| // Copyright 2011 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // A simple interpreter for the Irregexp byte code. |
| |
| |
| #include "v8.h" |
| #include "unicode.h" |
| #include "utils.h" |
| #include "ast.h" |
| #include "bytecodes-irregexp.h" |
| #include "jsregexp.h" |
| #include "interpreter-irregexp.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| |
| typedef unibrow::Mapping<unibrow::Ecma262Canonicalize> Canonicalize; |
| |
| static bool BackRefMatchesNoCase(Canonicalize* interp_canonicalize, |
| int from, |
| int current, |
| int len, |
| Vector<const uc16> subject) { |
| for (int i = 0; i < len; i++) { |
| unibrow::uchar old_char = subject[from++]; |
| unibrow::uchar new_char = subject[current++]; |
| if (old_char == new_char) continue; |
| unibrow::uchar old_string[1] = { old_char }; |
| unibrow::uchar new_string[1] = { new_char }; |
| interp_canonicalize->get(old_char, '\0', old_string); |
| interp_canonicalize->get(new_char, '\0', new_string); |
| if (old_string[0] != new_string[0]) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| |
| static bool BackRefMatchesNoCase(Canonicalize* interp_canonicalize, |
| int from, |
| int current, |
| int len, |
| Vector<const char> subject) { |
| for (int i = 0; i < len; i++) { |
| unsigned int old_char = subject[from++]; |
| unsigned int new_char = subject[current++]; |
| if (old_char == new_char) continue; |
| if (old_char - 'A' <= 'Z' - 'A') old_char |= 0x20; |
| if (new_char - 'A' <= 'Z' - 'A') new_char |= 0x20; |
| if (old_char != new_char) return false; |
| } |
| return true; |
| } |
| |
| |
| #ifdef DEBUG |
| static void TraceInterpreter(const byte* code_base, |
| const byte* pc, |
| int stack_depth, |
| int current_position, |
| uint32_t current_char, |
| int bytecode_length, |
| const char* bytecode_name) { |
| if (FLAG_trace_regexp_bytecodes) { |
| bool printable = (current_char < 127 && current_char >= 32); |
| const char* format = |
| printable ? |
| "pc = %02x, sp = %d, curpos = %d, curchar = %08x (%c), bc = %s" : |
| "pc = %02x, sp = %d, curpos = %d, curchar = %08x .%c., bc = %s"; |
| PrintF(format, |
| pc - code_base, |
| stack_depth, |
| current_position, |
| current_char, |
| printable ? current_char : '.', |
| bytecode_name); |
| for (int i = 0; i < bytecode_length; i++) { |
| printf(", %02x", pc[i]); |
| } |
| printf(" "); |
| for (int i = 1; i < bytecode_length; i++) { |
| unsigned char b = pc[i]; |
| if (b < 127 && b >= 32) { |
| printf("%c", b); |
| } else { |
| printf("."); |
| } |
| } |
| printf("\n"); |
| } |
| } |
| |
| |
| #define BYTECODE(name) \ |
| case BC_##name: \ |
| TraceInterpreter(code_base, \ |
| pc, \ |
| static_cast<int>(backtrack_sp - backtrack_stack_base), \ |
| current, \ |
| current_char, \ |
| BC_##name##_LENGTH, \ |
| #name); |
| #else |
| #define BYTECODE(name) \ |
| case BC_##name: |
| #endif |
| |
| |
| static int32_t Load32Aligned(const byte* pc) { |
| ASSERT((reinterpret_cast<intptr_t>(pc) & 3) == 0); |
| return *reinterpret_cast<const int32_t *>(pc); |
| } |
| |
| |
| static int32_t Load16Aligned(const byte* pc) { |
| ASSERT((reinterpret_cast<intptr_t>(pc) & 1) == 0); |
| return *reinterpret_cast<const uint16_t *>(pc); |
| } |
| |
| |
| // A simple abstraction over the backtracking stack used by the interpreter. |
| // This backtracking stack does not grow automatically, but it ensures that the |
| // the memory held by the stack is released or remembered in a cache if the |
| // matching terminates. |
| class BacktrackStack { |
| public: |
| explicit BacktrackStack(Isolate* isolate) : isolate_(isolate) { |
| if (isolate->irregexp_interpreter_backtrack_stack_cache() != NULL) { |
| // If the cache is not empty reuse the previously allocated stack. |
| data_ = isolate->irregexp_interpreter_backtrack_stack_cache(); |
| isolate->set_irregexp_interpreter_backtrack_stack_cache(NULL); |
| } else { |
| // Cache was empty. Allocate a new backtrack stack. |
| data_ = NewArray<int>(kBacktrackStackSize); |
| } |
| } |
| |
| ~BacktrackStack() { |
| if (isolate_->irregexp_interpreter_backtrack_stack_cache() == NULL) { |
| // The cache is empty. Keep this backtrack stack around. |
| isolate_->set_irregexp_interpreter_backtrack_stack_cache(data_); |
| } else { |
| // A backtrack stack was already cached, just release this one. |
| DeleteArray(data_); |
| } |
| } |
| |
| int* data() const { return data_; } |
| |
| int max_size() const { return kBacktrackStackSize; } |
| |
| private: |
| static const int kBacktrackStackSize = 10000; |
| |
| int* data_; |
| Isolate* isolate_; |
| |
| DISALLOW_COPY_AND_ASSIGN(BacktrackStack); |
| }; |
| |
| |
| template <typename Char> |
| static RegExpImpl::IrregexpResult RawMatch(Isolate* isolate, |
| const byte* code_base, |
| Vector<const Char> subject, |
| int* registers, |
| int current, |
| uint32_t current_char) { |
| const byte* pc = code_base; |
| // BacktrackStack ensures that the memory allocated for the backtracking stack |
| // is returned to the system or cached if there is no stack being cached at |
| // the moment. |
| BacktrackStack backtrack_stack(isolate); |
| int* backtrack_stack_base = backtrack_stack.data(); |
| int* backtrack_sp = backtrack_stack_base; |
| int backtrack_stack_space = backtrack_stack.max_size(); |
| #ifdef DEBUG |
| if (FLAG_trace_regexp_bytecodes) { |
| PrintF("\n\nStart bytecode interpreter\n\n"); |
| } |
| #endif |
| while (true) { |
| int32_t insn = Load32Aligned(pc); |
| switch (insn & BYTECODE_MASK) { |
| BYTECODE(BREAK) |
| UNREACHABLE(); |
| return RegExpImpl::RE_FAILURE; |
| BYTECODE(PUSH_CP) |
| if (--backtrack_stack_space < 0) { |
| return RegExpImpl::RE_EXCEPTION; |
| } |
| *backtrack_sp++ = current; |
| pc += BC_PUSH_CP_LENGTH; |
| break; |
| BYTECODE(PUSH_BT) |
| if (--backtrack_stack_space < 0) { |
| return RegExpImpl::RE_EXCEPTION; |
| } |
| *backtrack_sp++ = Load32Aligned(pc + 4); |
| pc += BC_PUSH_BT_LENGTH; |
| break; |
| BYTECODE(PUSH_REGISTER) |
| if (--backtrack_stack_space < 0) { |
| return RegExpImpl::RE_EXCEPTION; |
| } |
| *backtrack_sp++ = registers[insn >> BYTECODE_SHIFT]; |
| pc += BC_PUSH_REGISTER_LENGTH; |
| break; |
| BYTECODE(SET_REGISTER) |
| registers[insn >> BYTECODE_SHIFT] = Load32Aligned(pc + 4); |
| pc += BC_SET_REGISTER_LENGTH; |
| break; |
| BYTECODE(ADVANCE_REGISTER) |
| registers[insn >> BYTECODE_SHIFT] += Load32Aligned(pc + 4); |
| pc += BC_ADVANCE_REGISTER_LENGTH; |
| break; |
| BYTECODE(SET_REGISTER_TO_CP) |
| registers[insn >> BYTECODE_SHIFT] = current + Load32Aligned(pc + 4); |
| pc += BC_SET_REGISTER_TO_CP_LENGTH; |
| break; |
| BYTECODE(SET_CP_TO_REGISTER) |
| current = registers[insn >> BYTECODE_SHIFT]; |
| pc += BC_SET_CP_TO_REGISTER_LENGTH; |
| break; |
| BYTECODE(SET_REGISTER_TO_SP) |
| registers[insn >> BYTECODE_SHIFT] = |
| static_cast<int>(backtrack_sp - backtrack_stack_base); |
| pc += BC_SET_REGISTER_TO_SP_LENGTH; |
| break; |
| BYTECODE(SET_SP_TO_REGISTER) |
| backtrack_sp = backtrack_stack_base + registers[insn >> BYTECODE_SHIFT]; |
| backtrack_stack_space = backtrack_stack.max_size() - |
| static_cast<int>(backtrack_sp - backtrack_stack_base); |
| pc += BC_SET_SP_TO_REGISTER_LENGTH; |
| break; |
| BYTECODE(POP_CP) |
| backtrack_stack_space++; |
| --backtrack_sp; |
| current = *backtrack_sp; |
| pc += BC_POP_CP_LENGTH; |
| break; |
| BYTECODE(POP_BT) |
| backtrack_stack_space++; |
| --backtrack_sp; |
| pc = code_base + *backtrack_sp; |
| break; |
| BYTECODE(POP_REGISTER) |
| backtrack_stack_space++; |
| --backtrack_sp; |
| registers[insn >> BYTECODE_SHIFT] = *backtrack_sp; |
| pc += BC_POP_REGISTER_LENGTH; |
| break; |
| BYTECODE(FAIL) |
| return RegExpImpl::RE_FAILURE; |
| BYTECODE(SUCCEED) |
| return RegExpImpl::RE_SUCCESS; |
| BYTECODE(ADVANCE_CP) |
| current += insn >> BYTECODE_SHIFT; |
| pc += BC_ADVANCE_CP_LENGTH; |
| break; |
| BYTECODE(GOTO) |
| pc = code_base + Load32Aligned(pc + 4); |
| break; |
| BYTECODE(ADVANCE_CP_AND_GOTO) |
| current += insn >> BYTECODE_SHIFT; |
| pc = code_base + Load32Aligned(pc + 4); |
| break; |
| BYTECODE(CHECK_GREEDY) |
| if (current == backtrack_sp[-1]) { |
| backtrack_sp--; |
| backtrack_stack_space++; |
| pc = code_base + Load32Aligned(pc + 4); |
| } else { |
| pc += BC_CHECK_GREEDY_LENGTH; |
| } |
| break; |
| BYTECODE(LOAD_CURRENT_CHAR) { |
| int pos = current + (insn >> BYTECODE_SHIFT); |
| if (pos >= subject.length()) { |
| pc = code_base + Load32Aligned(pc + 4); |
| } else { |
| current_char = subject[pos]; |
| pc += BC_LOAD_CURRENT_CHAR_LENGTH; |
| } |
| break; |
| } |
| BYTECODE(LOAD_CURRENT_CHAR_UNCHECKED) { |
| int pos = current + (insn >> BYTECODE_SHIFT); |
| current_char = subject[pos]; |
| pc += BC_LOAD_CURRENT_CHAR_UNCHECKED_LENGTH; |
| break; |
| } |
| BYTECODE(LOAD_2_CURRENT_CHARS) { |
| int pos = current + (insn >> BYTECODE_SHIFT); |
| if (pos + 2 > subject.length()) { |
| pc = code_base + Load32Aligned(pc + 4); |
| } else { |
| Char next = subject[pos + 1]; |
| current_char = |
| (subject[pos] | (next << (kBitsPerByte * sizeof(Char)))); |
| pc += BC_LOAD_2_CURRENT_CHARS_LENGTH; |
| } |
| break; |
| } |
| BYTECODE(LOAD_2_CURRENT_CHARS_UNCHECKED) { |
| int pos = current + (insn >> BYTECODE_SHIFT); |
| Char next = subject[pos + 1]; |
| current_char = (subject[pos] | (next << (kBitsPerByte * sizeof(Char)))); |
| pc += BC_LOAD_2_CURRENT_CHARS_UNCHECKED_LENGTH; |
| break; |
| } |
| BYTECODE(LOAD_4_CURRENT_CHARS) { |
| ASSERT(sizeof(Char) == 1); |
| int pos = current + (insn >> BYTECODE_SHIFT); |
| if (pos + 4 > subject.length()) { |
| pc = code_base + Load32Aligned(pc + 4); |
| } else { |
| Char next1 = subject[pos + 1]; |
| Char next2 = subject[pos + 2]; |
| Char next3 = subject[pos + 3]; |
| current_char = (subject[pos] | |
| (next1 << 8) | |
| (next2 << 16) | |
| (next3 << 24)); |
| pc += BC_LOAD_4_CURRENT_CHARS_LENGTH; |
| } |
| break; |
| } |
| BYTECODE(LOAD_4_CURRENT_CHARS_UNCHECKED) { |
| ASSERT(sizeof(Char) == 1); |
| int pos = current + (insn >> BYTECODE_SHIFT); |
| Char next1 = subject[pos + 1]; |
| Char next2 = subject[pos + 2]; |
| Char next3 = subject[pos + 3]; |
| current_char = (subject[pos] | |
| (next1 << 8) | |
| (next2 << 16) | |
| (next3 << 24)); |
| pc += BC_LOAD_4_CURRENT_CHARS_UNCHECKED_LENGTH; |
| break; |
| } |
| BYTECODE(CHECK_4_CHARS) { |
| uint32_t c = Load32Aligned(pc + 4); |
| if (c == current_char) { |
| pc = code_base + Load32Aligned(pc + 8); |
| } else { |
| pc += BC_CHECK_4_CHARS_LENGTH; |
| } |
| break; |
| } |
| BYTECODE(CHECK_CHAR) { |
| uint32_t c = (insn >> BYTECODE_SHIFT); |
| if (c == current_char) { |
| pc = code_base + Load32Aligned(pc + 4); |
| } else { |
| pc += BC_CHECK_CHAR_LENGTH; |
| } |
| break; |
| } |
| BYTECODE(CHECK_NOT_4_CHARS) { |
| uint32_t c = Load32Aligned(pc + 4); |
| if (c != current_char) { |
| pc = code_base + Load32Aligned(pc + 8); |
| } else { |
| pc += BC_CHECK_NOT_4_CHARS_LENGTH; |
| } |
| break; |
| } |
| BYTECODE(CHECK_NOT_CHAR) { |
| uint32_t c = (insn >> BYTECODE_SHIFT); |
| if (c != current_char) { |
| pc = code_base + Load32Aligned(pc + 4); |
| } else { |
| pc += BC_CHECK_NOT_CHAR_LENGTH; |
| } |
| break; |
| } |
| BYTECODE(AND_CHECK_4_CHARS) { |
| uint32_t c = Load32Aligned(pc + 4); |
| if (c == (current_char & Load32Aligned(pc + 8))) { |
| pc = code_base + Load32Aligned(pc + 12); |
| } else { |
| pc += BC_AND_CHECK_4_CHARS_LENGTH; |
| } |
| break; |
| } |
| BYTECODE(AND_CHECK_CHAR) { |
| uint32_t c = (insn >> BYTECODE_SHIFT); |
| if (c == (current_char & Load32Aligned(pc + 4))) { |
| pc = code_base + Load32Aligned(pc + 8); |
| } else { |
| pc += BC_AND_CHECK_CHAR_LENGTH; |
| } |
| break; |
| } |
| BYTECODE(AND_CHECK_NOT_4_CHARS) { |
| uint32_t c = Load32Aligned(pc + 4); |
| if (c != (current_char & Load32Aligned(pc + 8))) { |
| pc = code_base + Load32Aligned(pc + 12); |
| } else { |
| pc += BC_AND_CHECK_NOT_4_CHARS_LENGTH; |
| } |
| break; |
| } |
| BYTECODE(AND_CHECK_NOT_CHAR) { |
| uint32_t c = (insn >> BYTECODE_SHIFT); |
| if (c != (current_char & Load32Aligned(pc + 4))) { |
| pc = code_base + Load32Aligned(pc + 8); |
| } else { |
| pc += BC_AND_CHECK_NOT_CHAR_LENGTH; |
| } |
| break; |
| } |
| BYTECODE(MINUS_AND_CHECK_NOT_CHAR) { |
| uint32_t c = (insn >> BYTECODE_SHIFT); |
| uint32_t minus = Load16Aligned(pc + 4); |
| uint32_t mask = Load16Aligned(pc + 6); |
| if (c != ((current_char - minus) & mask)) { |
| pc = code_base + Load32Aligned(pc + 8); |
| } else { |
| pc += BC_MINUS_AND_CHECK_NOT_CHAR_LENGTH; |
| } |
| break; |
| } |
| BYTECODE(CHECK_LT) { |
| uint32_t limit = (insn >> BYTECODE_SHIFT); |
| if (current_char < limit) { |
| pc = code_base + Load32Aligned(pc + 4); |
| } else { |
| pc += BC_CHECK_LT_LENGTH; |
| } |
| break; |
| } |
| BYTECODE(CHECK_GT) { |
| uint32_t limit = (insn >> BYTECODE_SHIFT); |
| if (current_char > limit) { |
| pc = code_base + Load32Aligned(pc + 4); |
| } else { |
| pc += BC_CHECK_GT_LENGTH; |
| } |
| break; |
| } |
| BYTECODE(CHECK_REGISTER_LT) |
| if (registers[insn >> BYTECODE_SHIFT] < Load32Aligned(pc + 4)) { |
| pc = code_base + Load32Aligned(pc + 8); |
| } else { |
| pc += BC_CHECK_REGISTER_LT_LENGTH; |
| } |
| break; |
| BYTECODE(CHECK_REGISTER_GE) |
| if (registers[insn >> BYTECODE_SHIFT] >= Load32Aligned(pc + 4)) { |
| pc = code_base + Load32Aligned(pc + 8); |
| } else { |
| pc += BC_CHECK_REGISTER_GE_LENGTH; |
| } |
| break; |
| BYTECODE(CHECK_REGISTER_EQ_POS) |
| if (registers[insn >> BYTECODE_SHIFT] == current) { |
| pc = code_base + Load32Aligned(pc + 4); |
| } else { |
| pc += BC_CHECK_REGISTER_EQ_POS_LENGTH; |
| } |
| break; |
| BYTECODE(LOOKUP_MAP1) { |
| // Look up character in a bitmap. If we find a 0, then jump to the |
| // location at pc + 8. Otherwise fall through! |
| int index = current_char - (insn >> BYTECODE_SHIFT); |
| byte map = code_base[Load32Aligned(pc + 4) + (index >> 3)]; |
| map = ((map >> (index & 7)) & 1); |
| if (map == 0) { |
| pc = code_base + Load32Aligned(pc + 8); |
| } else { |
| pc += BC_LOOKUP_MAP1_LENGTH; |
| } |
| break; |
| } |
| BYTECODE(LOOKUP_MAP2) { |
| // Look up character in a half-nibble map. If we find 00, then jump to |
| // the location at pc + 8. If we find 01 then jump to location at |
| // pc + 11, etc. |
| int index = (current_char - (insn >> BYTECODE_SHIFT)) << 1; |
| byte map = code_base[Load32Aligned(pc + 3) + (index >> 3)]; |
| map = ((map >> (index & 7)) & 3); |
| if (map < 2) { |
| if (map == 0) { |
| pc = code_base + Load32Aligned(pc + 8); |
| } else { |
| pc = code_base + Load32Aligned(pc + 12); |
| } |
| } else { |
| if (map == 2) { |
| pc = code_base + Load32Aligned(pc + 16); |
| } else { |
| pc = code_base + Load32Aligned(pc + 20); |
| } |
| } |
| break; |
| } |
| BYTECODE(LOOKUP_MAP8) { |
| // Look up character in a byte map. Use the byte as an index into a |
| // table that follows this instruction immediately. |
| int index = current_char - (insn >> BYTECODE_SHIFT); |
| byte map = code_base[Load32Aligned(pc + 4) + index]; |
| const byte* new_pc = code_base + Load32Aligned(pc + 8) + (map << 2); |
| pc = code_base + Load32Aligned(new_pc); |
| break; |
| } |
| BYTECODE(LOOKUP_HI_MAP8) { |
| // Look up high byte of this character in a byte map. Use the byte as |
| // an index into a table that follows this instruction immediately. |
| int index = (current_char >> 8) - (insn >> BYTECODE_SHIFT); |
| byte map = code_base[Load32Aligned(pc + 4) + index]; |
| const byte* new_pc = code_base + Load32Aligned(pc + 8) + (map << 2); |
| pc = code_base + Load32Aligned(new_pc); |
| break; |
| } |
| BYTECODE(CHECK_NOT_REGS_EQUAL) |
| if (registers[insn >> BYTECODE_SHIFT] == |
| registers[Load32Aligned(pc + 4)]) { |
| pc += BC_CHECK_NOT_REGS_EQUAL_LENGTH; |
| } else { |
| pc = code_base + Load32Aligned(pc + 8); |
| } |
| break; |
| BYTECODE(CHECK_NOT_BACK_REF) { |
| int from = registers[insn >> BYTECODE_SHIFT]; |
| int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; |
| if (from < 0 || len <= 0) { |
| pc += BC_CHECK_NOT_BACK_REF_LENGTH; |
| break; |
| } |
| if (current + len > subject.length()) { |
| pc = code_base + Load32Aligned(pc + 4); |
| break; |
| } else { |
| int i; |
| for (i = 0; i < len; i++) { |
| if (subject[from + i] != subject[current + i]) { |
| pc = code_base + Load32Aligned(pc + 4); |
| break; |
| } |
| } |
| if (i < len) break; |
| current += len; |
| } |
| pc += BC_CHECK_NOT_BACK_REF_LENGTH; |
| break; |
| } |
| BYTECODE(CHECK_NOT_BACK_REF_NO_CASE) { |
| int from = registers[insn >> BYTECODE_SHIFT]; |
| int len = registers[(insn >> BYTECODE_SHIFT) + 1] - from; |
| if (from < 0 || len <= 0) { |
| pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH; |
| break; |
| } |
| if (current + len > subject.length()) { |
| pc = code_base + Load32Aligned(pc + 4); |
| break; |
| } else { |
| if (BackRefMatchesNoCase(isolate->interp_canonicalize_mapping(), |
| from, current, len, subject)) { |
| current += len; |
| pc += BC_CHECK_NOT_BACK_REF_NO_CASE_LENGTH; |
| } else { |
| pc = code_base + Load32Aligned(pc + 4); |
| } |
| } |
| break; |
| } |
| BYTECODE(CHECK_AT_START) |
| if (current == 0) { |
| pc = code_base + Load32Aligned(pc + 4); |
| } else { |
| pc += BC_CHECK_AT_START_LENGTH; |
| } |
| break; |
| BYTECODE(CHECK_NOT_AT_START) |
| if (current == 0) { |
| pc += BC_CHECK_NOT_AT_START_LENGTH; |
| } else { |
| pc = code_base + Load32Aligned(pc + 4); |
| } |
| break; |
| BYTECODE(SET_CURRENT_POSITION_FROM_END) { |
| int by = static_cast<uint32_t>(insn) >> BYTECODE_SHIFT; |
| if (subject.length() - current > by) { |
| current = subject.length() - by; |
| current_char = subject[current - 1]; |
| } |
| pc += BC_SET_CURRENT_POSITION_FROM_END_LENGTH; |
| break; |
| } |
| default: |
| UNREACHABLE(); |
| break; |
| } |
| } |
| } |
| |
| |
| RegExpImpl::IrregexpResult IrregexpInterpreter::Match( |
| Isolate* isolate, |
| Handle<ByteArray> code_array, |
| Handle<String> subject, |
| int* registers, |
| int start_position) { |
| ASSERT(subject->IsFlat()); |
| |
| AssertNoAllocation a; |
| const byte* code_base = code_array->GetDataStartAddress(); |
| uc16 previous_char = '\n'; |
| String::FlatContent subject_content = subject->GetFlatContent(); |
| if (subject_content.IsAscii()) { |
| Vector<const char> subject_vector = subject_content.ToAsciiVector(); |
| if (start_position != 0) previous_char = subject_vector[start_position - 1]; |
| return RawMatch(isolate, |
| code_base, |
| subject_vector, |
| registers, |
| start_position, |
| previous_char); |
| } else { |
| ASSERT(subject_content.IsTwoByte()); |
| Vector<const uc16> subject_vector = subject_content.ToUC16Vector(); |
| if (start_position != 0) previous_char = subject_vector[start_position - 1]; |
| return RawMatch(isolate, |
| code_base, |
| subject_vector, |
| registers, |
| start_position, |
| previous_char); |
| } |
| } |
| |
| } } // namespace v8::internal |