionary.
// scratch2: Used as temporary.
Label done;
// Probe the dictionary.
GenerateStringDictionaryProbes(masm,
miss,
&done,
elements,
name,
scratch1,
scratch2);
// If probing finds an entry check that the value is a normal
// property.
__ bind(&done); // scratch2 == elements + 4 * index
const int kElementsStartOffset = StringDictionary::kHeaderSize +
StringDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
__ ldr(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
__ tst(scratch1, Operand(PropertyDetails::TypeField::mask() << kSmiTagSize));
__ b(ne, miss);
// Get the value at the masked, scaled index and return.
__ ldr(result,
FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize));
}
// Helper function used from StoreIC::GenerateNormal.
//
// elements: Property dictionary. It is not clobbered if a jump to the miss
// label is done.
// name: Property name. It is not clobbered if a jump to the miss label is
// done
// value: The value to store.
// The two scratch registers need to be different from elements, name and
// result.
// The generated code assumes that the receiver has slow properties,
// is not a global object and does not have interceptors.
static void GenerateDictionaryStore(MacroAssembler* masm,
Label* miss,
Register elements,
Register name,
Register value,
Register scratch1,
Register scratch2) {
// Main use of the scratch registers.
// scratch1: Used as temporary and to hold the capacity of the property
// dictionary.
// scratch2: Used as temporary.
Label done;
// Probe the dictionary.
GenerateStringDictionaryProbes(masm,
miss,
&done,
elements,
name,
scratch1,
scratch2);
// If probing finds an entry in the dictionary check that the value
// is a normal property that is not read only.
__ bind(&done); // scratch2 == elements + 4 * index
const int kElementsStartOffset = StringDictionary::kHeaderSize +
StringDictionary::kElementsStartIndex * kPointerSize;
const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize;
const int kTypeAndReadOnlyMask
= (PropertyDetails::TypeField::mask() |
PropertyDetails::AttributesField::encode(READ_ONLY)) << kSmiTagSize;
__ ldr(scratch1, FieldMemOperand(scratch2, kDetailsOffset));
__ tst(scratch1, Operand(kTypeAndReadOnlyMask));
__ b(ne, miss);
// Store the value at the masked, scaled index and return.
const int kValueOffset = kElementsStartOffset + kPointerSize;
__ add(scratch2, scratch2, Operand(kValueOffset - kHeapObjectTag));
__ str(value, MemOperand(scratch2));
// Update the write barrier. Make sure not to clobber the value.
__ mov(scratch1, value);
__ RecordWrite(elements, scratch2, scratch1);
}
static void GenerateNumberDictionaryLoad(MacroAssembler* masm,
Label* miss,
Register elements,
Register key,
Register result,
Register t0,
Register t1,
Register t2) {
// Register use:
//
// elements - holds the slow-case elements of the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the same as 'key' or 'result'.
// Unchanged on bailout so 'key' or 'result' can be used
// in further computation.
//
// Scratch registers:
//
// t0 - holds the untagged key on entry and holds the hash once computed.
//
// t1 - used to hold the capacity mask of the dictionary
//
// t2 - used for the index into the dictionary.
Label done;
// Compute the hash code from the untagged key. This must be kept in sync
// with ComputeIntegerHash in utils.h.
//
// hash = ~hash + (hash << 15);
__ mvn(t1, Operand(t0));
__ add(t0, t1, Operand(t0, LSL, 15));
// hash = hash ^ (hash >> 12);
__ eor(t0, t0, Operand(t0, LSR, 12));
// hash = hash + (hash << 2);
__ add(t0, t0, Operand(t0, LSL, 2));
// hash = hash ^ (hash >> 4);
__ eor(t0, t0, Operand(t0, LSR, 4));
// hash = hash * 2057;
__ mov(t1, Operand(2057));
__ mul(t0, t0, t1);
// hash = hash ^ (hash >> 16);
__ eor(t0, t0, Operand(t0, LSR, 16));
// Compute the capacity mask.
__ ldr(t1, FieldMemOperand(elements, NumberDictionary::kCapacityOffset));
__ mov(t1, Operand(t1, ASR, kSmiTagSize)); // convert smi to int
__ sub(t1, t1, Operand(1));
// Generate an unrolled loop that performs a few probes before giving up.
static const int kProbes = 4;
for (int i = 0; i < kProbes; i++) {
// Use t2 for index calculations and keep the hash intact in t0.
__ mov(t2, t0);
// Compute the masked index: (hash + i + i * i) & mask.
if (i > 0) {
__ add(t2, t2, Operand(NumberDictionary::GetProbeOffset(i)));
}
__ and_(t2, t2, Operand(t1));
// Scale the index by multiplying by the element size.
ASSERT(NumberDictionary::kEntrySize == 3);
__ add(t2, t2, Operand(t2, LSL, 1)); // t2 = t2 * 3
// Check if the key is identical to the name.
__ add(t2, elements, Operand(t2, LSL, kPointerSizeLog2));
__ ldr(ip, FieldMemOperand(t2, NumberDictionary::kElementsStartOffset));
__ cmp(key, Operand(ip));
if (i != kProbes - 1) {
__ b(eq, &done);
} else {
__ b(ne, miss);
}
}
__ bind(&done);
// Check that the value is a normal property.
// t2: elements + (index * kPointerSize)
const int kDetailsOffset =
NumberDictionary::kElementsStartOffset + 2 * kPointerSize;
__ ldr(t1, FieldMemOperand(t2, kDetailsOffset));
__ tst(t1, Operand(Smi::FromInt(PropertyDetails::TypeField::mask())));
__ b(ne, miss);
// Get the value at the masked, scaled index and return.
const int kValueOffset =
NumberDictionary::kElementsStartOffset + kPointerSize;
__ ldr(result, FieldMemOperand(t2, kValueOffset));
}
void LoadIC::GenerateArrayLength(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -- r0 : receiver
// -- sp[0] : receiver
// -----------------------------------
Label miss;
StubCompiler::GenerateLoadArrayLength(masm, r0, r3, &miss);
__ bind(&miss);
StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}
void LoadIC::GenerateStringLength(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -- r0 : receiver
// -- sp[0] : receiver
// -----------------------------------
Label miss;
StubCompiler::GenerateLoadStringLength(masm, r0, r1, r3, &miss);
// Cache miss: Jump to runtime.
__ bind(&miss);
StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}
void LoadIC::GenerateFunctionPrototype(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -- r0 : receiver
// -- sp[0] : receiver
// -----------------------------------
Label miss;
StubCompiler::GenerateLoadFunctionPrototype(masm, r0, r1, r3, &miss);
__ bind(&miss);
StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC);
}
// Checks the receiver for special cases (value type, slow case bits).
// Falls through for regular JS object.
static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm,
Register receiver,
Register map,
Register scratch,
int interceptor_bit,
Label* slow) {
// Check that the object isn't a smi.
__ BranchOnSmi(receiver, slow);
// Get the map of the receiver.
__ ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Check bit field.
__ ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
__ tst(scratch,
Operand((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit)));
__ b(nz, slow);
// Check that the object is some kind of JS object EXCEPT JS Value type.
// In the case that the object is a value-wrapper object,
// we enter the runtime system to make sure that indexing into string
// objects work as intended.
ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE);
__ ldrb(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
__ cmp(scratch, Operand(JS_OBJECT_TYPE));
__ b(lt, slow);
}
// Loads an indexed element from a fast case array.
// If not_fast_array is NULL, doesn't perform the elements map check.
static void GenerateFastArrayLoad(MacroAssembler* masm,
Register receiver,
Register key,
Register elements,
Register scratch1,
Register scratch2,
Register result,
Label* not_fast_array,
Label* out_of_range) {
// Register use:
//
// receiver - holds the receiver on entry.
// Unchanged unless 'result' is the same register.
//
// key - holds the smi key on entry.
// Unchanged unless 'result' is the same register.
//
// elements - holds the elements of the receiver on exit.
//
// result - holds the result on exit if the load succeeded.
// Allowed to be the the same as 'receiver' or 'key'.
// Unchanged on bailout so 'receiver' and 'key' can be safely
// used by further computation.
//
// Scratch registers:
//
// scratch1 - used to hold elements map and elements length.
// Holds the elements map if not_fast_array branch is taken.
//
// scratch2 - used to hold the loaded value.
__ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
if (not_fast_array != NULL) {
// Check that the object is in fast mode and writable.
__ ldr(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
__ cmp(scratch1, ip);
__ b(ne, not_fast_array);
} else {
__ AssertFastElements(elements);
}
// Check that the key (index) is within bounds.
__ ldr(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ cmp(key, Operand(scratch1));
__ b(hs, out_of_range);
// Fast case: Do the load.
__ add(scratch1, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
// The key is a smi.
ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
__ ldr(scratch2,
MemOperand(scratch1, key, LSL, kPointerSizeLog2 - kSmiTagSize));
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(scratch2, ip);
// In case the loaded value is the_hole we have to consult GetProperty
// to ensure the prototype chain is searched.
__ b(eq, out_of_range);
__ mov(result, scratch2);
}
// Checks whether a key is an array index string or a symbol string.
// Falls through if a key is a symbol.
static void GenerateKeyStringCheck(MacroAssembler* masm,
Register key,
Register map,
Register hash,
Label* index_string,
Label* not_symbol) {
// The key is not a smi.
// Is it a string?
__ CompareObjectType(key, map, hash, FIRST_NONSTRING_TYPE);
__ b(ge, not_symbol);
// Is the string an array index, with cached numeric value?
__ ldr(hash, FieldMemOperand(key, String::kHashFieldOffset));
__ tst(hash, Operand(String::kContainsCachedArrayIndexMask));
__ b(eq, index_string);
// Is the string a symbol?
// map: key map
__ ldrb(hash, FieldMemOperand(map, Map::kInstanceTypeOffset));
ASSERT(kSymbolTag != 0);
__ tst(hash, Operand(kIsSymbolMask));
__ b(eq, not_symbol);
}
// Defined in ic.cc.
Object* CallIC_Miss(Arguments args);
// The generated code does not accept smi keys.
// The generated code falls through if both probes miss.
static void GenerateMonomorphicCacheProbe(MacroAssembler* masm,
int argc,
Code::Kind kind) {
// ----------- S t a t e -------------
// -- r1 : receiver
// -- r2 : name
// -----------------------------------
Label number, non_number, non_string, boolean, probe, miss;
// Probe the stub cache.
Code::Flags flags = Code::ComputeFlags(kind,
NOT_IN_LOOP,
MONOMORPHIC,
Code::kNoExtraICState,
NORMAL,
argc);
StubCache::GenerateProbe(masm, flags, r1, r2, r3, r4, r5);
// If the stub cache probing failed, the receiver might be a value.
// For value objects, we use the map of the prototype objects for
// the corresponding JSValue for the cache and that is what we need
// to probe.
//
// Check for number.
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, &number);
__ CompareObjectType(r1, r3, r3, HEAP_NUMBER_TYPE);
__ b(ne, &non_number);
__ bind(&number);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::NUMBER_FUNCTION_INDEX, r1);
__ b(&probe);
// Check for string.
__ bind(&non_number);
__ cmp(r3, Operand(FIRST_NONSTRING_TYPE));
__ b(hs, &non_string);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::STRING_FUNCTION_INDEX, r1);
__ b(&probe);
// Check for boolean.
__ bind(&non_string);
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(r1, ip);
__ b(eq, &boolean);
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ cmp(r1, ip);
__ b(ne, &miss);
__ bind(&boolean);
StubCompiler::GenerateLoadGlobalFunctionPrototype(
masm, Context::BOOLEAN_FUNCTION_INDEX, r1);
// Probe the stub cache for the value object.
__ bind(&probe);
StubCache::GenerateProbe(masm, flags, r1, r2, r3, r4, r5);
__ bind(&miss);
}
static void GenerateFunctionTailCall(MacroAssembler* masm,
int argc,
Label* miss,
Register scratch) {
// r1: function
// Check that the value isn't a smi.
__ tst(r1, Operand(kSmiTagMask));
__ b(eq, miss);
// Check that the value is a JSFunction.
__ CompareObjectType(r1, scratch, scratch, JS_FUNCTION_TYPE);
__ b(ne, miss);
// Invoke the function.
ParameterCount actual(argc);
__ InvokeFunction(r1, actual, JUMP_FUNCTION);
}
static void GenerateCallNormal(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
// Get the receiver of the function from the stack into r1.
__ ldr(r1, MemOperand(sp, argc * kPointerSize));
GenerateStringDictionaryReceiverCheck(masm, r1, r0, r3, r4, &miss);
// r0: elements
// Search the dictionary - put result in register r1.
GenerateDictionaryLoad(masm, &miss, r0, r2, r1, r3, r4);
GenerateFunctionTailCall(masm, argc, &miss, r4);
__ bind(&miss);
}
static void GenerateCallMiss(MacroAssembler* masm, int argc, IC::UtilityId id) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
if (id == IC::kCallIC_Miss) {
__ IncrementCounter(&Counters::call_miss, 1, r3, r4);
} else {
__ IncrementCounter(&Counters::keyed_call_miss, 1, r3, r4);
}
// Get the receiver of the function from the stack.
__ ldr(r3, MemOperand(sp, argc * kPointerSize));
__ EnterInternalFrame();
// Push the receiver and the name of the function.
__ Push(r3, r2);
// Call the entry.
__ mov(r0, Operand(2));
__ mov(r1, Operand(ExternalReference(IC_Utility(id))));
CEntryStub stub(1);
__ CallStub(&stub);
// Move result to r1 and leave the internal frame.
__ mov(r1, Operand(r0));
__ LeaveInternalFrame();
// Check if the receiver is a global object of some sort.
// This can happen only for regular CallIC but not KeyedCallIC.
if (id == IC::kCallIC_Miss) {
Label invoke, global;
__ ldr(r2, MemOperand(sp, argc * kPointerSize)); // receiver
__ tst(r2, Operand(kSmiTagMask));
__ b(eq, &invoke);
__ CompareObjectType(r2, r3, r3, JS_GLOBAL_OBJECT_TYPE);
__ b(eq, &global);
__ cmp(r3, Operand(JS_BUILTINS_OBJECT_TYPE));
__ b(ne, &invoke);
// Patch the receiver on the stack.
__ bind(&global);
__ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset));
__ str(r2, MemOperand(sp, argc * kPointerSize));
__ bind(&invoke);
}
// Invoke the function.
ParameterCount actual(argc);
__ InvokeFunction(r1, actual, JUMP_FUNCTION);
}
void CallIC::GenerateMiss(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
GenerateCallMiss(masm, argc, IC::kCallIC_Miss);
}
void CallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
// Get the receiver of the function from the stack into r1.
__ ldr(r1, MemOperand(sp, argc * kPointerSize));
GenerateMonomorphicCacheProbe(masm, argc, Code::CALL_IC);
GenerateMiss(masm, argc);
}
void CallIC::GenerateNormal(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
GenerateCallNormal(masm, argc);
GenerateMiss(masm, argc);
}
void KeyedCallIC::GenerateMiss(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
GenerateCallMiss(masm, argc, IC::kKeyedCallIC_Miss);
}
void KeyedCallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
// Get the receiver of the function from the stack into r1.
__ ldr(r1, MemOperand(sp, argc * kPointerSize));
Label do_call, slow_call, slow_load, slow_reload_receiver;
Label check_number_dictionary, check_string, lookup_monomorphic_cache;
Label index_smi, index_string;
// Check that the key is a smi.
__ BranchOnNotSmi(r2, &check_string);
__ bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from below
// where a numeric string is converted to a smi.
GenerateKeyedLoadReceiverCheck(
masm, r1, r0, r3, Map::kHasIndexedInterceptor, &slow_call);
GenerateFastArrayLoad(
masm, r1, r2, r4, r3, r0, r1, &check_number_dictionary, &slow_load);
__ IncrementCounter(&Counters::keyed_call_generic_smi_fast, 1, r0, r3);
__ bind(&do_call);
// receiver in r1 is not used after this point.
// r2: key
// r1: function
GenerateFunctionTailCall(masm, argc, &slow_call, r0);
__ bind(&check_number_dictionary);
// r2: key
// r3: elements map
// r4: elements
// Check whether the elements is a number dictionary.
__ LoadRoot(ip, Heap::kHashTableMapRootIndex);
__ cmp(r3, ip);
__ b(ne, &slow_load);
__ mov(r0, Operand(r2, ASR, kSmiTagSize));
// r0: untagged index
GenerateNumberDictionaryLoad(masm, &slow_load, r4, r2, r1, r0, r3, r5);
__ IncrementCounter(&Counters::keyed_call_generic_smi_dict, 1, r0, r3);
__ jmp(&do_call);
__ bind(&slow_load);
// This branch is taken when calling KeyedCallIC_Miss is neither required
// nor beneficial.
__ IncrementCounter(&Counters::keyed_call_generic_slow_load, 1, r0, r3);
__ EnterInternalFrame();
__ push(r2); // save the key
__ Push(r1, r2); // pass the receiver and the key
__ CallRuntime(Runtime::kKeyedGetProperty, 2);
__ pop(r2); // restore the key
__ LeaveInternalFrame();
__ mov(r1, r0);
__ jmp(&do_call);
__ bind(&check_string);
GenerateKeyStringCheck(masm, r2, r0, r3, &index_string, &slow_call);
// The key is known to be a symbol.
// If the receiver is a regular JS object with slow properties then do
// a quick inline probe of the receiver's dictionary.
// Otherwise do the monomorphic cache probe.
GenerateKeyedLoadReceiverCheck(
masm, r1, r0, r3, Map::kHasNamedInterceptor, &lookup_monomorphic_cache);
__ ldr(r0, FieldMemOperand(r1, JSObject::kPropertiesOffset));
__ ldr(r3, FieldMemOperand(r0, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHashTableMapRootIndex);
__ cmp(r3, ip);
__ b(ne, &lookup_monomorphic_cache);
GenerateDictionaryLoad(masm, &slow_load, r0, r2, r1, r3, r4);
__ IncrementCounter(&Counters::keyed_call_generic_lookup_dict, 1, r0, r3);
__ jmp(&do_call);
__ bind(&lookup_monomorphic_cache);
__ IncrementCounter(&Counters::keyed_call_generic_lookup_cache, 1, r0, r3);
GenerateMonomorphicCacheProbe(masm, argc, Code::KEYED_CALL_IC);
// Fall through on miss.
__ bind(&slow_call);
// This branch is taken if:
// - the receiver requires boxing or access check,
// - the key is neither smi nor symbol,
// - the value loaded is not a function,
// - there is hope that the runtime will create a monomorphic call stub
// that will get fetched next time.
__ IncrementCounter(&Counters::keyed_call_generic_slow, 1, r0, r3);
GenerateMiss(masm, argc);
__ bind(&index_string);
__ IndexFromHash(r3, r2);
// Now jump to the place where smi keys are handled.
__ jmp(&index_smi);
}
void KeyedCallIC::GenerateNormal(MacroAssembler* masm, int argc) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -----------------------------------
GenerateCallNormal(masm, argc);
GenerateMiss(masm, argc);
}
// Defined in ic.cc.
Object* LoadIC_Miss(Arguments args);
void LoadIC::GenerateMegamorphic(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -- r0 : receiver
// -- sp[0] : receiver
// -----------------------------------
// Probe the stub cache.
Code::Flags flags = Code::ComputeFlags(Code::LOAD_IC,
NOT_IN_LOOP,
MONOMORPHIC);
StubCache::GenerateProbe(masm, flags, r0, r2, r3, r4, r5);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void LoadIC::GenerateNormal(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -- r0 : receiver
// -- sp[0] : receiver
// -----------------------------------
Label miss;
GenerateStringDictionaryReceiverCheck(masm, r0, r1, r3, r4, &miss);
// r1: elements
GenerateDictionaryLoad(masm, &miss, r1, r2, r0, r3, r4);
__ Ret();
// Cache miss: Jump to runtime.
__ bind(&miss);
GenerateMiss(masm);
}
void LoadIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r2 : name
// -- lr : return address
// -- r0 : receiver
// -- sp[0] : receiver
// -----------------------------------
__ IncrementCounter(&Counters::load_miss, 1, r3, r4);
__ mov(r3, r0);
__ Push(r3, r2);
// Perform tail call to the entry.
ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss));
__ TailCallExternalReference(ref, 2, 1);
}
// Returns the code marker, or the 0 if the code is not marked.
static inline int InlinedICSiteMarker(Address address,
Address* inline_end_address) {
if (V8::UseCrankshaft()) return false;
// If the instruction after the call site is not the pseudo instruction nop1
// then this is not related to an inlined in-object property load. The nop1
// instruction is located just after the call to the IC in the deferred code
// handling the miss in the inlined code. After the nop1 instruction there is
// a branch instruction for jumping back from the deferred code.
Address address_after_call = address + Assembler::kCallTargetAddressOffset;
Instr instr_after_call = Assembler::instr_at(address_after_call);
int code_marker = MacroAssembler::GetCodeMarker(instr_after_call);
// A negative result means the code is not marked.
if (code_marker <= 0) return 0;
Address address_after_nop = address_after_call + Assembler::kInstrSize;
Instr instr_after_nop = Assembler::instr_at(address_after_nop);
// There may be some reg-reg move and frame merging code to skip over before
// the branch back from the DeferredReferenceGetKeyedValue code to the inlined
// code.
while (!Assembler::IsBranch(instr_after_nop)) {
address_after_nop += Assembler::kInstrSize;
instr_after_nop = Assembler::instr_at(address_after_nop);
}
// Find the end of the inlined code for handling the load.
int b_offset =
Assembler::GetBranchOffset(instr_after_nop) + Assembler::kPcLoadDelta;
ASSERT(b_offset < 0); // Jumping back from deferred code.
*inline_end_address = address_after_nop + b_offset;
return code_marker;
}
bool LoadIC::PatchInlinedLoad(Address address, Object* map, int offset) {
if (V8::UseCrankshaft()) return false;
// Find the end of the inlined code for handling the load if this is an
// inlined IC call site.
Address inline_end_address;
if (InlinedICSiteMarker(address, &inline_end_address)
!= Assembler::PROPERTY_ACCESS_INLINED) {
return false;
}
// Patch the offset of the property load instruction (ldr r0, [r1, #+XXX]).
// The immediate must be representable in 12 bits.
ASSERT((JSObject::kMaxInstanceSize - JSObject::kHeaderSize) < (1 << 12));
Address ldr_property_instr_address =
inline_end_address - Assembler::kInstrSize;
ASSERT(Assembler::IsLdrRegisterImmediate(
Assembler::instr_at(ldr_property_instr_address)));
Instr ldr_property_instr = Assembler::instr_at(ldr_property_instr_address);
ldr_property_instr = Assembler::SetLdrRegisterImmediateOffset(
ldr_property_instr, offset - kHeapObjectTag);
Assembler::instr_at_put(ldr_property_instr_address, ldr_property_instr);
// Indicate that code has changed.
CPU::FlushICache(ldr_property_instr_address, 1 * Assembler::kInstrSize);
// Patch the map check.
// For PROPERTY_ACCESS_INLINED, the load map instruction is generated
// 4 instructions before the end of the inlined code.
// See codgen-arm.cc CodeGenerator::EmitNamedLoad.
int ldr_map_offset = -4;
Address ldr_map_instr_address =
inline_end_address + ldr_map_offset * Assembler::kInstrSize;
Assembler::set_target_address_at(ldr_map_instr_address,
reinterpret_cast<Address>(map));
return true;
}
bool LoadIC::PatchInlinedContextualLoad(Address address,
Object* map,
Object* cell,
bool is_dont_delete) {
// Find the end of the inlined code for handling the contextual load if
// this is inlined IC call site.
Address inline_end_address;
int marker = InlinedICSiteMarker(address, &inline_end_address);
if (!((marker == Assembler::PROPERTY_ACCESS_INLINED_CONTEXT) ||
(marker == Assembler::PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE))) {
return false;
}
// On ARM we don't rely on the is_dont_delete argument as the hint is already
// embedded in the code marker.
bool marker_is_dont_delete =
marker == Assembler::PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE;
// These are the offsets from the end of the inlined code.
// See codgen-arm.cc CodeGenerator::EmitNamedLoad.
int ldr_map_offset = marker_is_dont_delete ? -5: -8;
int ldr_cell_offset = marker_is_dont_delete ? -2: -5;
if (FLAG_debug_code && marker_is_dont_delete) {
// Three extra instructions were generated to check for the_hole_value.
ldr_map_offset -= 3;
ldr_cell_offset -= 3;
}
Address ldr_map_instr_address =
inline_end_address + ldr_map_offset * Assembler::kInstrSize;
Address ldr_cell_instr_address =
inline_end_address + ldr_cell_offset * Assembler::kInstrSize;
// Patch the map check.
Assembler::set_target_address_at(ldr_map_instr_address,
reinterpret_cast<Address>(map));
// Patch the cell address.
Assembler::set_target_address_at(ldr_cell_instr_address,
reinterpret_cast<Address>(cell));
return true;
}
bool StoreIC::PatchInlinedStore(Address address, Object* map, int offset) {
if (V8::UseCrankshaft()) return false;
// Find the end of the inlined code for the store if there is an
// inlined version of the store.
Address inline_end_address;
if (InlinedICSiteMarker(address, &inline_end_address)
!= Assembler::PROPERTY_ACCESS_INLINED) {
return false;
}
// Compute the address of the map load instruction.
Address ldr_map_instr_address =
inline_end_address -
(CodeGenerator::GetInlinedNamedStoreInstructionsAfterPatch() *
Assembler::kInstrSize);
// Update the offsets if initializing the inlined store. No reason
// to update the offsets when clearing the inlined version because
// it will bail out in the map check.
if (map != Heap::null_value()) {
// Patch the offset in the actual store instruction.
Address str_property_instr_address =
ldr_map_instr_address + 3 * Assembler::kInstrSize;
Instr str_property_instr = Assembler::instr_at(str_property_instr_address);
ASSERT(Assembler::IsStrRegisterImmediate(str_property_instr));
str_property_instr = Assembler::SetStrRegisterImmediateOffset(
str_property_instr, offset - kHeapObjectTag);
Assembler::instr_at_put(str_property_instr_address, str_property_instr);
// Patch the offset in the add instruction that is part of the
// write barrier.
Address add_offset_instr_address =
str_property_instr_address + Assembler::kInstrSize;
Instr add_offset_instr = Assembler::instr_at(add_offset_instr_address);
ASSERT(Assembler::IsAddRegisterImmediate(add_offset_instr));
add_offset_instr = Assembler::SetAddRegisterImmediateOffset(
add_offset_instr, offset - kHeapObjectTag);
Assembler::instr_at_put(add_offset_instr_address, add_offset_instr);
// Indicate that code has changed.
CPU::FlushICache(str_property_instr_address, 2 * Assembler::kInstrSize);
}
// Patch the map check.
Assembler::set_target_address_at(ldr_map_instr_address,
reinterpret_cast<Address>(map));
return true;
}
bool KeyedLoadIC::PatchInlinedLoad(Address address, Object* map) {
if (V8::UseCrankshaft()) return false;
Address inline_end_address;
if (InlinedICSiteMarker(address, &inline_end_address)
!= Assembler::PROPERTY_ACCESS_INLINED) {
return false;
}
// Patch the map check.
Address ldr_map_instr_address =
inline_end_address -
(CodeGenerator::GetInlinedKeyedLoadInstructionsAfterPatch() *
Assembler::kInstrSize);
Assembler::set_target_address_at(ldr_map_instr_address,
reinterpret_cast<Address>(map));
return true;
}
bool KeyedStoreIC::PatchInlinedStore(Address address, Object* map) {
if (V8::UseCrankshaft()) return false;
// Find the end of the inlined code for handling the store if this is an
// inlined IC call site.
Address inline_end_address;
if (InlinedICSiteMarker(address, &inline_end_address)
!= Assembler::PROPERTY_ACCESS_INLINED) {
return false;
}
// Patch the map check.
Address ldr_map_instr_address =
inline_end_address -
(CodeGenerator::kInlinedKeyedStoreInstructionsAfterPatch *
Assembler::kInstrSize);
Assembler::set_target_address_at(ldr_map_instr_address,
reinterpret_cast<Address>(map));
return true;
}
Object* KeyedLoadIC_Miss(Arguments args);
void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
__ IncrementCounter(&Counters::keyed_load_miss, 1, r3, r4);
__ Push(r1, r0);
ExternalReference ref = ExternalReference(IC_Utility(kKeyedLoadIC_Miss));
__ TailCallExternalReference(ref, 2, 1);
}
void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
__ Push(r1, r0);
__ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1);
}
void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label slow, check_string, index_smi, index_string, property_array_property;
Label check_pixel_array, probe_dictionary, check_number_dictionary;
Register key = r0;
Register receiver = r1;
// Check that the key is a smi.
__ BranchOnNotSmi(key, &check_string);
__ bind(&index_smi);
// Now the key is known to be a smi. This place is also jumped to from below
// where a numeric string is converted to a smi.
GenerateKeyedLoadReceiverCheck(
masm, receiver, r2, r3, Map::kHasIndexedInterceptor, &slow);
// Check the "has fast elements" bit in the receiver's map which is
// now in r2.
__ ldrb(r3, FieldMemOperand(r2, Map::kBitField2Offset));
__ tst(r3, Operand(1 << Map::kHasFastElements));
__ b(eq, &check_pixel_array);
GenerateFastArrayLoad(
masm, receiver, key, r4, r3, r2, r0, NULL, &slow);
__ IncrementCounter(&Counters::keyed_load_generic_smi, 1, r2, r3);
__ Ret();
// Check whether the elements is a pixel array.
// r0: key
// r1: receiver
__ bind(&check_pixel_array);
__ ldr(r4, FieldMemOperand(r1, JSObject::kElementsOffset));
__ ldr(r3, FieldMemOperand(r4, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kPixelArrayMapRootIndex);
__ cmp(r3, ip);
__ b(ne, &check_number_dictionary);
__ ldr(ip, FieldMemOperand(r4, PixelArray::kLengthOffset));
__ mov(r2, Operand(key, ASR, kSmiTagSize));
__ cmp(r2, ip);
__ b(hs, &slow);
__ ldr(ip, FieldMemOperand(r4, PixelArray::kExternalPointerOffset));
__ ldrb(r2, MemOperand(ip, r2));
__ mov(r0, Operand(r2, LSL, kSmiTagSize)); // Tag result as smi.
__ Ret();
__ bind(&check_number_dictionary);
// Check whether the elements is a number dictionary.
// r0: key
// r3: elements map
// r4: elements
__ LoadRoot(ip, Heap::kHashTableMapRootIndex);
__ cmp(r3, ip);
__ b(ne, &slow);
__ mov(r2, Operand(r0, ASR, kSmiTagSize));
GenerateNumberDictionaryLoad(masm, &slow, r4, r0, r0, r2, r3, r5);
__ Ret();
// Slow case, key and receiver still in r0 and r1.
__ bind(&slow);
__ IncrementCounter(&Counters::keyed_load_generic_slow, 1, r2, r3);
GenerateRuntimeGetProperty(masm);
__ bind(&check_string);
GenerateKeyStringCheck(masm, key, r2, r3, &index_string, &slow);
GenerateKeyedLoadReceiverCheck(
masm, receiver, r2, r3, Map::kHasNamedInterceptor, &slow);
// If the receiver is a fast-case object, check the keyed lookup
// cache. Otherwise probe the dictionary.
__ ldr(r3, FieldMemOperand(r1, JSObject::kPropertiesOffset));
__ ldr(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHashTableMapRootIndex);
__ cmp(r4, ip);
__ b(eq, &probe_dictionary);
// Load the map of the receiver, compute the keyed lookup cache hash
// based on 32 bits of the map pointer and the string hash.
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
__ mov(r3, Operand(r2, ASR, KeyedLookupCache::kMapHashShift));
__ ldr(r4, FieldMemOperand(r0, String::kHashFieldOffset));
__ eor(r3, r3, Operand(r4, ASR, String::kHashShift));
__ And(r3, r3, Operand(KeyedLookupCache::kCapacityMask));
// Load the key (consisting of map and symbol) from the cache and
// check for match.
ExternalReference cache_keys = ExternalReference::keyed_lookup_cache_keys();
__ mov(r4, Operand(cache_keys));
__ add(r4, r4, Operand(r3, LSL, kPointerSizeLog2 + 1));
__ ldr(r5, MemOperand(r4, kPointerSize, PostIndex)); // Move r4 to symbol.
__ cmp(r2, r5);
__ b(ne, &slow);
__ ldr(r5, MemOperand(r4));
__ cmp(r0, r5);
__ b(ne, &slow);
// Get field offset.
// r0 : key
// r1 : receiver
// r2 : receiver's map
// r3 : lookup cache index
ExternalReference cache_field_offsets
= ExternalReference::keyed_lookup_cache_field_offsets();
__ mov(r4, Operand(cache_field_offsets));
__ ldr(r5, MemOperand(r4, r3, LSL, kPointerSizeLog2));
__ ldrb(r6, FieldMemOperand(r2, Map::kInObjectPropertiesOffset));
__ sub(r5, r5, r6, SetCC);
__ b(ge, &property_array_property);
// Load in-object property.
__ ldrb(r6, FieldMemOperand(r2, Map::kInstanceSizeOffset));
__ add(r6, r6, r5); // Index from start of object.
__ sub(r1, r1, Operand(kHeapObjectTag)); // Remove the heap tag.
__ ldr(r0, MemOperand(r1, r6, LSL, kPointerSizeLog2));
__ IncrementCounter(&Counters::keyed_load_generic_lookup_cache, 1, r2, r3);
__ Ret();
// Load property array property.
__ bind(&property_array_property);
__ ldr(r1, FieldMemOperand(r1, JSObject::kPropertiesOffset));
__ add(r1, r1, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ ldr(r0, MemOperand(r1, r5, LSL, kPointerSizeLog2));
__ IncrementCounter(&Counters::keyed_load_generic_lookup_cache, 1, r2, r3);
__ Ret();
// Do a quick inline probe of the receiver's dictionary, if it
// exists.
__ bind(&probe_dictionary);
// r1: receiver
// r0: key
// r3: elements
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
__ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset));
GenerateGlobalInstanceTypeCheck(masm, r2, &slow);
// Load the property to r0.
GenerateDictionaryLoad(masm, &slow, r3, r0, r0, r2, r4);
__ IncrementCounter(&Counters::keyed_load_generic_symbol, 1, r2, r3);
__ Ret();
__ bind(&index_string);
__ IndexFromHash(r3, key);
// Now jump to the place where smi keys are handled.
__ jmp(&index_smi);
}
void KeyedLoadIC::GenerateString(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key (index)
// -- r1 : receiver
// -----------------------------------
Label miss;
Register receiver = r1;
Register index = r0;
Register scratch1 = r2;
Register scratch2 = r3;
Register result = r0;
StringCharAtGenerator char_at_generator(receiver,
index,
scratch1,
scratch2,
result,
&miss, // When not a string.
&miss, // When not a number.
&miss, // When index out of range.
STRING_INDEX_IS_ARRAY_INDEX);
char_at_generator.GenerateFast(masm);
__ Ret();
StubRuntimeCallHelper call_helper;
char_at_generator.GenerateSlow(masm, call_helper);
__ bind(&miss);
GenerateMiss(masm);
}
// Convert unsigned integer with specified number of leading zeroes in binary
// representation to IEEE 754 double.
// Integer to convert is passed in register hiword.
// Resulting double is returned in registers hiword:loword.
// This functions does not work correctly for 0.
static void GenerateUInt2Double(MacroAssembler* masm,
Register hiword,
Register loword,
Register scratch,
int leading_zeroes) {
const int meaningful_bits = kBitsPerInt - leading_zeroes - 1;
const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits;
const int mantissa_shift_for_hi_word =
meaningful_bits - HeapNumber::kMantissaBitsInTopWord;
const int mantissa_shift_for_lo_word =
kBitsPerInt - mantissa_shift_for_hi_word;
__ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift));
if (mantissa_shift_for_hi_word > 0) {
__ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word));
__ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word));
} else {
__ mov(loword, Operand(0, RelocInfo::NONE));
__ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word));
}
// If least significant bit of biased exponent was not 1 it was corrupted
// by most significant bit of mantissa so we should fix that.
if (!(biased_exponent & 1)) {
__ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift));
}
}
void KeyedLoadIC::GenerateExternalArray(MacroAssembler* masm,
ExternalArrayType array_type) {
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label slow, failed_allocation;
Register key = r0;
Register receiver = r1;
// Check that the object isn't a smi
__ BranchOnSmi(receiver, &slow);
// Check that the key is a smi.
__ BranchOnNotSmi(key, &slow);
// Check that the object is a JS object. Load map into r2.
__ CompareObjectType(receiver, r2, r3, FIRST_JS_OBJECT_TYPE);
__ b(lt, &slow);
// Check that the receiver does not require access checks. We need
// to check this explicitly since this generic stub does not perform
// map checks.
__ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset));
__ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded));
__ b(ne, &slow);
// Check that the elements array is the appropriate type of
// ExternalArray.
__ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
__ cmp(r2, ip);
__ b(ne, &slow);
// Check that the index is in range.
__ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
__ cmp(ip, Operand(key, ASR, kSmiTagSize));
// Unsigned comparison catches both negative and too-large values.
__ b(lo, &slow);
// r3: elements array
__ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
// r3: base pointer of external storage
// We are not untagging smi key and instead work with it
// as if it was premultiplied by 2.
ASSERT((kSmiTag == 0) && (kSmiTagSize == 1));
Register value = r2;
switch (array_type) {
case kExternalByteArray:
__ ldrsb(value, MemOperand(r3, key, LSR, 1));
break;
case kExternalUnsignedByteArray:
__ ldrb(value, MemOperand(r3, key, LSR, 1));
break;
case kExternalShortArray:
__ ldrsh(value, MemOperand(r3, key, LSL, 0));
break;
case kExternalUnsignedShortArray:
__ ldrh(value, MemOperand(r3, key, LSL, 0));
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ ldr(value, MemOperand(r3, key, LSL, 1));
break;
case kExternalFloatArray:
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
__ add(r2, r3, Operand(key, LSL, 1));
__ vldr(s0, r2, 0);
} else {
__ ldr(value, MemOperand(r3, key, LSL, 1));
}
break;
default:
UNREACHABLE();
break;
}
// For integer array types:
// r2: value
// For floating-point array type
// s0: value (if VFP3 is supported)
// r2: value (if VFP3 is not supported)
if (array_type == kExternalIntArray) {
// For the Int and UnsignedInt array types, we need to see whether
// the value can be represented in a Smi. If not, we need to convert
// it to a HeapNumber.
Label box_int;
__ cmp(value, Operand(0xC0000000));
__ b(mi, &box_int);
// Tag integer as smi and return it.
__ mov(r0, Operand(value, LSL, kSmiTagSize));
__ Ret();
__ bind(&box_int);
// Allocate a HeapNumber for the result and perform int-to-double
// conversion. Don't touch r0 or r1 as they are needed if allocation
// fails.
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r5, r3, r4, r6, &slow);
// Now we can use r0 for the result as key is not needed any more.
__ mov(r0, r5);
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
__ vmov(s0, value);
__ vcvt_f64_s32(d0, s0);
__ sub(r3, r0, Operand(kHeapObjectTag));
__ vstr(d0, r3, HeapNumber::kValueOffset);
__ Ret();
} else {
WriteInt32ToHeapNumberStub stub(value, r0, r3);
__ TailCallStub(&stub);
}
} else if (array_type == kExternalUnsignedIntArray) {
// The test is different for unsigned int values. Since we need
// the value to be in the range of a positive smi, we can't
// handle either of the top two bits being set in the value.
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
Label box_int, done;
__ tst(value, Operand(0xC0000000));
__ b(ne, &box_int);
// Tag integer as smi and return it.
__ mov(r0, Operand(value, LSL, kSmiTagSize));
__ Ret();
__ bind(&box_int);
__ vmov(s0, value);
// Allocate a HeapNumber for the result and perform int-to-double
// conversion. Don't use r0 and r1 as AllocateHeapNumber clobbers all
// registers - also when jumping due to exhausted young space.
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r2, r3, r4, r6, &slow);
__ vcvt_f64_u32(d0, s0);
__ sub(r1, r2, Operand(kHeapObjectTag));
__ vstr(d0, r1, HeapNumber::kValueOffset);
__ mov(r0, r2);
__ Ret();
} else {
// Check whether unsigned integer fits into smi.
Label box_int_0, box_int_1, done;
__ tst(value, Operand(0x80000000));
__ b(ne, &box_int_0);
__ tst(value, Operand(0x40000000));
__ b(ne, &box_int_1);
// Tag integer as smi and return it.
__ mov(r0, Operand(value, LSL, kSmiTagSize));
__ Ret();
Register hiword = value; // r2.
Register loword = r3;
__ bind(&box_int_0);
// Integer does not have leading zeros.
GenerateUInt2Double(masm, hiword, loword, r4, 0);
__ b(&done);
__ bind(&box_int_1);
// Integer has one leading zero.
GenerateUInt2Double(masm, hiword, loword, r4, 1);
__ bind(&done);
// Integer was converted to double in registers hiword:loword.
// Wrap it into a HeapNumber. Don't use r0 and r1 as AllocateHeapNumber
// clobbers all registers - also when jumping due to exhausted young
// space.
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r4, r5, r7, r6, &slow);
__ str(hiword, FieldMemOperand(r4, HeapNumber::kExponentOffset));
__ str(loword, FieldMemOperand(r4, HeapNumber::kMantissaOffset));
__ mov(r0, r4);
__ Ret();
}
} else if (array_type == kExternalFloatArray) {
// For the floating-point array type, we need to always allocate a
// HeapNumber.
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
// Allocate a HeapNumber for the result. Don't use r0 and r1 as
// AllocateHeapNumber clobbers all registers - also when jumping due to
// exhausted young space.
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r2, r3, r4, r6, &slow);
__ vcvt_f64_f32(d0, s0);
__ sub(r1, r2, Operand(kHeapObjectTag));
__ vstr(d0, r1, HeapNumber::kValueOffset);
__ mov(r0, r2);
__ Ret();
} else {
// Allocate a HeapNumber for the result. Don't use r0 and r1 as
// AllocateHeapNumber clobbers all registers - also when jumping due to
// exhausted young space.
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r3, r4, r5, r6, &slow);
// VFP is not available, do manual single to double conversion.
// r2: floating point value (binary32)
// r3: heap number for result
// Extract mantissa to r0. OK to clobber r0 now as there are no jumps to
// the slow case from here.
__ and_(r0, value, Operand(kBinary32MantissaMask));
// Extract exponent to r1. OK to clobber r1 now as there are no jumps to
// the slow case from here.
__ mov(r1, Operand(value, LSR, kBinary32MantissaBits));
__ and_(r1, r1, Operand(kBinary32ExponentMask >> kBinary32MantissaBits));
Label exponent_rebiased;
__ teq(r1, Operand(0x00, RelocInfo::NONE));
__ b(eq, &exponent_rebiased);
__ teq(r1, Operand(0xff));
__ mov(r1, Operand(0x7ff), LeaveCC, eq);
__ b(eq, &exponent_rebiased);
// Rebias exponent.
__ add(r1,
r1,
Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias));
__ bind(&exponent_rebiased);
__ and_(r2, value, Operand(kBinary32SignMask));
value = no_reg;
__ orr(r2, r2, Operand(r1, LSL, HeapNumber::kMantissaBitsInTopWord));
// Shift mantissa.
static const int kMantissaShiftForHiWord =
kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
static const int kMantissaShiftForLoWord =
kBitsPerInt - kMantissaShiftForHiWord;
__ orr(r2, r2, Operand(r0, LSR, kMantissaShiftForHiWord));
__ mov(r0, Operand(r0, LSL, kMantissaShiftForLoWord));
__ str(r2, FieldMemOperand(r3, HeapNumber::kExponentOffset));
__ str(r0, FieldMemOperand(r3, HeapNumber::kMantissaOffset));
__ mov(r0, r3);
__ Ret();
}
} else {
// Tag integer as smi and return it.
__ mov(r0, Operand(value, LSL, kSmiTagSize));
__ Ret();
}
// Slow case, key and receiver still in r0 and r1.
__ bind(&slow);
__ IncrementCounter(&Counters::keyed_load_external_array_slow, 1, r2, r3);
GenerateRuntimeGetProperty(masm);
}
void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- lr : return address
// -- r0 : key
// -- r1 : receiver
// -----------------------------------
Label slow;
// Check that the receiver isn't a smi.
__ BranchOnSmi(r1, &slow);
// Check that the key is an array index, that is Uint32.
__ tst(r0, Operand(kSmiTagMask | kSmiSignMask));
__ b(ne, &slow);
// Get the map of the receiver.
__ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset));
// Check that it has indexed interceptor and access checks
// are not enabled for this object.
__ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset));
__ and_(r3, r3, Operand(kSlowCaseBitFieldMask));
__ cmp(r3, Operand(1 << Map::kHasIndexedInterceptor));
__ b(ne, &slow);
// Everything is fine, call runtime.
__ Push(r1, r0); // Receiver, key.
// Perform tail call to the entry.
__ TailCallExternalReference(ExternalReference(
IC_Utility(kKeyedLoadPropertyWithInterceptor)), 2, 1);
__ bind(&slow);
GenerateMiss(masm);
}
void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -----------------------------------
// Push receiver, key and value for runtime call.
__ Push(r2, r1, r0);
ExternalReference ref = ExternalReference(IC_Utility(kKeyedStoreIC_Miss));
__ TailCallExternalReference(ref, 3, 1);
}
void KeyedStoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -----------------------------------
// Push receiver, key and value for runtime call.
__ Push(r2, r1, r0);
__ TailCallRuntime(Runtime::kSetProperty, 3, 1);
}
void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm) {
// ---------- S t a t e --------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -----------------------------------
Label slow, fast, array, extra, check_pixel_array;
// Register usage.
Register value = r0;
Register key = r1;
Register receiver = r2;
Register elements = r3; // Elements array of the receiver.
// r4 and r5 are used as general scratch registers.
// Check that the key is a smi.
__ tst(key, Operand(kSmiTagMask));
__ b(ne, &slow);
// Check that the object isn't a smi.
__ tst(receiver, Operand(kSmiTagMask));
__ b(eq, &slow);
// Get the map of the object.
__ ldr(r4, FieldMemOperand(receiver, HeapObject::kMapOffset));
// Check that the receiver does not require access checks. We need
// to do this because this generic stub does not perform map checks.
__ ldrb(ip, FieldMemOperand(r4, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded));
__ b(ne, &slow);
// Check if the object is a JS array or not.
__ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
__ cmp(r4, Operand(JS_ARRAY_TYPE));
__ b(eq, &array);
// Check that the object is some kind of JS object.
__ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE));
__ b(lt, &slow);
// Object case: Check key against length in the elements array.
__ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
// Check that the object is in fast mode and writable.
__ ldr(r4, FieldMemOperand(elements, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
__ cmp(r4, ip);
__ b(ne, &check_pixel_array);
// Check array bounds. Both the key and the length of FixedArray are smis.
__ ldr(ip, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ cmp(key, Operand(ip));
__ b(lo, &fast);
// Slow case, handle jump to runtime.
__ bind(&slow);
// Entry registers are intact.
// r0: value.
// r1: key.
// r2: receiver.
GenerateRuntimeSetProperty(masm);
// Check whether the elements is a pixel array.
// r4: elements map.
__ bind(&check_pixel_array);
__ LoadRoot(ip, Heap::kPixelArrayMapRootIndex);
__ cmp(r4, ip);
__ b(ne, &slow);
// Check that the value is a smi. If a conversion is needed call into the
// runtime to convert and clamp.
__ BranchOnNotSmi(value, &slow);
__ mov(r4, Operand(key, ASR, kSmiTagSize)); // Untag the key.
__ ldr(ip, FieldMemOperand(elements, PixelArray::kLengthOffset));
__ cmp(r4, Operand(ip));
__ b(hs, &slow);
__ mov(r5, Operand(value, ASR, kSmiTagSize)); // Untag the value.
__ Usat(r5, 8, Operand(r5)); // Clamp the value to [0..255].
// Get the pointer to the external array. This clobbers elements.
__ ldr(elements,
FieldMemOperand(elements, PixelArray::kExternalPointerOffset));
__ strb(r5, MemOperand(elements, r4)); // Elements is now external array.
__ Ret();
// Extra capacity case: Check if there is extra capacity to
// perform the store and update the length. Used for adding one
// element to the array by writing to array[array.length].
__ bind(&extra);
// Condition code from comparing key and array length is still available.
__ b(ne, &slow); // Only support writing to writing to array[array.length].
// Check for room in the elements backing store.
// Both the key and the length of FixedArray are smis.
__ ldr(ip, FieldMemOperand(elements, FixedArray::kLengthOffset));
__ cmp(key, Operand(ip));
__ b(hs, &slow);
// Calculate key + 1 as smi.
ASSERT_EQ(0, kSmiTag);
__ add(r4, key, Operand(Smi::FromInt(1)));
__ str(r4, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ b(&fast);
// Array case: Get the length and the elements array from the JS
// array. Check that the array is in fast mode (and writable); if it
// is the length is always a smi.
__ bind(&array);
__ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ ldr(r4, FieldMemOperand(elements, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kFixedArrayMapRootIndex);
__ cmp(r4, ip);
__ b(ne, &slow);
// Check the key against the length in the array.
__ ldr(ip, FieldMemOperand(receiver, JSArray::kLengthOffset));
__ cmp(key, Operand(ip));
__ b(hs, &extra);
// Fall through to fast case.
__ bind(&fast);
// Fast case, store the value to the elements backing store.
__ add(r5, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ add(r5, r5, Operand(key, LSL, kPointerSizeLog2 - kSmiTagSize));
__ str(value, MemOperand(r5));
// Skip write barrier if the written value is a smi.
__ tst(value, Operand(kSmiTagMask));
__ Ret(eq);
// Update write barrier for the elements array address.
__ sub(r4, r5, Operand(elements));
__ RecordWrite(elements, Operand(r4), r5, r6);
__ Ret();
}
// Convert and store int passed in register ival to IEEE 754 single precision
// floating point value at memory location (dst + 4 * wordoffset)
// If VFP3 is available use it for conversion.
static void StoreIntAsFloat(MacroAssembler* masm,
Register dst,
Register wordoffset,
Register ival,
Register fval,
Register scratch1,
Register scratch2) {
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
__ vmov(s0, ival);
__ add(scratch1, dst, Operand(wordoffset, LSL, 2));
__ vcvt_f32_s32(s0, s0);
__ vstr(s0, scratch1, 0);
} else {
Label not_special, done;
// Move sign bit from source to destination. This works because the sign
// bit in the exponent word of the double has the same position and polarity
// as the 2's complement sign bit in a Smi.
ASSERT(kBinary32SignMask == 0x80000000u);
__ and_(fval, ival, Operand(kBinary32SignMask), SetCC);
// Negate value if it is negative.
__ rsb(ival, ival, Operand(0, RelocInfo::NONE), LeaveCC, ne);
// We have -1, 0 or 1, which we treat specially. Register ival contains
// absolute value: it is either equal to 1 (special case of -1 and 1),
// greater than 1 (not a special case) or less than 1 (special case of 0).
__ cmp(ival, Operand(1));
__ b(gt, &not_special);
// For 1 or -1 we need to or in the 0 exponent (biased).
static const uint32_t exponent_word_for_1 =
kBinary32ExponentBias << kBinary32ExponentShift;
__ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq);
__ b(&done);
__ bind(&not_special);
// Count leading zeros.
// Gets the wrong answer for 0, but we already checked for that case above.
Register zeros = scratch2;
__ CountLeadingZeros(zeros, ival, scratch1);
// Compute exponent and or it into the exponent register.
__ rsb(scratch1,
zeros,
Operand((kBitsPerInt - 1) + kBinary32ExponentBias));
__ orr(fval,
fval,
Operand(scratch1, LSL, kBinary32ExponentShift));
// Shift up the source chopping the top bit off.
__ add(zeros, zeros, Operand(1));
// This wouldn't work for 1 and -1 as the shift would be 32 which means 0.
__ mov(ival, Operand(ival, LSL, zeros));
// And the top (top 20 bits).
__ orr(fval,
fval,
Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits));
__ bind(&done);
__ str(fval, MemOperand(dst, wordoffset, LSL, 2));
}
}
static bool IsElementTypeSigned(ExternalArrayType array_type) {
switch (array_type) {
case kExternalByteArray:
case kExternalShortArray:
case kExternalIntArray:
return true;
case kExternalUnsignedByteArray:
case kExternalUnsignedShortArray:
case kExternalUnsignedIntArray:
return false;
default:
UNREACHABLE();
return false;
}
}
void KeyedStoreIC::GenerateExternalArray(MacroAssembler* masm,
ExternalArrayType array_type) {
// ---------- S t a t e --------------
// -- r0 : value
// -- r1 : key
// -- r2 : receiver
// -- lr : return address
// -----------------------------------
Label slow, check_heap_number;
// Register usage.
Register value = r0;
Register key = r1;
Register receiver = r2;
// r3 mostly holds the elements array or the destination external array.
// Check that the object isn't a smi.
__ BranchOnSmi(receiver, &slow);
// Check that the object is a JS object. Load map into r3.
__ CompareObjectType(receiver, r3, r4, FIRST_JS_OBJECT_TYPE);
__ b(le, &slow);
// Check that the receiver does not require access checks. We need
// to do this because this generic stub does not perform map checks.
__ ldrb(ip, FieldMemOperand(r3, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded));
__ b(ne, &slow);
// Check that the key is a smi.
__ BranchOnNotSmi(key, &slow);
// Check that the elements array is the appropriate type of ExternalArray.
__ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset));
__ ldr(r4, FieldMemOperand(r3, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type));
__ cmp(r4, ip);
__ b(ne, &slow);
// Check that the index is in range.
__ mov(r4, Operand(key, ASR, kSmiTagSize)); // Untag the index.
__ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset));
__ cmp(r4, ip);
// Unsigned comparison catches both negative and too-large values.
__ b(hs, &slow);
// Handle both smis and HeapNumbers in the fast path. Go to the
// runtime for all other kinds of values.
// r3: external array.
// r4: key (integer).
__ BranchOnNotSmi(value, &check_heap_number);
__ mov(r5, Operand(value, ASR, kSmiTagSize)); // Untag the value.
__ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
// r3: base pointer of external storage.
// r4: key (integer).
// r5: value (integer).
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ strb(r5, MemOperand(r3, r4, LSL, 0));
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ strh(r5, MemOperand(r3, r4, LSL, 1));
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ str(r5, MemOperand(r3, r4, LSL, 2));
break;
case kExternalFloatArray:
// Perform int-to-float conversion and store to memory.
StoreIntAsFloat(masm, r3, r4, r5, r6, r7, r9);
break;
default:
UNREACHABLE();
break;
}
// Entry registers are intact, r0 holds the value which is the return value.
__ Ret();
// r3: external array.
// r4: index (integer).
__ bind(&check_heap_number);
__ CompareObjectType(value, r5, r6, HEAP_NUMBER_TYPE);
__ b(ne, &slow);
__ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset));
// r3: base pointer of external storage.
// r4: key (integer).
// The WebGL specification leaves the behavior of storing NaN and
// +/-Infinity into integer arrays basically undefined. For more
// reproducible behavior, convert these to zero.
if (CpuFeatures::IsSupported(VFP3)) {
CpuFeatures::Scope scope(VFP3);
if (array_type == kExternalFloatArray) {
// vldr requires offset to be a multiple of 4 so we can not
// include -kHeapObjectTag into it.
__ sub(r5, r0, Operand(kHeapObjectTag));
__ vldr(d0, r5, HeapNumber::kValueOffset);
__ add(r5, r3, Operand(r4, LSL, 2));
__ vcvt_f32_f64(s0, d0);
__ vstr(s0, r5, 0);
} else {
// Need to perform float-to-int conversion.
// Test for NaN or infinity (both give zero).
__ ldr(r6, FieldMemOperand(r5, HeapNumber::kExponentOffset));
// Hoisted load. vldr requires offset to be a multiple of 4 so we can not
// include -kHeapObjectTag into it.
__ sub(r5, r0, Operand(kHeapObjectTag));
__ vldr(d0, r5, HeapNumber::kValueOffset);
__ Sbfx(r6, r6, HeapNumber::kExponentShift, HeapNumber::kExponentBits);
// NaNs and Infinities have all-one exponents so they sign extend to -1.
__ cmp(r6, Operand(-1));
__ mov(r5, Operand(Smi::FromInt(0)), LeaveCC, eq);
// Not infinity or NaN simply convert to int.
if (IsElementTypeSigned(array_type)) {
__ vcvt_s32_f64(s0, d0, Assembler::RoundToZero, ne);
} else {
__ vcvt_u32_f64(s0, d0, Assembler::RoundToZero, ne);
}
__ vmov(r5, s0, ne);
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ strb(r5, MemOperand(r3, r4, LSL, 0));
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ strh(r5, MemOperand(r3, r4, LSL, 1));
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ str(r5, MemOperand(r3, r4, LSL, 2));
break;
default:
UNREACHABLE();
break;
}
}
// Entry registers are intact, r0 holds the value which is the return value.
__ Ret();
} else {
// VFP3 is not available do manual conversions.
__ ldr(r5, FieldMemOperand(value, HeapNumber::kExponentOffset));
__ ldr(r6, FieldMemOperand(value, HeapNumber::kMantissaOffset));
if (array_type == kExternalFloatArray) {
Label done, nan_or_infinity_or_zero;
static const int kMantissaInHiWordShift =
kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord;
static const int kMantissaInLoWordShift =
kBitsPerInt - kMantissaInHiWordShift;
// Test for all special exponent values: zeros, subnormal numbers, NaNs
// and infinities. All these should be converted to 0.
__ mov(r7, Operand(HeapNumber::kExponentMask));
__ and_(r9, r5, Operand(r7), SetCC);
__ b(eq, &nan_or_infinity_or_zero);
__ teq(r9, Operand(r7));
__ mov(r9, Operand(kBinary32ExponentMask), LeaveCC, eq);
__ b(eq, &nan_or_infinity_or_zero);
// Rebias exponent.
__ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
__ add(r9,
r9,
Operand(kBinary32ExponentBias - HeapNumber::kExponentBias));
__ cmp(r9, Operand(kBinary32MaxExponent));
__ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, gt);
__ orr(r5, r5, Operand(kBinary32ExponentMask), LeaveCC, gt);
__ b(gt, &done);
__ cmp(r9, Operand(kBinary32MinExponent));
__ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, lt);
__ b(lt, &done);
__ and_(r7, r5, Operand(HeapNumber::kSignMask));
__ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
__ orr(r7, r7, Operand(r5, LSL, kMantissaInHiWordShift));
__ orr(r7, r7, Operand(r6, LSR, kMantissaInLoWordShift));
__ orr(r5, r7, Operand(r9, LSL, kBinary32ExponentShift));
__ bind(&done);
__ str(r5, MemOperand(r3, r4, LSL, 2));
// Entry registers are intact, r0 holds the value which is the return
// value.
__ Ret();
__ bind(&nan_or_infinity_or_zero);
__ and_(r7, r5, Operand(HeapNumber::kSignMask));
__ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
__ orr(r9, r9, r7);
__ orr(r9, r9, Operand(r5, LSL, kMantissaInHiWordShift));
__ orr(r5, r9, Operand(r6, LSR, kMantissaInLoWordShift));
__ b(&done);
} else {
bool is_signed_type = IsElementTypeSigned(array_type);
int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt;
int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000;
Label done, sign;
// Test for all special exponent values: zeros, subnormal numbers, NaNs
// and infinities. All these should be converted to 0.
__ mov(r7, Operand(HeapNumber::kExponentMask));
__ and_(r9, r5, Operand(r7), SetCC);
__ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
__ b(eq, &done);
__ teq(r9, Operand(r7));
__ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq);
__ b(eq, &done);
// Unbias exponent.
__ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift));
__ sub(r9, r9, Operand(HeapNumber::kExponentBias), SetCC);
// If exponent is negative than result is 0.
__ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, mi);
__ b(mi, &done);
// If exponent is too big than result is minimal value.
__ cmp(r9, Operand(meaningfull_bits - 1));
__ mov(r5, Operand(min_value), LeaveCC, ge);
__ b(ge, &done);
__ and_(r7, r5, Operand(HeapNumber::kSignMask), SetCC);
__ and_(r5, r5, Operand(HeapNumber::kMantissaMask));
__ orr(r5, r5, Operand(1u << HeapNumber::kMantissaBitsInTopWord));
__ rsb(r9, r9, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC);
__ mov(r5, Operand(r5, LSR, r9), LeaveCC, pl);
__ b(pl, &sign);
__ rsb(r9, r9, Operand(0, RelocInfo::NONE));
__ mov(r5, Operand(r5, LSL, r9));
__ rsb(r9, r9, Operand(meaningfull_bits));
__ orr(r5, r5, Operand(r6, LSR, r9));
__ bind(&sign);
__ teq(r7, Operand(0, RelocInfo::NONE));
__ rsb(r5, r5, Operand(0, RelocInfo::NONE), LeaveCC, ne);
__ bind(&done);
switch (array_type) {
case kExternalByteArray:
case kExternalUnsignedByteArray:
__ strb(r5, MemOperand(r3, r4, LSL, 0));
break;
case kExternalShortArray:
case kExternalUnsignedShortArray:
__ strh(r5, MemOperand(r3, r4, LSL, 1));
break;
case kExternalIntArray:
case kExternalUnsignedIntArray:
__ str(r5, MemOperand(r3, r4, LSL, 2));
break;
default:
UNREACHABLE();
break;
}
}
}
// Slow case: call runtime.
__ bind(&slow);
// Entry registers are intact.
// r0: value
// r1: key
// r2: receiver
GenerateRuntimeSetProperty(masm);
}
void StoreIC::GenerateMegamorphic(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
// Get the receiver from the stack and probe the stub cache.
Code::Flags flags = Code::ComputeFlags(Code::STORE_IC,
NOT_IN_LOOP,
MONOMORPHIC);
StubCache::GenerateProbe(masm, flags, r1, r2, r3, r4, r5);
// Cache miss: Jump to runtime.
GenerateMiss(masm);
}
void StoreIC::GenerateMiss(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
__ Push(r1, r2, r0);
// Perform tail call to the entry.
ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_Miss));
__ TailCallExternalReference(ref, 3, 1);
}
void StoreIC::GenerateArrayLength(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
//
// This accepts as a receiver anything JSObject::SetElementsLength accepts
// (currently anything except for external and pixel arrays which means
// anything with elements of FixedArray type.), but currently is restricted
// to JSArray.
// Value must be a number, but only smis are accepted as the most common case.
Label miss;
Register receiver = r1;
Register value = r0;
Register scratch = r3;
// Check that the receiver isn't a smi.
__ BranchOnSmi(receiver, &miss);
// Check that the object is a JS array.
__ CompareObjectType(receiver, scratch, scratch, JS_ARRAY_TYPE);
__ b(ne, &miss);
// Check that elements are FixedArray.
// We rely on StoreIC_ArrayLength below to deal with all types of
// fast elements (including COW).
__ ldr(scratch, FieldMemOperand(receiver, JSArray::kElementsOffset));
__ CompareObjectType(scratch, scratch, scratch, FIXED_ARRAY_TYPE);
__ b(ne, &miss);
// Check that value is a smi.
__ BranchOnNotSmi(value, &miss);
// Prepare tail call to StoreIC_ArrayLength.
__ Push(receiver, value);
ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_ArrayLength));
__ TailCallExternalReference(ref, 2, 1);
__ bind(&miss);
GenerateMiss(masm);
}
void StoreIC::GenerateNormal(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
Label miss;
GenerateStringDictionaryReceiverCheck(masm, r1, r3, r4, r5, &miss);
GenerateDictionaryStore(masm, &miss, r3, r2, r0, r4, r5);
__ IncrementCounter(&Counters::store_normal_hit, 1, r4, r5);
__ Ret();
__ bind(&miss);
__ IncrementCounter(&Counters::store_normal_miss, 1, r4, r5);
GenerateMiss(masm);
}
void StoreIC::GenerateGlobalProxy(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- r0 : value
// -- r1 : receiver
// -- r2 : name
// -- lr : return address
// -----------------------------------
__ Push(r1, r2, r0);
// Do tail-call to runtime routine.
__ TailCallRuntime(Runtime::kSetProperty, 3, 1);
}
#undef __
Condition CompareIC::ComputeCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return eq;
case Token::LT:
return lt;
case Token::GT:
// Reverse left and right operands to obtain ECMA-262 conversion order.
return lt;
case Token::LTE:
// Reverse left and right operands to obtain ECMA-262 conversion order.
return ge;
case Token::GTE:
return ge;
default:
UNREACHABLE();
return no_condition;
}
}
void CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) {
HandleScope scope;
Handle<Code> rewritten;
State previous_state = GetState();
State state = TargetState(previous_state, false, x, y);
if (state == GENERIC) {
CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, r1, r0);
rewritten = stub.GetCode();
} else {
ICCompareStub stub(op_, state);
rewritten = stub.GetCode();
}
set_target(*rewritten);
#ifdef DEBUG
if (FLAG_trace_ic) {
PrintF("[CompareIC (%s->%s)#%s]\n",
GetStateName(previous_state),
GetStateName(state),
Token::Name(op_));
}
#endif
}
void PatchInlinedSmiCode(Address address) {
UNIMPLEMENTED();
}
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_ARM