blob: 32f78a72d400639e86a4b19a38c91e2def75341f [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Flags: --allow-natives-syntax --expose-gc
// This is a regression test for overlapping key and value registers.
function f(a) {
a[0] = 0;
a[1] = 0;
}
var a = new Int32Array(2);
for (var i = 0; i < 5; i++) {
f(a);
}
%OptimizeFunctionOnNextCall(f);
f(a);
assertEquals(0, a[0]);
assertEquals(0, a[1]);
// No-parameter constructor should fail right now.
function abfunc1() {
return new ArrayBuffer();
}
assertThrows(abfunc1);
// Test derivation from an ArrayBuffer
var ab = new ArrayBuffer(12);
var derived_uint8 = new Uint8Array(ab);
assertEquals(12, derived_uint8.length);
var derived_uint32 = new Uint32Array(ab);
assertEquals(3, derived_uint32.length);
var derived_uint32_2 = new Uint32Array(ab,4);
assertEquals(2, derived_uint32_2.length);
var derived_uint32_3 = new Uint32Array(ab,4,1);
assertEquals(1, derived_uint32_3.length);
// If a given byteOffset and length references an area beyond the end of the
// ArrayBuffer an exception is raised.
function abfunc3() {
new Uint32Array(ab,4,3);
}
assertThrows(abfunc3);
function abfunc4() {
new Uint32Array(ab,16);
}
assertThrows(abfunc4);
// The given byteOffset must be a multiple of the element size of the specific
// type, otherwise an exception is raised.
function abfunc5() {
new Uint32Array(ab,5);
}
assertThrows(abfunc5);
// If length is not explicitly specified, the length of the ArrayBuffer minus
// the byteOffset must be a multiple of the element size of the specific type,
// or an exception is raised.
var ab2 = new ArrayBuffer(13);
function abfunc6() {
new Uint32Array(ab2,4);
}
assertThrows(abfunc6);
// Test the correct behavior of the |BYTES_PER_ELEMENT| property (which is
// "constant", but not read-only).
a = new Int32Array(2);
assertEquals(4, a.BYTES_PER_ELEMENT);
a.BYTES_PER_ELEMENT = 42;
assertEquals(42, a.BYTES_PER_ELEMENT);
a = new Uint8Array(2);
assertEquals(1, a.BYTES_PER_ELEMENT);
a = new Int16Array(2);
assertEquals(2, a.BYTES_PER_ELEMENT);
// Test Float64Arrays.
function get(a, index) {
return a[index];
}
function set(a, index, value) {
a[index] = value;
}
function temp() {
var array = new Float64Array(2);
for (var i = 0; i < 5; i++) {
set(array, 0, 2.5);
assertEquals(2.5, array[0]);
}
%OptimizeFunctionOnNextCall(set);
set(array, 0, 2.5);
assertEquals(2.5, array[0]);
set(array, 1, 3.5);
assertEquals(3.5, array[1]);
for (var i = 0; i < 5; i++) {
assertEquals(2.5, get(array, 0));
assertEquals(3.5, array[1]);
}
%OptimizeFunctionOnNextCall(get);
assertEquals(2.5, get(array, 0));
assertEquals(3.5, get(array, 1));
}
// Test non-number parameters.
var array_with_length_from_non_number = new Int32Array("2");
assertEquals(2, array_with_length_from_non_number.length);
array_with_length_from_non_number = new Int32Array(undefined);
assertEquals(0, array_with_length_from_non_number.length);
var foo = { valueOf: function() { return 3; } };
array_with_length_from_non_number = new Int32Array(foo);
assertEquals(3, array_with_length_from_non_number.length);
foo = { toString: function() { return "4"; } };
array_with_length_from_non_number = new Int32Array(foo);
assertEquals(4, array_with_length_from_non_number.length);
// Test loads and stores.
types = [Array, Int8Array, Uint8Array, Int16Array, Uint16Array, Int32Array,
Uint32Array, PixelArray, Float32Array, Float64Array];
test_result_nan = [NaN, 0, 0, 0, 0, 0, 0, 0, NaN, NaN];
test_result_low_int = [-1, -1, 255, -1, 65535, -1, 0xFFFFFFFF, 0, -1, -1];
test_result_low_double = [-1.25, -1, 255, -1, 65535, -1, 0xFFFFFFFF, 0, -1.25, -1.25];
test_result_middle = [253.75, -3, 253, 253, 253, 253, 253, 254, 253.75, 253.75];
test_result_high_int = [256, 0, 0, 256, 256, 256, 256, 255, 256, 256];
test_result_high_double = [256.25, 0, 0, 256, 256, 256, 256, 255, 256.25, 256.25];
const kElementCount = 40;
function test_load(array, sum) {
for (var i = 0; i < kElementCount; i++) {
sum += array[i];
}
return sum;
}
function test_load_const_key(array, sum) {
sum += array[0];
sum += array[1];
sum += array[2];
return sum;
}
function test_store(array, sum) {
for (var i = 0; i < kElementCount; i++) {
sum += array[i] = i+1;
}
return sum;
}
function test_store_const_key(array, sum) {
sum += array[0] = 1;
sum += array[1] = 2;
sum += array[2] = 3;
return sum;
}
function zero() {
return 0.0;
}
function test_store_middle_tagged(array, sum) {
array[0] = 253.75;
return array[0];
}
function test_store_high_tagged(array, sum) {
array[0] = 256.25;
return array[0];
}
function test_store_middle_double(array, sum) {
array[0] = 253.75 + zero(); // + forces double type feedback
return array[0];
}
function test_store_high_double(array, sum) {
array[0] = 256.25 + zero(); // + forces double type feedback
return array[0];
}
function test_store_high_double(array, sum) {
array[0] = 256.25;
return array[0];
}
function test_store_low_int(array, sum) {
array[0] = -1;
return array[0];
}
function test_store_low_tagged(array, sum) {
array[0] = -1.25;
return array[0];
}
function test_store_low_double(array, sum) {
array[0] = -1.25 + zero(); // + forces double type feedback
return array[0];
}
function test_store_high_int(array, sum) {
array[0] = 256;
return array[0];
}
function test_store_nan(array, sum) {
array[0] = NaN;
return array[0];
}
const kRuns = 10;
function run_test(test_func, array, expected_result) {
for (var i = 0; i < 5; i++) test_func(array, 0);
%OptimizeFunctionOnNextCall(test_func);
var sum = 0;
for (var i = 0; i < kRuns; i++) {
sum = test_func(array, sum);
}
assertEquals(expected_result, sum);
%DeoptimizeFunction(test_func);
gc(); // Makes V8 forget about type information for test_func.
}
function run_bounds_test(test_func, array, expected_result) {
assertEquals(undefined, a[kElementCount]);
a[kElementCount] = 456;
assertEquals(undefined, a[kElementCount]);
assertEquals(undefined, a[kElementCount+1]);
a[kElementCount+1] = 456;
assertEquals(undefined, a[kElementCount+1]);
}
for (var t = 0; t < types.length; t++) {
var type = types[t];
var a = new type(kElementCount);
for (var i = 0; i < kElementCount; i++) {
a[i] = i;
}
// Run test functions defined above.
run_test(test_load, a, 780 * kRuns);
run_test(test_load_const_key, a, 3 * kRuns);
run_test(test_store, a, 820 * kRuns);
run_test(test_store_const_key, a, 6 * kRuns);
run_test(test_store_low_int, a, test_result_low_int[t]);
run_test(test_store_low_double, a, test_result_low_double[t]);
run_test(test_store_low_tagged, a, test_result_low_double[t]);
run_test(test_store_high_int, a, test_result_high_int[t]);
run_test(test_store_nan, a, test_result_nan[t]);
run_test(test_store_middle_double, a, test_result_middle[t]);
run_test(test_store_middle_tagged, a, test_result_middle[t]);
run_test(test_store_high_double, a, test_result_high_double[t]);
run_test(test_store_high_tagged, a, test_result_high_double[t]);
// Test the correct behavior of the |length| property (which is read-only).
if (t != 0) {
assertEquals(kElementCount, a.length);
a.length = 2;
assertEquals(kElementCount, a.length);
assertTrue(delete a.length);
a.length = 2;
assertEquals(2, a.length);
// Make sure bounds checks are handled correctly for external arrays.
run_bounds_test(a);
run_bounds_test(a);
run_bounds_test(a);
%OptimizeFunctionOnNextCall(run_bounds_test);
run_bounds_test(a);
%DeoptimizeFunction(run_bounds_test);
gc(); // Makes V8 forget about type information for test_func.
}
function array_load_set_smi_check(a) {
return a[0] = a[0] = 1;
}
array_load_set_smi_check(a);
array_load_set_smi_check(0);
function array_load_set_smi_check2(a) {
return a[0] = a[0] = 1;
}
array_load_set_smi_check2(a);
%OptimizeFunctionOnNextCall(array_load_set_smi_check2);
array_load_set_smi_check2(a);
array_load_set_smi_check2(0);
%DeoptimizeFunction(array_load_set_smi_check2);
gc(); // Makes V8 forget about type information for array_load_set_smi_check.
}
// Check handling of undefined in 32- and 64-bit external float arrays.
function store_float32_undefined(ext_array) {
ext_array[0] = undefined;
}
var float32_array = new Float32Array(1);
// Make sure runtime does it right
store_float32_undefined(float32_array);
assertTrue(isNaN(float32_array[0]));
// Make sure the ICs do it right
store_float32_undefined(float32_array);
assertTrue(isNaN(float32_array[0]));
// Make sure that Cranskshft does it right.
%OptimizeFunctionOnNextCall(store_float32_undefined);
store_float32_undefined(float32_array);
assertTrue(isNaN(float32_array[0]));
function store_float64_undefined(ext_array) {
ext_array[0] = undefined;
}
var float64_array = new Float64Array(1);
// Make sure runtime does it right
store_float64_undefined(float64_array);
assertTrue(isNaN(float64_array[0]));
// Make sure the ICs do it right
store_float64_undefined(float64_array);
assertTrue(isNaN(float64_array[0]));
// Make sure that Cranskshft does it right.
%OptimizeFunctionOnNextCall(store_float64_undefined);
store_float64_undefined(float64_array);
assertTrue(isNaN(float64_array[0]));