| // Copyright 2006-2008 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_ARM) |
| |
| #include "assembler-arm.h" |
| #include "code-stubs.h" |
| #include "codegen-inl.h" |
| #include "disasm.h" |
| #include "ic-inl.h" |
| #include "runtime.h" |
| #include "stub-cache.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| // ---------------------------------------------------------------------------- |
| // Static IC stub generators. |
| // |
| |
| #define __ ACCESS_MASM(masm) |
| |
| |
| static void GenerateGlobalInstanceTypeCheck(MacroAssembler* masm, |
| Register type, |
| Label* global_object) { |
| // Register usage: |
| // type: holds the receiver instance type on entry. |
| __ cmp(type, Operand(JS_GLOBAL_OBJECT_TYPE)); |
| __ b(eq, global_object); |
| __ cmp(type, Operand(JS_BUILTINS_OBJECT_TYPE)); |
| __ b(eq, global_object); |
| __ cmp(type, Operand(JS_GLOBAL_PROXY_TYPE)); |
| __ b(eq, global_object); |
| } |
| |
| |
| // Generated code falls through if the receiver is a regular non-global |
| // JS object with slow properties and no interceptors. |
| static void GenerateStringDictionaryReceiverCheck(MacroAssembler* masm, |
| Register receiver, |
| Register elements, |
| Register t0, |
| Register t1, |
| Label* miss) { |
| // Register usage: |
| // receiver: holds the receiver on entry and is unchanged. |
| // elements: holds the property dictionary on fall through. |
| // Scratch registers: |
| // t0: used to holds the receiver map. |
| // t1: used to holds the receiver instance type, receiver bit mask and |
| // elements map. |
| |
| // Check that the receiver isn't a smi. |
| __ tst(receiver, Operand(kSmiTagMask)); |
| __ b(eq, miss); |
| |
| // Check that the receiver is a valid JS object. |
| __ CompareObjectType(receiver, t0, t1, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, miss); |
| |
| // If this assert fails, we have to check upper bound too. |
| ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); |
| |
| GenerateGlobalInstanceTypeCheck(masm, t1, miss); |
| |
| // Check that the global object does not require access checks. |
| __ ldrb(t1, FieldMemOperand(t0, Map::kBitFieldOffset)); |
| __ tst(t1, Operand((1 << Map::kIsAccessCheckNeeded) | |
| (1 << Map::kHasNamedInterceptor))); |
| __ b(nz, miss); |
| |
| __ ldr(elements, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); |
| __ ldr(t1, FieldMemOperand(elements, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kHashTableMapRootIndex); |
| __ cmp(t1, ip); |
| __ b(nz, miss); |
| } |
| |
| |
| // Probe the string dictionary in the |elements| register. Jump to the |
| // |done| label if a property with the given name is found. Jump to |
| // the |miss| label otherwise. |
| static void GenerateStringDictionaryProbes(MacroAssembler* masm, |
| Label* miss, |
| Label* done, |
| Register elements, |
| Register name, |
| Register scratch1, |
| Register scratch2) { |
| // Compute the capacity mask. |
| const int kCapacityOffset = StringDictionary::kHeaderSize + |
| StringDictionary::kCapacityIndex * kPointerSize; |
| __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset)); |
| __ mov(scratch1, Operand(scratch1, ASR, kSmiTagSize)); // convert smi to int |
| __ sub(scratch1, scratch1, Operand(1)); |
| |
| const int kElementsStartOffset = StringDictionary::kHeaderSize + |
| StringDictionary::kElementsStartIndex * kPointerSize; |
| |
| // Generate an unrolled loop that performs a few probes before |
| // giving up. Measurements done on Gmail indicate that 2 probes |
| // cover ~93% of loads from dictionaries. |
| static const int kProbes = 4; |
| for (int i = 0; i < kProbes; i++) { |
| // Compute the masked index: (hash + i + i * i) & mask. |
| __ ldr(scratch2, FieldMemOperand(name, String::kHashFieldOffset)); |
| if (i > 0) { |
| // Add the probe offset (i + i * i) left shifted to avoid right shifting |
| // the hash in a separate instruction. The value hash + i + i * i is right |
| // shifted in the following and instruction. |
| ASSERT(StringDictionary::GetProbeOffset(i) < |
| 1 << (32 - String::kHashFieldOffset)); |
| __ add(scratch2, scratch2, Operand( |
| StringDictionary::GetProbeOffset(i) << String::kHashShift)); |
| } |
| __ and_(scratch2, scratch1, Operand(scratch2, LSR, String::kHashShift)); |
| |
| // Scale the index by multiplying by the element size. |
| ASSERT(StringDictionary::kEntrySize == 3); |
| // scratch2 = scratch2 * 3. |
| __ add(scratch2, scratch2, Operand(scratch2, LSL, 1)); |
| |
| // Check if the key is identical to the name. |
| __ add(scratch2, elements, Operand(scratch2, LSL, 2)); |
| __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset)); |
| __ cmp(name, Operand(ip)); |
| if (i != kProbes - 1) { |
| __ b(eq, done); |
| } else { |
| __ b(ne, miss); |
| } |
| } |
| } |
| |
| |
| // Helper function used from LoadIC/CallIC GenerateNormal. |
| // |
| // elements: Property dictionary. It is not clobbered if a jump to the miss |
| // label is done. |
| // name: Property name. It is not clobbered if a jump to the miss label is |
| // done |
| // result: Register for the result. It is only updated if a jump to the miss |
| // label is not done. Can be the same as elements or name clobbering |
| // one of these in the case of not jumping to the miss label. |
| // The two scratch registers need to be different from elements, name and |
| // result. |
| // The generated code assumes that the receiver has slow properties, |
| // is not a global object and does not have interceptors. |
| static void GenerateDictionaryLoad(MacroAssembler* masm, |
| Label* miss, |
| Register elements, |
| Register name, |
| Register result, |
| Register scratch1, |
| Register scratch2) { |
| // Main use of the scratch registers. |
| // scratch1: Used as temporary and to hold the capacity of the property |
| // dictionary. |
| // scratch2: Used as temporary. |
| Label done; |
| |
| // Probe the dictionary. |
| GenerateStringDictionaryProbes(masm, |
| miss, |
| &done, |
| elements, |
| name, |
| scratch1, |
| scratch2); |
| |
| // If probing finds an entry check that the value is a normal |
| // property. |
| __ bind(&done); // scratch2 == elements + 4 * index |
| const int kElementsStartOffset = StringDictionary::kHeaderSize + |
| StringDictionary::kElementsStartIndex * kPointerSize; |
| const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; |
| __ ldr(scratch1, FieldMemOperand(scratch2, kDetailsOffset)); |
| __ tst(scratch1, Operand(PropertyDetails::TypeField::mask() << kSmiTagSize)); |
| __ b(ne, miss); |
| |
| // Get the value at the masked, scaled index and return. |
| __ ldr(result, |
| FieldMemOperand(scratch2, kElementsStartOffset + 1 * kPointerSize)); |
| } |
| |
| |
| // Helper function used from StoreIC::GenerateNormal. |
| // |
| // elements: Property dictionary. It is not clobbered if a jump to the miss |
| // label is done. |
| // name: Property name. It is not clobbered if a jump to the miss label is |
| // done |
| // value: The value to store. |
| // The two scratch registers need to be different from elements, name and |
| // result. |
| // The generated code assumes that the receiver has slow properties, |
| // is not a global object and does not have interceptors. |
| static void GenerateDictionaryStore(MacroAssembler* masm, |
| Label* miss, |
| Register elements, |
| Register name, |
| Register value, |
| Register scratch1, |
| Register scratch2) { |
| // Main use of the scratch registers. |
| // scratch1: Used as temporary and to hold the capacity of the property |
| // dictionary. |
| // scratch2: Used as temporary. |
| Label done; |
| |
| // Probe the dictionary. |
| GenerateStringDictionaryProbes(masm, |
| miss, |
| &done, |
| elements, |
| name, |
| scratch1, |
| scratch2); |
| |
| // If probing finds an entry in the dictionary check that the value |
| // is a normal property that is not read only. |
| __ bind(&done); // scratch2 == elements + 4 * index |
| const int kElementsStartOffset = StringDictionary::kHeaderSize + |
| StringDictionary::kElementsStartIndex * kPointerSize; |
| const int kDetailsOffset = kElementsStartOffset + 2 * kPointerSize; |
| const int kTypeAndReadOnlyMask |
| = (PropertyDetails::TypeField::mask() | |
| PropertyDetails::AttributesField::encode(READ_ONLY)) << kSmiTagSize; |
| __ ldr(scratch1, FieldMemOperand(scratch2, kDetailsOffset)); |
| __ tst(scratch1, Operand(kTypeAndReadOnlyMask)); |
| __ b(ne, miss); |
| |
| // Store the value at the masked, scaled index and return. |
| const int kValueOffset = kElementsStartOffset + kPointerSize; |
| __ add(scratch2, scratch2, Operand(kValueOffset - kHeapObjectTag)); |
| __ str(value, MemOperand(scratch2)); |
| |
| // Update the write barrier. Make sure not to clobber the value. |
| __ mov(scratch1, value); |
| __ RecordWrite(elements, scratch2, scratch1); |
| } |
| |
| |
| static void GenerateNumberDictionaryLoad(MacroAssembler* masm, |
| Label* miss, |
| Register elements, |
| Register key, |
| Register result, |
| Register t0, |
| Register t1, |
| Register t2) { |
| // Register use: |
| // |
| // elements - holds the slow-case elements of the receiver on entry. |
| // Unchanged unless 'result' is the same register. |
| // |
| // key - holds the smi key on entry. |
| // Unchanged unless 'result' is the same register. |
| // |
| // result - holds the result on exit if the load succeeded. |
| // Allowed to be the same as 'key' or 'result'. |
| // Unchanged on bailout so 'key' or 'result' can be used |
| // in further computation. |
| // |
| // Scratch registers: |
| // |
| // t0 - holds the untagged key on entry and holds the hash once computed. |
| // |
| // t1 - used to hold the capacity mask of the dictionary |
| // |
| // t2 - used for the index into the dictionary. |
| Label done; |
| |
| // Compute the hash code from the untagged key. This must be kept in sync |
| // with ComputeIntegerHash in utils.h. |
| // |
| // hash = ~hash + (hash << 15); |
| __ mvn(t1, Operand(t0)); |
| __ add(t0, t1, Operand(t0, LSL, 15)); |
| // hash = hash ^ (hash >> 12); |
| __ eor(t0, t0, Operand(t0, LSR, 12)); |
| // hash = hash + (hash << 2); |
| __ add(t0, t0, Operand(t0, LSL, 2)); |
| // hash = hash ^ (hash >> 4); |
| __ eor(t0, t0, Operand(t0, LSR, 4)); |
| // hash = hash * 2057; |
| __ mov(t1, Operand(2057)); |
| __ mul(t0, t0, t1); |
| // hash = hash ^ (hash >> 16); |
| __ eor(t0, t0, Operand(t0, LSR, 16)); |
| |
| // Compute the capacity mask. |
| __ ldr(t1, FieldMemOperand(elements, NumberDictionary::kCapacityOffset)); |
| __ mov(t1, Operand(t1, ASR, kSmiTagSize)); // convert smi to int |
| __ sub(t1, t1, Operand(1)); |
| |
| // Generate an unrolled loop that performs a few probes before giving up. |
| static const int kProbes = 4; |
| for (int i = 0; i < kProbes; i++) { |
| // Use t2 for index calculations and keep the hash intact in t0. |
| __ mov(t2, t0); |
| // Compute the masked index: (hash + i + i * i) & mask. |
| if (i > 0) { |
| __ add(t2, t2, Operand(NumberDictionary::GetProbeOffset(i))); |
| } |
| __ and_(t2, t2, Operand(t1)); |
| |
| // Scale the index by multiplying by the element size. |
| ASSERT(NumberDictionary::kEntrySize == 3); |
| __ add(t2, t2, Operand(t2, LSL, 1)); // t2 = t2 * 3 |
| |
| // Check if the key is identical to the name. |
| __ add(t2, elements, Operand(t2, LSL, kPointerSizeLog2)); |
| __ ldr(ip, FieldMemOperand(t2, NumberDictionary::kElementsStartOffset)); |
| __ cmp(key, Operand(ip)); |
| if (i != kProbes - 1) { |
| __ b(eq, &done); |
| } else { |
| __ b(ne, miss); |
| } |
| } |
| |
| __ bind(&done); |
| // Check that the value is a normal property. |
| // t2: elements + (index * kPointerSize) |
| const int kDetailsOffset = |
| NumberDictionary::kElementsStartOffset + 2 * kPointerSize; |
| __ ldr(t1, FieldMemOperand(t2, kDetailsOffset)); |
| __ tst(t1, Operand(Smi::FromInt(PropertyDetails::TypeField::mask()))); |
| __ b(ne, miss); |
| |
| // Get the value at the masked, scaled index and return. |
| const int kValueOffset = |
| NumberDictionary::kElementsStartOffset + kPointerSize; |
| __ ldr(result, FieldMemOperand(t2, kValueOffset)); |
| } |
| |
| |
| void LoadIC::GenerateArrayLength(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : name |
| // -- lr : return address |
| // -- r0 : receiver |
| // -- sp[0] : receiver |
| // ----------------------------------- |
| Label miss; |
| |
| StubCompiler::GenerateLoadArrayLength(masm, r0, r3, &miss); |
| __ bind(&miss); |
| StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); |
| } |
| |
| |
| void LoadIC::GenerateStringLength(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : name |
| // -- lr : return address |
| // -- r0 : receiver |
| // -- sp[0] : receiver |
| // ----------------------------------- |
| Label miss; |
| |
| StubCompiler::GenerateLoadStringLength(masm, r0, r1, r3, &miss); |
| // Cache miss: Jump to runtime. |
| __ bind(&miss); |
| StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); |
| } |
| |
| |
| void LoadIC::GenerateFunctionPrototype(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : name |
| // -- lr : return address |
| // -- r0 : receiver |
| // -- sp[0] : receiver |
| // ----------------------------------- |
| Label miss; |
| |
| StubCompiler::GenerateLoadFunctionPrototype(masm, r0, r1, r3, &miss); |
| __ bind(&miss); |
| StubCompiler::GenerateLoadMiss(masm, Code::LOAD_IC); |
| } |
| |
| |
| // Checks the receiver for special cases (value type, slow case bits). |
| // Falls through for regular JS object. |
| static void GenerateKeyedLoadReceiverCheck(MacroAssembler* masm, |
| Register receiver, |
| Register map, |
| Register scratch, |
| int interceptor_bit, |
| Label* slow) { |
| // Check that the object isn't a smi. |
| __ BranchOnSmi(receiver, slow); |
| // Get the map of the receiver. |
| __ ldr(map, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
| // Check bit field. |
| __ ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset)); |
| __ tst(scratch, |
| Operand((1 << Map::kIsAccessCheckNeeded) | (1 << interceptor_bit))); |
| __ b(nz, slow); |
| // Check that the object is some kind of JS object EXCEPT JS Value type. |
| // In the case that the object is a value-wrapper object, |
| // we enter the runtime system to make sure that indexing into string |
| // objects work as intended. |
| ASSERT(JS_OBJECT_TYPE > JS_VALUE_TYPE); |
| __ ldrb(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| __ cmp(scratch, Operand(JS_OBJECT_TYPE)); |
| __ b(lt, slow); |
| } |
| |
| |
| // Loads an indexed element from a fast case array. |
| // If not_fast_array is NULL, doesn't perform the elements map check. |
| static void GenerateFastArrayLoad(MacroAssembler* masm, |
| Register receiver, |
| Register key, |
| Register elements, |
| Register scratch1, |
| Register scratch2, |
| Register result, |
| Label* not_fast_array, |
| Label* out_of_range) { |
| // Register use: |
| // |
| // receiver - holds the receiver on entry. |
| // Unchanged unless 'result' is the same register. |
| // |
| // key - holds the smi key on entry. |
| // Unchanged unless 'result' is the same register. |
| // |
| // elements - holds the elements of the receiver on exit. |
| // |
| // result - holds the result on exit if the load succeeded. |
| // Allowed to be the the same as 'receiver' or 'key'. |
| // Unchanged on bailout so 'receiver' and 'key' can be safely |
| // used by further computation. |
| // |
| // Scratch registers: |
| // |
| // scratch1 - used to hold elements map and elements length. |
| // Holds the elements map if not_fast_array branch is taken. |
| // |
| // scratch2 - used to hold the loaded value. |
| |
| __ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| if (not_fast_array != NULL) { |
| // Check that the object is in fast mode and writable. |
| __ ldr(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); |
| __ cmp(scratch1, ip); |
| __ b(ne, not_fast_array); |
| } else { |
| __ AssertFastElements(elements); |
| } |
| // Check that the key (index) is within bounds. |
| __ ldr(scratch1, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
| __ cmp(key, Operand(scratch1)); |
| __ b(hs, out_of_range); |
| // Fast case: Do the load. |
| __ add(scratch1, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| // The key is a smi. |
| ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2); |
| __ ldr(scratch2, |
| MemOperand(scratch1, key, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); |
| __ cmp(scratch2, ip); |
| // In case the loaded value is the_hole we have to consult GetProperty |
| // to ensure the prototype chain is searched. |
| __ b(eq, out_of_range); |
| __ mov(result, scratch2); |
| } |
| |
| |
| // Checks whether a key is an array index string or a symbol string. |
| // Falls through if a key is a symbol. |
| static void GenerateKeyStringCheck(MacroAssembler* masm, |
| Register key, |
| Register map, |
| Register hash, |
| Label* index_string, |
| Label* not_symbol) { |
| // The key is not a smi. |
| // Is it a string? |
| __ CompareObjectType(key, map, hash, FIRST_NONSTRING_TYPE); |
| __ b(ge, not_symbol); |
| |
| // Is the string an array index, with cached numeric value? |
| __ ldr(hash, FieldMemOperand(key, String::kHashFieldOffset)); |
| __ tst(hash, Operand(String::kContainsCachedArrayIndexMask)); |
| __ b(eq, index_string); |
| |
| // Is the string a symbol? |
| // map: key map |
| __ ldrb(hash, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| ASSERT(kSymbolTag != 0); |
| __ tst(hash, Operand(kIsSymbolMask)); |
| __ b(eq, not_symbol); |
| } |
| |
| |
| // Defined in ic.cc. |
| Object* CallIC_Miss(Arguments args); |
| |
| // The generated code does not accept smi keys. |
| // The generated code falls through if both probes miss. |
| static void GenerateMonomorphicCacheProbe(MacroAssembler* masm, |
| int argc, |
| Code::Kind kind) { |
| // ----------- S t a t e ------------- |
| // -- r1 : receiver |
| // -- r2 : name |
| // ----------------------------------- |
| Label number, non_number, non_string, boolean, probe, miss; |
| |
| // Probe the stub cache. |
| Code::Flags flags = Code::ComputeFlags(kind, |
| NOT_IN_LOOP, |
| MONOMORPHIC, |
| Code::kNoExtraICState, |
| NORMAL, |
| argc); |
| StubCache::GenerateProbe(masm, flags, r1, r2, r3, r4, r5); |
| |
| // If the stub cache probing failed, the receiver might be a value. |
| // For value objects, we use the map of the prototype objects for |
| // the corresponding JSValue for the cache and that is what we need |
| // to probe. |
| // |
| // Check for number. |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(eq, &number); |
| __ CompareObjectType(r1, r3, r3, HEAP_NUMBER_TYPE); |
| __ b(ne, &non_number); |
| __ bind(&number); |
| StubCompiler::GenerateLoadGlobalFunctionPrototype( |
| masm, Context::NUMBER_FUNCTION_INDEX, r1); |
| __ b(&probe); |
| |
| // Check for string. |
| __ bind(&non_number); |
| __ cmp(r3, Operand(FIRST_NONSTRING_TYPE)); |
| __ b(hs, &non_string); |
| StubCompiler::GenerateLoadGlobalFunctionPrototype( |
| masm, Context::STRING_FUNCTION_INDEX, r1); |
| __ b(&probe); |
| |
| // Check for boolean. |
| __ bind(&non_string); |
| __ LoadRoot(ip, Heap::kTrueValueRootIndex); |
| __ cmp(r1, ip); |
| __ b(eq, &boolean); |
| __ LoadRoot(ip, Heap::kFalseValueRootIndex); |
| __ cmp(r1, ip); |
| __ b(ne, &miss); |
| __ bind(&boolean); |
| StubCompiler::GenerateLoadGlobalFunctionPrototype( |
| masm, Context::BOOLEAN_FUNCTION_INDEX, r1); |
| |
| // Probe the stub cache for the value object. |
| __ bind(&probe); |
| StubCache::GenerateProbe(masm, flags, r1, r2, r3, r4, r5); |
| |
| __ bind(&miss); |
| } |
| |
| |
| static void GenerateFunctionTailCall(MacroAssembler* masm, |
| int argc, |
| Label* miss, |
| Register scratch) { |
| // r1: function |
| |
| // Check that the value isn't a smi. |
| __ tst(r1, Operand(kSmiTagMask)); |
| __ b(eq, miss); |
| |
| // Check that the value is a JSFunction. |
| __ CompareObjectType(r1, scratch, scratch, JS_FUNCTION_TYPE); |
| __ b(ne, miss); |
| |
| // Invoke the function. |
| ParameterCount actual(argc); |
| __ InvokeFunction(r1, actual, JUMP_FUNCTION); |
| } |
| |
| |
| static void GenerateCallNormal(MacroAssembler* masm, int argc) { |
| // ----------- S t a t e ------------- |
| // -- r2 : name |
| // -- lr : return address |
| // ----------------------------------- |
| Label miss; |
| |
| // Get the receiver of the function from the stack into r1. |
| __ ldr(r1, MemOperand(sp, argc * kPointerSize)); |
| |
| GenerateStringDictionaryReceiverCheck(masm, r1, r0, r3, r4, &miss); |
| |
| // r0: elements |
| // Search the dictionary - put result in register r1. |
| GenerateDictionaryLoad(masm, &miss, r0, r2, r1, r3, r4); |
| |
| GenerateFunctionTailCall(masm, argc, &miss, r4); |
| |
| __ bind(&miss); |
| } |
| |
| |
| static void GenerateCallMiss(MacroAssembler* masm, int argc, IC::UtilityId id) { |
| // ----------- S t a t e ------------- |
| // -- r2 : name |
| // -- lr : return address |
| // ----------------------------------- |
| |
| if (id == IC::kCallIC_Miss) { |
| __ IncrementCounter(&Counters::call_miss, 1, r3, r4); |
| } else { |
| __ IncrementCounter(&Counters::keyed_call_miss, 1, r3, r4); |
| } |
| |
| // Get the receiver of the function from the stack. |
| __ ldr(r3, MemOperand(sp, argc * kPointerSize)); |
| |
| __ EnterInternalFrame(); |
| |
| // Push the receiver and the name of the function. |
| __ Push(r3, r2); |
| |
| // Call the entry. |
| __ mov(r0, Operand(2)); |
| __ mov(r1, Operand(ExternalReference(IC_Utility(id)))); |
| |
| CEntryStub stub(1); |
| __ CallStub(&stub); |
| |
| // Move result to r1 and leave the internal frame. |
| __ mov(r1, Operand(r0)); |
| __ LeaveInternalFrame(); |
| |
| // Check if the receiver is a global object of some sort. |
| // This can happen only for regular CallIC but not KeyedCallIC. |
| if (id == IC::kCallIC_Miss) { |
| Label invoke, global; |
| __ ldr(r2, MemOperand(sp, argc * kPointerSize)); // receiver |
| __ tst(r2, Operand(kSmiTagMask)); |
| __ b(eq, &invoke); |
| __ CompareObjectType(r2, r3, r3, JS_GLOBAL_OBJECT_TYPE); |
| __ b(eq, &global); |
| __ cmp(r3, Operand(JS_BUILTINS_OBJECT_TYPE)); |
| __ b(ne, &invoke); |
| |
| // Patch the receiver on the stack. |
| __ bind(&global); |
| __ ldr(r2, FieldMemOperand(r2, GlobalObject::kGlobalReceiverOffset)); |
| __ str(r2, MemOperand(sp, argc * kPointerSize)); |
| __ bind(&invoke); |
| } |
| |
| // Invoke the function. |
| ParameterCount actual(argc); |
| __ InvokeFunction(r1, actual, JUMP_FUNCTION); |
| } |
| |
| |
| void CallIC::GenerateMiss(MacroAssembler* masm, int argc) { |
| // ----------- S t a t e ------------- |
| // -- r2 : name |
| // -- lr : return address |
| // ----------------------------------- |
| |
| GenerateCallMiss(masm, argc, IC::kCallIC_Miss); |
| } |
| |
| |
| void CallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) { |
| // ----------- S t a t e ------------- |
| // -- r2 : name |
| // -- lr : return address |
| // ----------------------------------- |
| |
| // Get the receiver of the function from the stack into r1. |
| __ ldr(r1, MemOperand(sp, argc * kPointerSize)); |
| GenerateMonomorphicCacheProbe(masm, argc, Code::CALL_IC); |
| GenerateMiss(masm, argc); |
| } |
| |
| |
| void CallIC::GenerateNormal(MacroAssembler* masm, int argc) { |
| // ----------- S t a t e ------------- |
| // -- r2 : name |
| // -- lr : return address |
| // ----------------------------------- |
| |
| GenerateCallNormal(masm, argc); |
| GenerateMiss(masm, argc); |
| } |
| |
| |
| void KeyedCallIC::GenerateMiss(MacroAssembler* masm, int argc) { |
| // ----------- S t a t e ------------- |
| // -- r2 : name |
| // -- lr : return address |
| // ----------------------------------- |
| |
| GenerateCallMiss(masm, argc, IC::kKeyedCallIC_Miss); |
| } |
| |
| |
| void KeyedCallIC::GenerateMegamorphic(MacroAssembler* masm, int argc) { |
| // ----------- S t a t e ------------- |
| // -- r2 : name |
| // -- lr : return address |
| // ----------------------------------- |
| |
| // Get the receiver of the function from the stack into r1. |
| __ ldr(r1, MemOperand(sp, argc * kPointerSize)); |
| |
| Label do_call, slow_call, slow_load, slow_reload_receiver; |
| Label check_number_dictionary, check_string, lookup_monomorphic_cache; |
| Label index_smi, index_string; |
| |
| // Check that the key is a smi. |
| __ BranchOnNotSmi(r2, &check_string); |
| __ bind(&index_smi); |
| // Now the key is known to be a smi. This place is also jumped to from below |
| // where a numeric string is converted to a smi. |
| |
| GenerateKeyedLoadReceiverCheck( |
| masm, r1, r0, r3, Map::kHasIndexedInterceptor, &slow_call); |
| |
| GenerateFastArrayLoad( |
| masm, r1, r2, r4, r3, r0, r1, &check_number_dictionary, &slow_load); |
| __ IncrementCounter(&Counters::keyed_call_generic_smi_fast, 1, r0, r3); |
| |
| __ bind(&do_call); |
| // receiver in r1 is not used after this point. |
| // r2: key |
| // r1: function |
| GenerateFunctionTailCall(masm, argc, &slow_call, r0); |
| |
| __ bind(&check_number_dictionary); |
| // r2: key |
| // r3: elements map |
| // r4: elements |
| // Check whether the elements is a number dictionary. |
| __ LoadRoot(ip, Heap::kHashTableMapRootIndex); |
| __ cmp(r3, ip); |
| __ b(ne, &slow_load); |
| __ mov(r0, Operand(r2, ASR, kSmiTagSize)); |
| // r0: untagged index |
| GenerateNumberDictionaryLoad(masm, &slow_load, r4, r2, r1, r0, r3, r5); |
| __ IncrementCounter(&Counters::keyed_call_generic_smi_dict, 1, r0, r3); |
| __ jmp(&do_call); |
| |
| __ bind(&slow_load); |
| // This branch is taken when calling KeyedCallIC_Miss is neither required |
| // nor beneficial. |
| __ IncrementCounter(&Counters::keyed_call_generic_slow_load, 1, r0, r3); |
| __ EnterInternalFrame(); |
| __ push(r2); // save the key |
| __ Push(r1, r2); // pass the receiver and the key |
| __ CallRuntime(Runtime::kKeyedGetProperty, 2); |
| __ pop(r2); // restore the key |
| __ LeaveInternalFrame(); |
| __ mov(r1, r0); |
| __ jmp(&do_call); |
| |
| __ bind(&check_string); |
| GenerateKeyStringCheck(masm, r2, r0, r3, &index_string, &slow_call); |
| |
| // The key is known to be a symbol. |
| // If the receiver is a regular JS object with slow properties then do |
| // a quick inline probe of the receiver's dictionary. |
| // Otherwise do the monomorphic cache probe. |
| GenerateKeyedLoadReceiverCheck( |
| masm, r1, r0, r3, Map::kHasNamedInterceptor, &lookup_monomorphic_cache); |
| |
| __ ldr(r0, FieldMemOperand(r1, JSObject::kPropertiesOffset)); |
| __ ldr(r3, FieldMemOperand(r0, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kHashTableMapRootIndex); |
| __ cmp(r3, ip); |
| __ b(ne, &lookup_monomorphic_cache); |
| |
| GenerateDictionaryLoad(masm, &slow_load, r0, r2, r1, r3, r4); |
| __ IncrementCounter(&Counters::keyed_call_generic_lookup_dict, 1, r0, r3); |
| __ jmp(&do_call); |
| |
| __ bind(&lookup_monomorphic_cache); |
| __ IncrementCounter(&Counters::keyed_call_generic_lookup_cache, 1, r0, r3); |
| GenerateMonomorphicCacheProbe(masm, argc, Code::KEYED_CALL_IC); |
| // Fall through on miss. |
| |
| __ bind(&slow_call); |
| // This branch is taken if: |
| // - the receiver requires boxing or access check, |
| // - the key is neither smi nor symbol, |
| // - the value loaded is not a function, |
| // - there is hope that the runtime will create a monomorphic call stub |
| // that will get fetched next time. |
| __ IncrementCounter(&Counters::keyed_call_generic_slow, 1, r0, r3); |
| GenerateMiss(masm, argc); |
| |
| __ bind(&index_string); |
| __ IndexFromHash(r3, r2); |
| // Now jump to the place where smi keys are handled. |
| __ jmp(&index_smi); |
| } |
| |
| |
| void KeyedCallIC::GenerateNormal(MacroAssembler* masm, int argc) { |
| // ----------- S t a t e ------------- |
| // -- r2 : name |
| // -- lr : return address |
| // ----------------------------------- |
| |
| GenerateCallNormal(masm, argc); |
| GenerateMiss(masm, argc); |
| } |
| |
| |
| // Defined in ic.cc. |
| Object* LoadIC_Miss(Arguments args); |
| |
| void LoadIC::GenerateMegamorphic(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : name |
| // -- lr : return address |
| // -- r0 : receiver |
| // -- sp[0] : receiver |
| // ----------------------------------- |
| |
| // Probe the stub cache. |
| Code::Flags flags = Code::ComputeFlags(Code::LOAD_IC, |
| NOT_IN_LOOP, |
| MONOMORPHIC); |
| StubCache::GenerateProbe(masm, flags, r0, r2, r3, r4, r5); |
| |
| // Cache miss: Jump to runtime. |
| GenerateMiss(masm); |
| } |
| |
| |
| void LoadIC::GenerateNormal(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : name |
| // -- lr : return address |
| // -- r0 : receiver |
| // -- sp[0] : receiver |
| // ----------------------------------- |
| Label miss; |
| |
| GenerateStringDictionaryReceiverCheck(masm, r0, r1, r3, r4, &miss); |
| |
| // r1: elements |
| GenerateDictionaryLoad(masm, &miss, r1, r2, r0, r3, r4); |
| __ Ret(); |
| |
| // Cache miss: Jump to runtime. |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| void LoadIC::GenerateMiss(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r2 : name |
| // -- lr : return address |
| // -- r0 : receiver |
| // -- sp[0] : receiver |
| // ----------------------------------- |
| |
| __ IncrementCounter(&Counters::load_miss, 1, r3, r4); |
| |
| __ mov(r3, r0); |
| __ Push(r3, r2); |
| |
| // Perform tail call to the entry. |
| ExternalReference ref = ExternalReference(IC_Utility(kLoadIC_Miss)); |
| __ TailCallExternalReference(ref, 2, 1); |
| } |
| |
| // Returns the code marker, or the 0 if the code is not marked. |
| static inline int InlinedICSiteMarker(Address address, |
| Address* inline_end_address) { |
| if (V8::UseCrankshaft()) return false; |
| |
| // If the instruction after the call site is not the pseudo instruction nop1 |
| // then this is not related to an inlined in-object property load. The nop1 |
| // instruction is located just after the call to the IC in the deferred code |
| // handling the miss in the inlined code. After the nop1 instruction there is |
| // a branch instruction for jumping back from the deferred code. |
| Address address_after_call = address + Assembler::kCallTargetAddressOffset; |
| Instr instr_after_call = Assembler::instr_at(address_after_call); |
| int code_marker = MacroAssembler::GetCodeMarker(instr_after_call); |
| |
| // A negative result means the code is not marked. |
| if (code_marker <= 0) return 0; |
| |
| Address address_after_nop = address_after_call + Assembler::kInstrSize; |
| Instr instr_after_nop = Assembler::instr_at(address_after_nop); |
| // There may be some reg-reg move and frame merging code to skip over before |
| // the branch back from the DeferredReferenceGetKeyedValue code to the inlined |
| // code. |
| while (!Assembler::IsBranch(instr_after_nop)) { |
| address_after_nop += Assembler::kInstrSize; |
| instr_after_nop = Assembler::instr_at(address_after_nop); |
| } |
| |
| // Find the end of the inlined code for handling the load. |
| int b_offset = |
| Assembler::GetBranchOffset(instr_after_nop) + Assembler::kPcLoadDelta; |
| ASSERT(b_offset < 0); // Jumping back from deferred code. |
| *inline_end_address = address_after_nop + b_offset; |
| |
| return code_marker; |
| } |
| |
| |
| bool LoadIC::PatchInlinedLoad(Address address, Object* map, int offset) { |
| if (V8::UseCrankshaft()) return false; |
| |
| // Find the end of the inlined code for handling the load if this is an |
| // inlined IC call site. |
| Address inline_end_address; |
| if (InlinedICSiteMarker(address, &inline_end_address) |
| != Assembler::PROPERTY_ACCESS_INLINED) { |
| return false; |
| } |
| |
| // Patch the offset of the property load instruction (ldr r0, [r1, #+XXX]). |
| // The immediate must be representable in 12 bits. |
| ASSERT((JSObject::kMaxInstanceSize - JSObject::kHeaderSize) < (1 << 12)); |
| Address ldr_property_instr_address = |
| inline_end_address - Assembler::kInstrSize; |
| ASSERT(Assembler::IsLdrRegisterImmediate( |
| Assembler::instr_at(ldr_property_instr_address))); |
| Instr ldr_property_instr = Assembler::instr_at(ldr_property_instr_address); |
| ldr_property_instr = Assembler::SetLdrRegisterImmediateOffset( |
| ldr_property_instr, offset - kHeapObjectTag); |
| Assembler::instr_at_put(ldr_property_instr_address, ldr_property_instr); |
| |
| // Indicate that code has changed. |
| CPU::FlushICache(ldr_property_instr_address, 1 * Assembler::kInstrSize); |
| |
| // Patch the map check. |
| // For PROPERTY_ACCESS_INLINED, the load map instruction is generated |
| // 4 instructions before the end of the inlined code. |
| // See codgen-arm.cc CodeGenerator::EmitNamedLoad. |
| int ldr_map_offset = -4; |
| Address ldr_map_instr_address = |
| inline_end_address + ldr_map_offset * Assembler::kInstrSize; |
| Assembler::set_target_address_at(ldr_map_instr_address, |
| reinterpret_cast<Address>(map)); |
| return true; |
| } |
| |
| |
| bool LoadIC::PatchInlinedContextualLoad(Address address, |
| Object* map, |
| Object* cell, |
| bool is_dont_delete) { |
| // Find the end of the inlined code for handling the contextual load if |
| // this is inlined IC call site. |
| Address inline_end_address; |
| int marker = InlinedICSiteMarker(address, &inline_end_address); |
| if (!((marker == Assembler::PROPERTY_ACCESS_INLINED_CONTEXT) || |
| (marker == Assembler::PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE))) { |
| return false; |
| } |
| // On ARM we don't rely on the is_dont_delete argument as the hint is already |
| // embedded in the code marker. |
| bool marker_is_dont_delete = |
| marker == Assembler::PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE; |
| |
| // These are the offsets from the end of the inlined code. |
| // See codgen-arm.cc CodeGenerator::EmitNamedLoad. |
| int ldr_map_offset = marker_is_dont_delete ? -5: -8; |
| int ldr_cell_offset = marker_is_dont_delete ? -2: -5; |
| if (FLAG_debug_code && marker_is_dont_delete) { |
| // Three extra instructions were generated to check for the_hole_value. |
| ldr_map_offset -= 3; |
| ldr_cell_offset -= 3; |
| } |
| Address ldr_map_instr_address = |
| inline_end_address + ldr_map_offset * Assembler::kInstrSize; |
| Address ldr_cell_instr_address = |
| inline_end_address + ldr_cell_offset * Assembler::kInstrSize; |
| |
| // Patch the map check. |
| Assembler::set_target_address_at(ldr_map_instr_address, |
| reinterpret_cast<Address>(map)); |
| // Patch the cell address. |
| Assembler::set_target_address_at(ldr_cell_instr_address, |
| reinterpret_cast<Address>(cell)); |
| |
| return true; |
| } |
| |
| |
| bool StoreIC::PatchInlinedStore(Address address, Object* map, int offset) { |
| if (V8::UseCrankshaft()) return false; |
| |
| // Find the end of the inlined code for the store if there is an |
| // inlined version of the store. |
| Address inline_end_address; |
| if (InlinedICSiteMarker(address, &inline_end_address) |
| != Assembler::PROPERTY_ACCESS_INLINED) { |
| return false; |
| } |
| |
| // Compute the address of the map load instruction. |
| Address ldr_map_instr_address = |
| inline_end_address - |
| (CodeGenerator::GetInlinedNamedStoreInstructionsAfterPatch() * |
| Assembler::kInstrSize); |
| |
| // Update the offsets if initializing the inlined store. No reason |
| // to update the offsets when clearing the inlined version because |
| // it will bail out in the map check. |
| if (map != Heap::null_value()) { |
| // Patch the offset in the actual store instruction. |
| Address str_property_instr_address = |
| ldr_map_instr_address + 3 * Assembler::kInstrSize; |
| Instr str_property_instr = Assembler::instr_at(str_property_instr_address); |
| ASSERT(Assembler::IsStrRegisterImmediate(str_property_instr)); |
| str_property_instr = Assembler::SetStrRegisterImmediateOffset( |
| str_property_instr, offset - kHeapObjectTag); |
| Assembler::instr_at_put(str_property_instr_address, str_property_instr); |
| |
| // Patch the offset in the add instruction that is part of the |
| // write barrier. |
| Address add_offset_instr_address = |
| str_property_instr_address + Assembler::kInstrSize; |
| Instr add_offset_instr = Assembler::instr_at(add_offset_instr_address); |
| ASSERT(Assembler::IsAddRegisterImmediate(add_offset_instr)); |
| add_offset_instr = Assembler::SetAddRegisterImmediateOffset( |
| add_offset_instr, offset - kHeapObjectTag); |
| Assembler::instr_at_put(add_offset_instr_address, add_offset_instr); |
| |
| // Indicate that code has changed. |
| CPU::FlushICache(str_property_instr_address, 2 * Assembler::kInstrSize); |
| } |
| |
| // Patch the map check. |
| Assembler::set_target_address_at(ldr_map_instr_address, |
| reinterpret_cast<Address>(map)); |
| |
| return true; |
| } |
| |
| |
| bool KeyedLoadIC::PatchInlinedLoad(Address address, Object* map) { |
| if (V8::UseCrankshaft()) return false; |
| |
| Address inline_end_address; |
| if (InlinedICSiteMarker(address, &inline_end_address) |
| != Assembler::PROPERTY_ACCESS_INLINED) { |
| return false; |
| } |
| |
| // Patch the map check. |
| Address ldr_map_instr_address = |
| inline_end_address - |
| (CodeGenerator::GetInlinedKeyedLoadInstructionsAfterPatch() * |
| Assembler::kInstrSize); |
| Assembler::set_target_address_at(ldr_map_instr_address, |
| reinterpret_cast<Address>(map)); |
| return true; |
| } |
| |
| |
| bool KeyedStoreIC::PatchInlinedStore(Address address, Object* map) { |
| if (V8::UseCrankshaft()) return false; |
| |
| // Find the end of the inlined code for handling the store if this is an |
| // inlined IC call site. |
| Address inline_end_address; |
| if (InlinedICSiteMarker(address, &inline_end_address) |
| != Assembler::PROPERTY_ACCESS_INLINED) { |
| return false; |
| } |
| |
| // Patch the map check. |
| Address ldr_map_instr_address = |
| inline_end_address - |
| (CodeGenerator::kInlinedKeyedStoreInstructionsAfterPatch * |
| Assembler::kInstrSize); |
| Assembler::set_target_address_at(ldr_map_instr_address, |
| reinterpret_cast<Address>(map)); |
| return true; |
| } |
| |
| |
| Object* KeyedLoadIC_Miss(Arguments args); |
| |
| |
| void KeyedLoadIC::GenerateMiss(MacroAssembler* masm) { |
| // ---------- S t a t e -------------- |
| // -- lr : return address |
| // -- r0 : key |
| // -- r1 : receiver |
| // ----------------------------------- |
| |
| __ IncrementCounter(&Counters::keyed_load_miss, 1, r3, r4); |
| |
| __ Push(r1, r0); |
| |
| ExternalReference ref = ExternalReference(IC_Utility(kKeyedLoadIC_Miss)); |
| __ TailCallExternalReference(ref, 2, 1); |
| } |
| |
| |
| void KeyedLoadIC::GenerateRuntimeGetProperty(MacroAssembler* masm) { |
| // ---------- S t a t e -------------- |
| // -- lr : return address |
| // -- r0 : key |
| // -- r1 : receiver |
| // ----------------------------------- |
| |
| __ Push(r1, r0); |
| |
| __ TailCallRuntime(Runtime::kKeyedGetProperty, 2, 1); |
| } |
| |
| |
| void KeyedLoadIC::GenerateGeneric(MacroAssembler* masm) { |
| // ---------- S t a t e -------------- |
| // -- lr : return address |
| // -- r0 : key |
| // -- r1 : receiver |
| // ----------------------------------- |
| Label slow, check_string, index_smi, index_string, property_array_property; |
| Label check_pixel_array, probe_dictionary, check_number_dictionary; |
| |
| Register key = r0; |
| Register receiver = r1; |
| |
| // Check that the key is a smi. |
| __ BranchOnNotSmi(key, &check_string); |
| __ bind(&index_smi); |
| // Now the key is known to be a smi. This place is also jumped to from below |
| // where a numeric string is converted to a smi. |
| |
| GenerateKeyedLoadReceiverCheck( |
| masm, receiver, r2, r3, Map::kHasIndexedInterceptor, &slow); |
| |
| // Check the "has fast elements" bit in the receiver's map which is |
| // now in r2. |
| __ ldrb(r3, FieldMemOperand(r2, Map::kBitField2Offset)); |
| __ tst(r3, Operand(1 << Map::kHasFastElements)); |
| __ b(eq, &check_pixel_array); |
| |
| GenerateFastArrayLoad( |
| masm, receiver, key, r4, r3, r2, r0, NULL, &slow); |
| __ IncrementCounter(&Counters::keyed_load_generic_smi, 1, r2, r3); |
| __ Ret(); |
| |
| // Check whether the elements is a pixel array. |
| // r0: key |
| // r1: receiver |
| __ bind(&check_pixel_array); |
| __ ldr(r4, FieldMemOperand(r1, JSObject::kElementsOffset)); |
| __ ldr(r3, FieldMemOperand(r4, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kPixelArrayMapRootIndex); |
| __ cmp(r3, ip); |
| __ b(ne, &check_number_dictionary); |
| __ ldr(ip, FieldMemOperand(r4, PixelArray::kLengthOffset)); |
| __ mov(r2, Operand(key, ASR, kSmiTagSize)); |
| __ cmp(r2, ip); |
| __ b(hs, &slow); |
| __ ldr(ip, FieldMemOperand(r4, PixelArray::kExternalPointerOffset)); |
| __ ldrb(r2, MemOperand(ip, r2)); |
| __ mov(r0, Operand(r2, LSL, kSmiTagSize)); // Tag result as smi. |
| __ Ret(); |
| |
| __ bind(&check_number_dictionary); |
| // Check whether the elements is a number dictionary. |
| // r0: key |
| // r3: elements map |
| // r4: elements |
| __ LoadRoot(ip, Heap::kHashTableMapRootIndex); |
| __ cmp(r3, ip); |
| __ b(ne, &slow); |
| __ mov(r2, Operand(r0, ASR, kSmiTagSize)); |
| GenerateNumberDictionaryLoad(masm, &slow, r4, r0, r0, r2, r3, r5); |
| __ Ret(); |
| |
| // Slow case, key and receiver still in r0 and r1. |
| __ bind(&slow); |
| __ IncrementCounter(&Counters::keyed_load_generic_slow, 1, r2, r3); |
| GenerateRuntimeGetProperty(masm); |
| |
| __ bind(&check_string); |
| GenerateKeyStringCheck(masm, key, r2, r3, &index_string, &slow); |
| |
| GenerateKeyedLoadReceiverCheck( |
| masm, receiver, r2, r3, Map::kHasNamedInterceptor, &slow); |
| |
| // If the receiver is a fast-case object, check the keyed lookup |
| // cache. Otherwise probe the dictionary. |
| __ ldr(r3, FieldMemOperand(r1, JSObject::kPropertiesOffset)); |
| __ ldr(r4, FieldMemOperand(r3, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kHashTableMapRootIndex); |
| __ cmp(r4, ip); |
| __ b(eq, &probe_dictionary); |
| |
| // Load the map of the receiver, compute the keyed lookup cache hash |
| // based on 32 bits of the map pointer and the string hash. |
| __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ mov(r3, Operand(r2, ASR, KeyedLookupCache::kMapHashShift)); |
| __ ldr(r4, FieldMemOperand(r0, String::kHashFieldOffset)); |
| __ eor(r3, r3, Operand(r4, ASR, String::kHashShift)); |
| __ And(r3, r3, Operand(KeyedLookupCache::kCapacityMask)); |
| |
| // Load the key (consisting of map and symbol) from the cache and |
| // check for match. |
| ExternalReference cache_keys = ExternalReference::keyed_lookup_cache_keys(); |
| __ mov(r4, Operand(cache_keys)); |
| __ add(r4, r4, Operand(r3, LSL, kPointerSizeLog2 + 1)); |
| __ ldr(r5, MemOperand(r4, kPointerSize, PostIndex)); // Move r4 to symbol. |
| __ cmp(r2, r5); |
| __ b(ne, &slow); |
| __ ldr(r5, MemOperand(r4)); |
| __ cmp(r0, r5); |
| __ b(ne, &slow); |
| |
| // Get field offset. |
| // r0 : key |
| // r1 : receiver |
| // r2 : receiver's map |
| // r3 : lookup cache index |
| ExternalReference cache_field_offsets |
| = ExternalReference::keyed_lookup_cache_field_offsets(); |
| __ mov(r4, Operand(cache_field_offsets)); |
| __ ldr(r5, MemOperand(r4, r3, LSL, kPointerSizeLog2)); |
| __ ldrb(r6, FieldMemOperand(r2, Map::kInObjectPropertiesOffset)); |
| __ sub(r5, r5, r6, SetCC); |
| __ b(ge, &property_array_property); |
| |
| // Load in-object property. |
| __ ldrb(r6, FieldMemOperand(r2, Map::kInstanceSizeOffset)); |
| __ add(r6, r6, r5); // Index from start of object. |
| __ sub(r1, r1, Operand(kHeapObjectTag)); // Remove the heap tag. |
| __ ldr(r0, MemOperand(r1, r6, LSL, kPointerSizeLog2)); |
| __ IncrementCounter(&Counters::keyed_load_generic_lookup_cache, 1, r2, r3); |
| __ Ret(); |
| |
| // Load property array property. |
| __ bind(&property_array_property); |
| __ ldr(r1, FieldMemOperand(r1, JSObject::kPropertiesOffset)); |
| __ add(r1, r1, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ ldr(r0, MemOperand(r1, r5, LSL, kPointerSizeLog2)); |
| __ IncrementCounter(&Counters::keyed_load_generic_lookup_cache, 1, r2, r3); |
| __ Ret(); |
| |
| // Do a quick inline probe of the receiver's dictionary, if it |
| // exists. |
| __ bind(&probe_dictionary); |
| // r1: receiver |
| // r0: key |
| // r3: elements |
| __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| __ ldrb(r2, FieldMemOperand(r2, Map::kInstanceTypeOffset)); |
| GenerateGlobalInstanceTypeCheck(masm, r2, &slow); |
| // Load the property to r0. |
| GenerateDictionaryLoad(masm, &slow, r3, r0, r0, r2, r4); |
| __ IncrementCounter(&Counters::keyed_load_generic_symbol, 1, r2, r3); |
| __ Ret(); |
| |
| __ bind(&index_string); |
| __ IndexFromHash(r3, key); |
| // Now jump to the place where smi keys are handled. |
| __ jmp(&index_smi); |
| } |
| |
| |
| void KeyedLoadIC::GenerateString(MacroAssembler* masm) { |
| // ---------- S t a t e -------------- |
| // -- lr : return address |
| // -- r0 : key (index) |
| // -- r1 : receiver |
| // ----------------------------------- |
| Label miss; |
| |
| Register receiver = r1; |
| Register index = r0; |
| Register scratch1 = r2; |
| Register scratch2 = r3; |
| Register result = r0; |
| |
| StringCharAtGenerator char_at_generator(receiver, |
| index, |
| scratch1, |
| scratch2, |
| result, |
| &miss, // When not a string. |
| &miss, // When not a number. |
| &miss, // When index out of range. |
| STRING_INDEX_IS_ARRAY_INDEX); |
| char_at_generator.GenerateFast(masm); |
| __ Ret(); |
| |
| StubRuntimeCallHelper call_helper; |
| char_at_generator.GenerateSlow(masm, call_helper); |
| |
| __ bind(&miss); |
| GenerateMiss(masm); |
| } |
| |
| |
| // Convert unsigned integer with specified number of leading zeroes in binary |
| // representation to IEEE 754 double. |
| // Integer to convert is passed in register hiword. |
| // Resulting double is returned in registers hiword:loword. |
| // This functions does not work correctly for 0. |
| static void GenerateUInt2Double(MacroAssembler* masm, |
| Register hiword, |
| Register loword, |
| Register scratch, |
| int leading_zeroes) { |
| const int meaningful_bits = kBitsPerInt - leading_zeroes - 1; |
| const int biased_exponent = HeapNumber::kExponentBias + meaningful_bits; |
| |
| const int mantissa_shift_for_hi_word = |
| meaningful_bits - HeapNumber::kMantissaBitsInTopWord; |
| |
| const int mantissa_shift_for_lo_word = |
| kBitsPerInt - mantissa_shift_for_hi_word; |
| |
| __ mov(scratch, Operand(biased_exponent << HeapNumber::kExponentShift)); |
| if (mantissa_shift_for_hi_word > 0) { |
| __ mov(loword, Operand(hiword, LSL, mantissa_shift_for_lo_word)); |
| __ orr(hiword, scratch, Operand(hiword, LSR, mantissa_shift_for_hi_word)); |
| } else { |
| __ mov(loword, Operand(0, RelocInfo::NONE)); |
| __ orr(hiword, scratch, Operand(hiword, LSL, mantissa_shift_for_hi_word)); |
| } |
| |
| // If least significant bit of biased exponent was not 1 it was corrupted |
| // by most significant bit of mantissa so we should fix that. |
| if (!(biased_exponent & 1)) { |
| __ bic(hiword, hiword, Operand(1 << HeapNumber::kExponentShift)); |
| } |
| } |
| |
| |
| void KeyedLoadIC::GenerateExternalArray(MacroAssembler* masm, |
| ExternalArrayType array_type) { |
| // ---------- S t a t e -------------- |
| // -- lr : return address |
| // -- r0 : key |
| // -- r1 : receiver |
| // ----------------------------------- |
| Label slow, failed_allocation; |
| |
| Register key = r0; |
| Register receiver = r1; |
| |
| // Check that the object isn't a smi |
| __ BranchOnSmi(receiver, &slow); |
| |
| // Check that the key is a smi. |
| __ BranchOnNotSmi(key, &slow); |
| |
| // Check that the object is a JS object. Load map into r2. |
| __ CompareObjectType(receiver, r2, r3, FIRST_JS_OBJECT_TYPE); |
| __ b(lt, &slow); |
| |
| // Check that the receiver does not require access checks. We need |
| // to check this explicitly since this generic stub does not perform |
| // map checks. |
| __ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset)); |
| __ tst(r3, Operand(1 << Map::kIsAccessCheckNeeded)); |
| __ b(ne, &slow); |
| |
| // Check that the elements array is the appropriate type of |
| // ExternalArray. |
| __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| __ ldr(r2, FieldMemOperand(r3, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type)); |
| __ cmp(r2, ip); |
| __ b(ne, &slow); |
| |
| // Check that the index is in range. |
| __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset)); |
| __ cmp(ip, Operand(key, ASR, kSmiTagSize)); |
| // Unsigned comparison catches both negative and too-large values. |
| __ b(lo, &slow); |
| |
| // r3: elements array |
| __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset)); |
| // r3: base pointer of external storage |
| |
| // We are not untagging smi key and instead work with it |
| // as if it was premultiplied by 2. |
| ASSERT((kSmiTag == 0) && (kSmiTagSize == 1)); |
| |
| Register value = r2; |
| switch (array_type) { |
| case kExternalByteArray: |
| __ ldrsb(value, MemOperand(r3, key, LSR, 1)); |
| break; |
| case kExternalUnsignedByteArray: |
| __ ldrb(value, MemOperand(r3, key, LSR, 1)); |
| break; |
| case kExternalShortArray: |
| __ ldrsh(value, MemOperand(r3, key, LSL, 0)); |
| break; |
| case kExternalUnsignedShortArray: |
| __ ldrh(value, MemOperand(r3, key, LSL, 0)); |
| break; |
| case kExternalIntArray: |
| case kExternalUnsignedIntArray: |
| __ ldr(value, MemOperand(r3, key, LSL, 1)); |
| break; |
| case kExternalFloatArray: |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| __ add(r2, r3, Operand(key, LSL, 1)); |
| __ vldr(s0, r2, 0); |
| } else { |
| __ ldr(value, MemOperand(r3, key, LSL, 1)); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| |
| // For integer array types: |
| // r2: value |
| // For floating-point array type |
| // s0: value (if VFP3 is supported) |
| // r2: value (if VFP3 is not supported) |
| |
| if (array_type == kExternalIntArray) { |
| // For the Int and UnsignedInt array types, we need to see whether |
| // the value can be represented in a Smi. If not, we need to convert |
| // it to a HeapNumber. |
| Label box_int; |
| __ cmp(value, Operand(0xC0000000)); |
| __ b(mi, &box_int); |
| // Tag integer as smi and return it. |
| __ mov(r0, Operand(value, LSL, kSmiTagSize)); |
| __ Ret(); |
| |
| __ bind(&box_int); |
| // Allocate a HeapNumber for the result and perform int-to-double |
| // conversion. Don't touch r0 or r1 as they are needed if allocation |
| // fails. |
| __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(r5, r3, r4, r6, &slow); |
| // Now we can use r0 for the result as key is not needed any more. |
| __ mov(r0, r5); |
| |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| __ vmov(s0, value); |
| __ vcvt_f64_s32(d0, s0); |
| __ sub(r3, r0, Operand(kHeapObjectTag)); |
| __ vstr(d0, r3, HeapNumber::kValueOffset); |
| __ Ret(); |
| } else { |
| WriteInt32ToHeapNumberStub stub(value, r0, r3); |
| __ TailCallStub(&stub); |
| } |
| } else if (array_type == kExternalUnsignedIntArray) { |
| // The test is different for unsigned int values. Since we need |
| // the value to be in the range of a positive smi, we can't |
| // handle either of the top two bits being set in the value. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| Label box_int, done; |
| __ tst(value, Operand(0xC0000000)); |
| __ b(ne, &box_int); |
| // Tag integer as smi and return it. |
| __ mov(r0, Operand(value, LSL, kSmiTagSize)); |
| __ Ret(); |
| |
| __ bind(&box_int); |
| __ vmov(s0, value); |
| // Allocate a HeapNumber for the result and perform int-to-double |
| // conversion. Don't use r0 and r1 as AllocateHeapNumber clobbers all |
| // registers - also when jumping due to exhausted young space. |
| __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(r2, r3, r4, r6, &slow); |
| |
| __ vcvt_f64_u32(d0, s0); |
| __ sub(r1, r2, Operand(kHeapObjectTag)); |
| __ vstr(d0, r1, HeapNumber::kValueOffset); |
| |
| __ mov(r0, r2); |
| __ Ret(); |
| } else { |
| // Check whether unsigned integer fits into smi. |
| Label box_int_0, box_int_1, done; |
| __ tst(value, Operand(0x80000000)); |
| __ b(ne, &box_int_0); |
| __ tst(value, Operand(0x40000000)); |
| __ b(ne, &box_int_1); |
| // Tag integer as smi and return it. |
| __ mov(r0, Operand(value, LSL, kSmiTagSize)); |
| __ Ret(); |
| |
| Register hiword = value; // r2. |
| Register loword = r3; |
| |
| __ bind(&box_int_0); |
| // Integer does not have leading zeros. |
| GenerateUInt2Double(masm, hiword, loword, r4, 0); |
| __ b(&done); |
| |
| __ bind(&box_int_1); |
| // Integer has one leading zero. |
| GenerateUInt2Double(masm, hiword, loword, r4, 1); |
| |
| |
| __ bind(&done); |
| // Integer was converted to double in registers hiword:loword. |
| // Wrap it into a HeapNumber. Don't use r0 and r1 as AllocateHeapNumber |
| // clobbers all registers - also when jumping due to exhausted young |
| // space. |
| __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(r4, r5, r7, r6, &slow); |
| |
| __ str(hiword, FieldMemOperand(r4, HeapNumber::kExponentOffset)); |
| __ str(loword, FieldMemOperand(r4, HeapNumber::kMantissaOffset)); |
| |
| __ mov(r0, r4); |
| __ Ret(); |
| } |
| } else if (array_type == kExternalFloatArray) { |
| // For the floating-point array type, we need to always allocate a |
| // HeapNumber. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| // Allocate a HeapNumber for the result. Don't use r0 and r1 as |
| // AllocateHeapNumber clobbers all registers - also when jumping due to |
| // exhausted young space. |
| __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(r2, r3, r4, r6, &slow); |
| __ vcvt_f64_f32(d0, s0); |
| __ sub(r1, r2, Operand(kHeapObjectTag)); |
| __ vstr(d0, r1, HeapNumber::kValueOffset); |
| |
| __ mov(r0, r2); |
| __ Ret(); |
| } else { |
| // Allocate a HeapNumber for the result. Don't use r0 and r1 as |
| // AllocateHeapNumber clobbers all registers - also when jumping due to |
| // exhausted young space. |
| __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); |
| __ AllocateHeapNumber(r3, r4, r5, r6, &slow); |
| // VFP is not available, do manual single to double conversion. |
| |
| // r2: floating point value (binary32) |
| // r3: heap number for result |
| |
| // Extract mantissa to r0. OK to clobber r0 now as there are no jumps to |
| // the slow case from here. |
| __ and_(r0, value, Operand(kBinary32MantissaMask)); |
| |
| // Extract exponent to r1. OK to clobber r1 now as there are no jumps to |
| // the slow case from here. |
| __ mov(r1, Operand(value, LSR, kBinary32MantissaBits)); |
| __ and_(r1, r1, Operand(kBinary32ExponentMask >> kBinary32MantissaBits)); |
| |
| Label exponent_rebiased; |
| __ teq(r1, Operand(0x00, RelocInfo::NONE)); |
| __ b(eq, &exponent_rebiased); |
| |
| __ teq(r1, Operand(0xff)); |
| __ mov(r1, Operand(0x7ff), LeaveCC, eq); |
| __ b(eq, &exponent_rebiased); |
| |
| // Rebias exponent. |
| __ add(r1, |
| r1, |
| Operand(-kBinary32ExponentBias + HeapNumber::kExponentBias)); |
| |
| __ bind(&exponent_rebiased); |
| __ and_(r2, value, Operand(kBinary32SignMask)); |
| value = no_reg; |
| __ orr(r2, r2, Operand(r1, LSL, HeapNumber::kMantissaBitsInTopWord)); |
| |
| // Shift mantissa. |
| static const int kMantissaShiftForHiWord = |
| kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord; |
| |
| static const int kMantissaShiftForLoWord = |
| kBitsPerInt - kMantissaShiftForHiWord; |
| |
| __ orr(r2, r2, Operand(r0, LSR, kMantissaShiftForHiWord)); |
| __ mov(r0, Operand(r0, LSL, kMantissaShiftForLoWord)); |
| |
| __ str(r2, FieldMemOperand(r3, HeapNumber::kExponentOffset)); |
| __ str(r0, FieldMemOperand(r3, HeapNumber::kMantissaOffset)); |
| |
| __ mov(r0, r3); |
| __ Ret(); |
| } |
| |
| } else { |
| // Tag integer as smi and return it. |
| __ mov(r0, Operand(value, LSL, kSmiTagSize)); |
| __ Ret(); |
| } |
| |
| // Slow case, key and receiver still in r0 and r1. |
| __ bind(&slow); |
| __ IncrementCounter(&Counters::keyed_load_external_array_slow, 1, r2, r3); |
| GenerateRuntimeGetProperty(masm); |
| } |
| |
| |
| void KeyedLoadIC::GenerateIndexedInterceptor(MacroAssembler* masm) { |
| // ---------- S t a t e -------------- |
| // -- lr : return address |
| // -- r0 : key |
| // -- r1 : receiver |
| // ----------------------------------- |
| Label slow; |
| |
| // Check that the receiver isn't a smi. |
| __ BranchOnSmi(r1, &slow); |
| |
| // Check that the key is an array index, that is Uint32. |
| __ tst(r0, Operand(kSmiTagMask | kSmiSignMask)); |
| __ b(ne, &slow); |
| |
| // Get the map of the receiver. |
| __ ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); |
| |
| // Check that it has indexed interceptor and access checks |
| // are not enabled for this object. |
| __ ldrb(r3, FieldMemOperand(r2, Map::kBitFieldOffset)); |
| __ and_(r3, r3, Operand(kSlowCaseBitFieldMask)); |
| __ cmp(r3, Operand(1 << Map::kHasIndexedInterceptor)); |
| __ b(ne, &slow); |
| |
| // Everything is fine, call runtime. |
| __ Push(r1, r0); // Receiver, key. |
| |
| // Perform tail call to the entry. |
| __ TailCallExternalReference(ExternalReference( |
| IC_Utility(kKeyedLoadPropertyWithInterceptor)), 2, 1); |
| |
| __ bind(&slow); |
| GenerateMiss(masm); |
| } |
| |
| |
| void KeyedStoreIC::GenerateMiss(MacroAssembler* masm) { |
| // ---------- S t a t e -------------- |
| // -- r0 : value |
| // -- r1 : key |
| // -- r2 : receiver |
| // -- lr : return address |
| // ----------------------------------- |
| |
| // Push receiver, key and value for runtime call. |
| __ Push(r2, r1, r0); |
| |
| ExternalReference ref = ExternalReference(IC_Utility(kKeyedStoreIC_Miss)); |
| __ TailCallExternalReference(ref, 3, 1); |
| } |
| |
| |
| void KeyedStoreIC::GenerateRuntimeSetProperty(MacroAssembler* masm) { |
| // ---------- S t a t e -------------- |
| // -- r0 : value |
| // -- r1 : key |
| // -- r2 : receiver |
| // -- lr : return address |
| // ----------------------------------- |
| |
| // Push receiver, key and value for runtime call. |
| __ Push(r2, r1, r0); |
| |
| __ TailCallRuntime(Runtime::kSetProperty, 3, 1); |
| } |
| |
| |
| void KeyedStoreIC::GenerateGeneric(MacroAssembler* masm) { |
| // ---------- S t a t e -------------- |
| // -- r0 : value |
| // -- r1 : key |
| // -- r2 : receiver |
| // -- lr : return address |
| // ----------------------------------- |
| Label slow, fast, array, extra, check_pixel_array; |
| |
| // Register usage. |
| Register value = r0; |
| Register key = r1; |
| Register receiver = r2; |
| Register elements = r3; // Elements array of the receiver. |
| // r4 and r5 are used as general scratch registers. |
| |
| // Check that the key is a smi. |
| __ tst(key, Operand(kSmiTagMask)); |
| __ b(ne, &slow); |
| // Check that the object isn't a smi. |
| __ tst(receiver, Operand(kSmiTagMask)); |
| __ b(eq, &slow); |
| // Get the map of the object. |
| __ ldr(r4, FieldMemOperand(receiver, HeapObject::kMapOffset)); |
| // Check that the receiver does not require access checks. We need |
| // to do this because this generic stub does not perform map checks. |
| __ ldrb(ip, FieldMemOperand(r4, Map::kBitFieldOffset)); |
| __ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded)); |
| __ b(ne, &slow); |
| // Check if the object is a JS array or not. |
| __ ldrb(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
| __ cmp(r4, Operand(JS_ARRAY_TYPE)); |
| __ b(eq, &array); |
| // Check that the object is some kind of JS object. |
| __ cmp(r4, Operand(FIRST_JS_OBJECT_TYPE)); |
| __ b(lt, &slow); |
| |
| // Object case: Check key against length in the elements array. |
| __ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| // Check that the object is in fast mode and writable. |
| __ ldr(r4, FieldMemOperand(elements, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); |
| __ cmp(r4, ip); |
| __ b(ne, &check_pixel_array); |
| // Check array bounds. Both the key and the length of FixedArray are smis. |
| __ ldr(ip, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
| __ cmp(key, Operand(ip)); |
| __ b(lo, &fast); |
| |
| // Slow case, handle jump to runtime. |
| __ bind(&slow); |
| // Entry registers are intact. |
| // r0: value. |
| // r1: key. |
| // r2: receiver. |
| GenerateRuntimeSetProperty(masm); |
| |
| // Check whether the elements is a pixel array. |
| // r4: elements map. |
| __ bind(&check_pixel_array); |
| __ LoadRoot(ip, Heap::kPixelArrayMapRootIndex); |
| __ cmp(r4, ip); |
| __ b(ne, &slow); |
| // Check that the value is a smi. If a conversion is needed call into the |
| // runtime to convert and clamp. |
| __ BranchOnNotSmi(value, &slow); |
| __ mov(r4, Operand(key, ASR, kSmiTagSize)); // Untag the key. |
| __ ldr(ip, FieldMemOperand(elements, PixelArray::kLengthOffset)); |
| __ cmp(r4, Operand(ip)); |
| __ b(hs, &slow); |
| __ mov(r5, Operand(value, ASR, kSmiTagSize)); // Untag the value. |
| __ Usat(r5, 8, Operand(r5)); // Clamp the value to [0..255]. |
| |
| // Get the pointer to the external array. This clobbers elements. |
| __ ldr(elements, |
| FieldMemOperand(elements, PixelArray::kExternalPointerOffset)); |
| __ strb(r5, MemOperand(elements, r4)); // Elements is now external array. |
| __ Ret(); |
| |
| // Extra capacity case: Check if there is extra capacity to |
| // perform the store and update the length. Used for adding one |
| // element to the array by writing to array[array.length]. |
| __ bind(&extra); |
| // Condition code from comparing key and array length is still available. |
| __ b(ne, &slow); // Only support writing to writing to array[array.length]. |
| // Check for room in the elements backing store. |
| // Both the key and the length of FixedArray are smis. |
| __ ldr(ip, FieldMemOperand(elements, FixedArray::kLengthOffset)); |
| __ cmp(key, Operand(ip)); |
| __ b(hs, &slow); |
| // Calculate key + 1 as smi. |
| ASSERT_EQ(0, kSmiTag); |
| __ add(r4, key, Operand(Smi::FromInt(1))); |
| __ str(r4, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
| __ b(&fast); |
| |
| // Array case: Get the length and the elements array from the JS |
| // array. Check that the array is in fast mode (and writable); if it |
| // is the length is always a smi. |
| __ bind(&array); |
| __ ldr(elements, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| __ ldr(r4, FieldMemOperand(elements, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); |
| __ cmp(r4, ip); |
| __ b(ne, &slow); |
| |
| // Check the key against the length in the array. |
| __ ldr(ip, FieldMemOperand(receiver, JSArray::kLengthOffset)); |
| __ cmp(key, Operand(ip)); |
| __ b(hs, &extra); |
| // Fall through to fast case. |
| |
| __ bind(&fast); |
| // Fast case, store the value to the elements backing store. |
| __ add(r5, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| __ add(r5, r5, Operand(key, LSL, kPointerSizeLog2 - kSmiTagSize)); |
| __ str(value, MemOperand(r5)); |
| // Skip write barrier if the written value is a smi. |
| __ tst(value, Operand(kSmiTagMask)); |
| __ Ret(eq); |
| // Update write barrier for the elements array address. |
| __ sub(r4, r5, Operand(elements)); |
| __ RecordWrite(elements, Operand(r4), r5, r6); |
| |
| __ Ret(); |
| } |
| |
| |
| // Convert and store int passed in register ival to IEEE 754 single precision |
| // floating point value at memory location (dst + 4 * wordoffset) |
| // If VFP3 is available use it for conversion. |
| static void StoreIntAsFloat(MacroAssembler* masm, |
| Register dst, |
| Register wordoffset, |
| Register ival, |
| Register fval, |
| Register scratch1, |
| Register scratch2) { |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| __ vmov(s0, ival); |
| __ add(scratch1, dst, Operand(wordoffset, LSL, 2)); |
| __ vcvt_f32_s32(s0, s0); |
| __ vstr(s0, scratch1, 0); |
| } else { |
| Label not_special, done; |
| // Move sign bit from source to destination. This works because the sign |
| // bit in the exponent word of the double has the same position and polarity |
| // as the 2's complement sign bit in a Smi. |
| ASSERT(kBinary32SignMask == 0x80000000u); |
| |
| __ and_(fval, ival, Operand(kBinary32SignMask), SetCC); |
| // Negate value if it is negative. |
| __ rsb(ival, ival, Operand(0, RelocInfo::NONE), LeaveCC, ne); |
| |
| // We have -1, 0 or 1, which we treat specially. Register ival contains |
| // absolute value: it is either equal to 1 (special case of -1 and 1), |
| // greater than 1 (not a special case) or less than 1 (special case of 0). |
| __ cmp(ival, Operand(1)); |
| __ b(gt, ¬_special); |
| |
| // For 1 or -1 we need to or in the 0 exponent (biased). |
| static const uint32_t exponent_word_for_1 = |
| kBinary32ExponentBias << kBinary32ExponentShift; |
| |
| __ orr(fval, fval, Operand(exponent_word_for_1), LeaveCC, eq); |
| __ b(&done); |
| |
| __ bind(¬_special); |
| // Count leading zeros. |
| // Gets the wrong answer for 0, but we already checked for that case above. |
| Register zeros = scratch2; |
| __ CountLeadingZeros(zeros, ival, scratch1); |
| |
| // Compute exponent and or it into the exponent register. |
| __ rsb(scratch1, |
| zeros, |
| Operand((kBitsPerInt - 1) + kBinary32ExponentBias)); |
| |
| __ orr(fval, |
| fval, |
| Operand(scratch1, LSL, kBinary32ExponentShift)); |
| |
| // Shift up the source chopping the top bit off. |
| __ add(zeros, zeros, Operand(1)); |
| // This wouldn't work for 1 and -1 as the shift would be 32 which means 0. |
| __ mov(ival, Operand(ival, LSL, zeros)); |
| // And the top (top 20 bits). |
| __ orr(fval, |
| fval, |
| Operand(ival, LSR, kBitsPerInt - kBinary32MantissaBits)); |
| |
| __ bind(&done); |
| __ str(fval, MemOperand(dst, wordoffset, LSL, 2)); |
| } |
| } |
| |
| |
| static bool IsElementTypeSigned(ExternalArrayType array_type) { |
| switch (array_type) { |
| case kExternalByteArray: |
| case kExternalShortArray: |
| case kExternalIntArray: |
| return true; |
| |
| case kExternalUnsignedByteArray: |
| case kExternalUnsignedShortArray: |
| case kExternalUnsignedIntArray: |
| return false; |
| |
| default: |
| UNREACHABLE(); |
| return false; |
| } |
| } |
| |
| |
| void KeyedStoreIC::GenerateExternalArray(MacroAssembler* masm, |
| ExternalArrayType array_type) { |
| // ---------- S t a t e -------------- |
| // -- r0 : value |
| // -- r1 : key |
| // -- r2 : receiver |
| // -- lr : return address |
| // ----------------------------------- |
| Label slow, check_heap_number; |
| |
| // Register usage. |
| Register value = r0; |
| Register key = r1; |
| Register receiver = r2; |
| // r3 mostly holds the elements array or the destination external array. |
| |
| // Check that the object isn't a smi. |
| __ BranchOnSmi(receiver, &slow); |
| |
| // Check that the object is a JS object. Load map into r3. |
| __ CompareObjectType(receiver, r3, r4, FIRST_JS_OBJECT_TYPE); |
| __ b(le, &slow); |
| |
| // Check that the receiver does not require access checks. We need |
| // to do this because this generic stub does not perform map checks. |
| __ ldrb(ip, FieldMemOperand(r3, Map::kBitFieldOffset)); |
| __ tst(ip, Operand(1 << Map::kIsAccessCheckNeeded)); |
| __ b(ne, &slow); |
| |
| // Check that the key is a smi. |
| __ BranchOnNotSmi(key, &slow); |
| |
| // Check that the elements array is the appropriate type of ExternalArray. |
| __ ldr(r3, FieldMemOperand(receiver, JSObject::kElementsOffset)); |
| __ ldr(r4, FieldMemOperand(r3, HeapObject::kMapOffset)); |
| __ LoadRoot(ip, Heap::RootIndexForExternalArrayType(array_type)); |
| __ cmp(r4, ip); |
| __ b(ne, &slow); |
| |
| // Check that the index is in range. |
| __ mov(r4, Operand(key, ASR, kSmiTagSize)); // Untag the index. |
| __ ldr(ip, FieldMemOperand(r3, ExternalArray::kLengthOffset)); |
| __ cmp(r4, ip); |
| // Unsigned comparison catches both negative and too-large values. |
| __ b(hs, &slow); |
| |
| // Handle both smis and HeapNumbers in the fast path. Go to the |
| // runtime for all other kinds of values. |
| // r3: external array. |
| // r4: key (integer). |
| __ BranchOnNotSmi(value, &check_heap_number); |
| __ mov(r5, Operand(value, ASR, kSmiTagSize)); // Untag the value. |
| __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset)); |
| |
| // r3: base pointer of external storage. |
| // r4: key (integer). |
| // r5: value (integer). |
| switch (array_type) { |
| case kExternalByteArray: |
| case kExternalUnsignedByteArray: |
| __ strb(r5, MemOperand(r3, r4, LSL, 0)); |
| break; |
| case kExternalShortArray: |
| case kExternalUnsignedShortArray: |
| __ strh(r5, MemOperand(r3, r4, LSL, 1)); |
| break; |
| case kExternalIntArray: |
| case kExternalUnsignedIntArray: |
| __ str(r5, MemOperand(r3, r4, LSL, 2)); |
| break; |
| case kExternalFloatArray: |
| // Perform int-to-float conversion and store to memory. |
| StoreIntAsFloat(masm, r3, r4, r5, r6, r7, r9); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| |
| // Entry registers are intact, r0 holds the value which is the return value. |
| __ Ret(); |
| |
| |
| // r3: external array. |
| // r4: index (integer). |
| __ bind(&check_heap_number); |
| __ CompareObjectType(value, r5, r6, HEAP_NUMBER_TYPE); |
| __ b(ne, &slow); |
| |
| __ ldr(r3, FieldMemOperand(r3, ExternalArray::kExternalPointerOffset)); |
| |
| // r3: base pointer of external storage. |
| // r4: key (integer). |
| |
| // The WebGL specification leaves the behavior of storing NaN and |
| // +/-Infinity into integer arrays basically undefined. For more |
| // reproducible behavior, convert these to zero. |
| if (CpuFeatures::IsSupported(VFP3)) { |
| CpuFeatures::Scope scope(VFP3); |
| |
| |
| if (array_type == kExternalFloatArray) { |
| // vldr requires offset to be a multiple of 4 so we can not |
| // include -kHeapObjectTag into it. |
| __ sub(r5, r0, Operand(kHeapObjectTag)); |
| __ vldr(d0, r5, HeapNumber::kValueOffset); |
| __ add(r5, r3, Operand(r4, LSL, 2)); |
| __ vcvt_f32_f64(s0, d0); |
| __ vstr(s0, r5, 0); |
| } else { |
| // Need to perform float-to-int conversion. |
| // Test for NaN or infinity (both give zero). |
| __ ldr(r6, FieldMemOperand(r5, HeapNumber::kExponentOffset)); |
| |
| // Hoisted load. vldr requires offset to be a multiple of 4 so we can not |
| // include -kHeapObjectTag into it. |
| __ sub(r5, r0, Operand(kHeapObjectTag)); |
| __ vldr(d0, r5, HeapNumber::kValueOffset); |
| |
| __ Sbfx(r6, r6, HeapNumber::kExponentShift, HeapNumber::kExponentBits); |
| // NaNs and Infinities have all-one exponents so they sign extend to -1. |
| __ cmp(r6, Operand(-1)); |
| __ mov(r5, Operand(Smi::FromInt(0)), LeaveCC, eq); |
| |
| // Not infinity or NaN simply convert to int. |
| if (IsElementTypeSigned(array_type)) { |
| __ vcvt_s32_f64(s0, d0, Assembler::RoundToZero, ne); |
| } else { |
| __ vcvt_u32_f64(s0, d0, Assembler::RoundToZero, ne); |
| } |
| __ vmov(r5, s0, ne); |
| |
| switch (array_type) { |
| case kExternalByteArray: |
| case kExternalUnsignedByteArray: |
| __ strb(r5, MemOperand(r3, r4, LSL, 0)); |
| break; |
| case kExternalShortArray: |
| case kExternalUnsignedShortArray: |
| __ strh(r5, MemOperand(r3, r4, LSL, 1)); |
| break; |
| case kExternalIntArray: |
| case kExternalUnsignedIntArray: |
| __ str(r5, MemOperand(r3, r4, LSL, 2)); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| |
| // Entry registers are intact, r0 holds the value which is the return value. |
| __ Ret(); |
| } else { |
| // VFP3 is not available do manual conversions. |
| __ ldr(r5, FieldMemOperand(value, HeapNumber::kExponentOffset)); |
| __ ldr(r6, FieldMemOperand(value, HeapNumber::kMantissaOffset)); |
| |
| if (array_type == kExternalFloatArray) { |
| Label done, nan_or_infinity_or_zero; |
| static const int kMantissaInHiWordShift = |
| kBinary32MantissaBits - HeapNumber::kMantissaBitsInTopWord; |
| |
| static const int kMantissaInLoWordShift = |
| kBitsPerInt - kMantissaInHiWordShift; |
| |
| // Test for all special exponent values: zeros, subnormal numbers, NaNs |
| // and infinities. All these should be converted to 0. |
| __ mov(r7, Operand(HeapNumber::kExponentMask)); |
| __ and_(r9, r5, Operand(r7), SetCC); |
| __ b(eq, &nan_or_infinity_or_zero); |
| |
| __ teq(r9, Operand(r7)); |
| __ mov(r9, Operand(kBinary32ExponentMask), LeaveCC, eq); |
| __ b(eq, &nan_or_infinity_or_zero); |
| |
| // Rebias exponent. |
| __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift)); |
| __ add(r9, |
| r9, |
| Operand(kBinary32ExponentBias - HeapNumber::kExponentBias)); |
| |
| __ cmp(r9, Operand(kBinary32MaxExponent)); |
| __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, gt); |
| __ orr(r5, r5, Operand(kBinary32ExponentMask), LeaveCC, gt); |
| __ b(gt, &done); |
| |
| __ cmp(r9, Operand(kBinary32MinExponent)); |
| __ and_(r5, r5, Operand(HeapNumber::kSignMask), LeaveCC, lt); |
| __ b(lt, &done); |
| |
| __ and_(r7, r5, Operand(HeapNumber::kSignMask)); |
| __ and_(r5, r5, Operand(HeapNumber::kMantissaMask)); |
| __ orr(r7, r7, Operand(r5, LSL, kMantissaInHiWordShift)); |
| __ orr(r7, r7, Operand(r6, LSR, kMantissaInLoWordShift)); |
| __ orr(r5, r7, Operand(r9, LSL, kBinary32ExponentShift)); |
| |
| __ bind(&done); |
| __ str(r5, MemOperand(r3, r4, LSL, 2)); |
| // Entry registers are intact, r0 holds the value which is the return |
| // value. |
| __ Ret(); |
| |
| __ bind(&nan_or_infinity_or_zero); |
| __ and_(r7, r5, Operand(HeapNumber::kSignMask)); |
| __ and_(r5, r5, Operand(HeapNumber::kMantissaMask)); |
| __ orr(r9, r9, r7); |
| __ orr(r9, r9, Operand(r5, LSL, kMantissaInHiWordShift)); |
| __ orr(r5, r9, Operand(r6, LSR, kMantissaInLoWordShift)); |
| __ b(&done); |
| } else { |
| bool is_signed_type = IsElementTypeSigned(array_type); |
| int meaningfull_bits = is_signed_type ? (kBitsPerInt - 1) : kBitsPerInt; |
| int32_t min_value = is_signed_type ? 0x80000000 : 0x00000000; |
| |
| Label done, sign; |
| |
| // Test for all special exponent values: zeros, subnormal numbers, NaNs |
| // and infinities. All these should be converted to 0. |
| __ mov(r7, Operand(HeapNumber::kExponentMask)); |
| __ and_(r9, r5, Operand(r7), SetCC); |
| __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq); |
| __ b(eq, &done); |
| |
| __ teq(r9, Operand(r7)); |
| __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, eq); |
| __ b(eq, &done); |
| |
| // Unbias exponent. |
| __ mov(r9, Operand(r9, LSR, HeapNumber::kExponentShift)); |
| __ sub(r9, r9, Operand(HeapNumber::kExponentBias), SetCC); |
| // If exponent is negative than result is 0. |
| __ mov(r5, Operand(0, RelocInfo::NONE), LeaveCC, mi); |
| __ b(mi, &done); |
| |
| // If exponent is too big than result is minimal value. |
| __ cmp(r9, Operand(meaningfull_bits - 1)); |
| __ mov(r5, Operand(min_value), LeaveCC, ge); |
| __ b(ge, &done); |
| |
| __ and_(r7, r5, Operand(HeapNumber::kSignMask), SetCC); |
| __ and_(r5, r5, Operand(HeapNumber::kMantissaMask)); |
| __ orr(r5, r5, Operand(1u << HeapNumber::kMantissaBitsInTopWord)); |
| |
| __ rsb(r9, r9, Operand(HeapNumber::kMantissaBitsInTopWord), SetCC); |
| __ mov(r5, Operand(r5, LSR, r9), LeaveCC, pl); |
| __ b(pl, &sign); |
| |
| __ rsb(r9, r9, Operand(0, RelocInfo::NONE)); |
| __ mov(r5, Operand(r5, LSL, r9)); |
| __ rsb(r9, r9, Operand(meaningfull_bits)); |
| __ orr(r5, r5, Operand(r6, LSR, r9)); |
| |
| __ bind(&sign); |
| __ teq(r7, Operand(0, RelocInfo::NONE)); |
| __ rsb(r5, r5, Operand(0, RelocInfo::NONE), LeaveCC, ne); |
| |
| __ bind(&done); |
| switch (array_type) { |
| case kExternalByteArray: |
| case kExternalUnsignedByteArray: |
| __ strb(r5, MemOperand(r3, r4, LSL, 0)); |
| break; |
| case kExternalShortArray: |
| case kExternalUnsignedShortArray: |
| __ strh(r5, MemOperand(r3, r4, LSL, 1)); |
| break; |
| case kExternalIntArray: |
| case kExternalUnsignedIntArray: |
| __ str(r5, MemOperand(r3, r4, LSL, 2)); |
| break; |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| // Slow case: call runtime. |
| __ bind(&slow); |
| |
| // Entry registers are intact. |
| // r0: value |
| // r1: key |
| // r2: receiver |
| GenerateRuntimeSetProperty(masm); |
| } |
| |
| |
| void StoreIC::GenerateMegamorphic(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : value |
| // -- r1 : receiver |
| // -- r2 : name |
| // -- lr : return address |
| // ----------------------------------- |
| |
| // Get the receiver from the stack and probe the stub cache. |
| Code::Flags flags = Code::ComputeFlags(Code::STORE_IC, |
| NOT_IN_LOOP, |
| MONOMORPHIC); |
| StubCache::GenerateProbe(masm, flags, r1, r2, r3, r4, r5); |
| |
| // Cache miss: Jump to runtime. |
| GenerateMiss(masm); |
| } |
| |
| |
| void StoreIC::GenerateMiss(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : value |
| // -- r1 : receiver |
| // -- r2 : name |
| // -- lr : return address |
| // ----------------------------------- |
| |
| __ Push(r1, r2, r0); |
| |
| // Perform tail call to the entry. |
| ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_Miss)); |
| __ TailCallExternalReference(ref, 3, 1); |
| } |
| |
| |
| void StoreIC::GenerateArrayLength(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : value |
| // -- r1 : receiver |
| // -- r2 : name |
| // -- lr : return address |
| // ----------------------------------- |
| // |
| // This accepts as a receiver anything JSObject::SetElementsLength accepts |
| // (currently anything except for external and pixel arrays which means |
| // anything with elements of FixedArray type.), but currently is restricted |
| // to JSArray. |
| // Value must be a number, but only smis are accepted as the most common case. |
| |
| Label miss; |
| |
| Register receiver = r1; |
| Register value = r0; |
| Register scratch = r3; |
| |
| // Check that the receiver isn't a smi. |
| __ BranchOnSmi(receiver, &miss); |
| |
| // Check that the object is a JS array. |
| __ CompareObjectType(receiver, scratch, scratch, JS_ARRAY_TYPE); |
| __ b(ne, &miss); |
| |
| // Check that elements are FixedArray. |
| // We rely on StoreIC_ArrayLength below to deal with all types of |
| // fast elements (including COW). |
| __ ldr(scratch, FieldMemOperand(receiver, JSArray::kElementsOffset)); |
| __ CompareObjectType(scratch, scratch, scratch, FIXED_ARRAY_TYPE); |
| __ b(ne, &miss); |
| |
| // Check that value is a smi. |
| __ BranchOnNotSmi(value, &miss); |
| |
| // Prepare tail call to StoreIC_ArrayLength. |
| __ Push(receiver, value); |
| |
| ExternalReference ref = ExternalReference(IC_Utility(kStoreIC_ArrayLength)); |
| __ TailCallExternalReference(ref, 2, 1); |
| |
| __ bind(&miss); |
| |
| GenerateMiss(masm); |
| } |
| |
| |
| void StoreIC::GenerateNormal(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : value |
| // -- r1 : receiver |
| // -- r2 : name |
| // -- lr : return address |
| // ----------------------------------- |
| Label miss; |
| |
| GenerateStringDictionaryReceiverCheck(masm, r1, r3, r4, r5, &miss); |
| |
| GenerateDictionaryStore(masm, &miss, r3, r2, r0, r4, r5); |
| __ IncrementCounter(&Counters::store_normal_hit, 1, r4, r5); |
| __ Ret(); |
| |
| __ bind(&miss); |
| __ IncrementCounter(&Counters::store_normal_miss, 1, r4, r5); |
| GenerateMiss(masm); |
| } |
| |
| |
| void StoreIC::GenerateGlobalProxy(MacroAssembler* masm) { |
| // ----------- S t a t e ------------- |
| // -- r0 : value |
| // -- r1 : receiver |
| // -- r2 : name |
| // -- lr : return address |
| // ----------------------------------- |
| |
| __ Push(r1, r2, r0); |
| |
| // Do tail-call to runtime routine. |
| __ TailCallRuntime(Runtime::kSetProperty, 3, 1); |
| } |
| |
| |
| #undef __ |
| |
| |
| Condition CompareIC::ComputeCondition(Token::Value op) { |
| switch (op) { |
| case Token::EQ_STRICT: |
| case Token::EQ: |
| return eq; |
| case Token::LT: |
| return lt; |
| case Token::GT: |
| // Reverse left and right operands to obtain ECMA-262 conversion order. |
| return lt; |
| case Token::LTE: |
| // Reverse left and right operands to obtain ECMA-262 conversion order. |
| return ge; |
| case Token::GTE: |
| return ge; |
| default: |
| UNREACHABLE(); |
| return no_condition; |
| } |
| } |
| |
| |
| void CompareIC::UpdateCaches(Handle<Object> x, Handle<Object> y) { |
| HandleScope scope; |
| Handle<Code> rewritten; |
| State previous_state = GetState(); |
| State state = TargetState(previous_state, false, x, y); |
| if (state == GENERIC) { |
| CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS, r1, r0); |
| rewritten = stub.GetCode(); |
| } else { |
| ICCompareStub stub(op_, state); |
| rewritten = stub.GetCode(); |
| } |
| set_target(*rewritten); |
| |
| #ifdef DEBUG |
| if (FLAG_trace_ic) { |
| PrintF("[CompareIC (%s->%s)#%s]\n", |
| GetStateName(previous_state), |
| GetStateName(state), |
| Token::Name(op_)); |
| } |
| #endif |
| } |
| |
| |
| void PatchInlinedSmiCode(Address address) { |
| UNIMPLEMENTED(); |
| } |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_ARM |