blob: 201507b2af338ea6e32b59d36c6a8cc145e22e0a [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_FULL_CODEGEN_H_
#define V8_FULL_CODEGEN_H_
#include "v8.h"
#include "ast.h"
#include "compiler.h"
namespace v8 {
namespace internal {
// AST node visitor which can tell whether a given statement will be breakable
// when the code is compiled by the full compiler in the debugger. This means
// that there will be an IC (load/store/call) in the code generated for the
// debugger to piggybag on.
class BreakableStatementChecker: public AstVisitor {
public:
BreakableStatementChecker() : is_breakable_(false) {}
void Check(Statement* stmt);
void Check(Expression* stmt);
bool is_breakable() { return is_breakable_; }
private:
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
bool is_breakable_;
DISALLOW_COPY_AND_ASSIGN(BreakableStatementChecker);
};
// -----------------------------------------------------------------------------
// Full code generator.
class FullCodeGenerator: public AstVisitor {
public:
explicit FullCodeGenerator(MacroAssembler* masm)
: masm_(masm),
info_(NULL),
nesting_stack_(NULL),
loop_depth_(0),
context_(NULL) {
}
static bool MakeCode(CompilationInfo* info);
void Generate(CompilationInfo* info);
private:
class Breakable;
class Iteration;
class TryCatch;
class TryFinally;
class Finally;
class ForIn;
class NestedStatement BASE_EMBEDDED {
public:
explicit NestedStatement(FullCodeGenerator* codegen) : codegen_(codegen) {
// Link into codegen's nesting stack.
previous_ = codegen->nesting_stack_;
codegen->nesting_stack_ = this;
}
virtual ~NestedStatement() {
// Unlink from codegen's nesting stack.
ASSERT_EQ(this, codegen_->nesting_stack_);
codegen_->nesting_stack_ = previous_;
}
virtual Breakable* AsBreakable() { return NULL; }
virtual Iteration* AsIteration() { return NULL; }
virtual TryCatch* AsTryCatch() { return NULL; }
virtual TryFinally* AsTryFinally() { return NULL; }
virtual Finally* AsFinally() { return NULL; }
virtual ForIn* AsForIn() { return NULL; }
virtual bool IsContinueTarget(Statement* target) { return false; }
virtual bool IsBreakTarget(Statement* target) { return false; }
// Generate code to leave the nested statement. This includes
// cleaning up any stack elements in use and restoring the
// stack to the expectations of the surrounding statements.
// Takes a number of stack elements currently on top of the
// nested statement's stack, and returns a number of stack
// elements left on top of the surrounding statement's stack.
// The generated code must preserve the result register (which
// contains the value in case of a return).
virtual int Exit(int stack_depth) {
// Default implementation for the case where there is
// nothing to clean up.
return stack_depth;
}
NestedStatement* outer() { return previous_; }
protected:
MacroAssembler* masm() { return codegen_->masm(); }
private:
FullCodeGenerator* codegen_;
NestedStatement* previous_;
DISALLOW_COPY_AND_ASSIGN(NestedStatement);
};
class Breakable : public NestedStatement {
public:
Breakable(FullCodeGenerator* codegen,
BreakableStatement* break_target)
: NestedStatement(codegen),
target_(break_target) {}
virtual ~Breakable() {}
virtual Breakable* AsBreakable() { return this; }
virtual bool IsBreakTarget(Statement* statement) {
return target_ == statement;
}
BreakableStatement* statement() { return target_; }
Label* break_target() { return &break_target_label_; }
private:
BreakableStatement* target_;
Label break_target_label_;
DISALLOW_COPY_AND_ASSIGN(Breakable);
};
class Iteration : public Breakable {
public:
Iteration(FullCodeGenerator* codegen,
IterationStatement* iteration_statement)
: Breakable(codegen, iteration_statement) {}
virtual ~Iteration() {}
virtual Iteration* AsIteration() { return this; }
virtual bool IsContinueTarget(Statement* statement) {
return this->statement() == statement;
}
Label* continue_target() { return &continue_target_label_; }
private:
Label continue_target_label_;
DISALLOW_COPY_AND_ASSIGN(Iteration);
};
// The environment inside the try block of a try/catch statement.
class TryCatch : public NestedStatement {
public:
explicit TryCatch(FullCodeGenerator* codegen, Label* catch_entry)
: NestedStatement(codegen), catch_entry_(catch_entry) { }
virtual ~TryCatch() {}
virtual TryCatch* AsTryCatch() { return this; }
Label* catch_entry() { return catch_entry_; }
virtual int Exit(int stack_depth);
private:
Label* catch_entry_;
DISALLOW_COPY_AND_ASSIGN(TryCatch);
};
// The environment inside the try block of a try/finally statement.
class TryFinally : public NestedStatement {
public:
explicit TryFinally(FullCodeGenerator* codegen, Label* finally_entry)
: NestedStatement(codegen), finally_entry_(finally_entry) { }
virtual ~TryFinally() {}
virtual TryFinally* AsTryFinally() { return this; }
Label* finally_entry() { return finally_entry_; }
virtual int Exit(int stack_depth);
private:
Label* finally_entry_;
DISALLOW_COPY_AND_ASSIGN(TryFinally);
};
// A FinallyEnvironment represents being inside a finally block.
// Abnormal termination of the finally block needs to clean up
// the block's parameters from the stack.
class Finally : public NestedStatement {
public:
explicit Finally(FullCodeGenerator* codegen) : NestedStatement(codegen) { }
virtual ~Finally() {}
virtual Finally* AsFinally() { return this; }
virtual int Exit(int stack_depth) {
return stack_depth + kFinallyStackElementCount;
}
private:
// Number of extra stack slots occupied during a finally block.
static const int kFinallyStackElementCount = 2;
DISALLOW_COPY_AND_ASSIGN(Finally);
};
// A ForInEnvironment represents being inside a for-in loop.
// Abnormal termination of the for-in block needs to clean up
// the block's temporary storage from the stack.
class ForIn : public Iteration {
public:
ForIn(FullCodeGenerator* codegen,
ForInStatement* statement)
: Iteration(codegen, statement) { }
virtual ~ForIn() {}
virtual ForIn* AsForIn() { return this; }
virtual int Exit(int stack_depth) {
return stack_depth + kForInStackElementCount;
}
private:
static const int kForInStackElementCount = 5;
DISALLOW_COPY_AND_ASSIGN(ForIn);
};
enum ConstantOperand {
kNoConstants,
kLeftConstant,
kRightConstant
};
// Type of a member function that generates inline code for a native function.
typedef void (FullCodeGenerator::*InlineFunctionGenerator)
(ZoneList<Expression*>*);
static const InlineFunctionGenerator kInlineFunctionGenerators[];
// Compute the frame pointer relative offset for a given local or
// parameter slot.
int SlotOffset(Slot* slot);
// Determine whether or not to inline the smi case for the given
// operation.
bool ShouldInlineSmiCase(Token::Value op);
// Compute which (if any) of the operands is a compile-time constant.
ConstantOperand GetConstantOperand(Token::Value op,
Expression* left,
Expression* right);
// Helper function to convert a pure value into a test context. The value
// is expected on the stack or the accumulator, depending on the platform.
// See the platform-specific implementation for details.
void DoTest(Label* if_true, Label* if_false, Label* fall_through);
// Helper function to split control flow and avoid a branch to the
// fall-through label if it is set up.
void Split(Condition cc,
Label* if_true,
Label* if_false,
Label* fall_through);
void Move(Slot* dst, Register source, Register scratch1, Register scratch2);
void Move(Register dst, Slot* source);
// Return an operand used to read/write to a known (ie, non-LOOKUP) slot.
// May emit code to traverse the context chain, destroying the scratch
// register.
MemOperand EmitSlotSearch(Slot* slot, Register scratch);
void VisitForEffect(Expression* expr) {
EffectContext context(this);
Visit(expr);
}
void VisitForAccumulatorValue(Expression* expr) {
AccumulatorValueContext context(this);
Visit(expr);
}
void VisitForStackValue(Expression* expr) {
StackValueContext context(this);
Visit(expr);
}
void VisitForControl(Expression* expr,
Label* if_true,
Label* if_false,
Label* fall_through) {
TestContext context(this, if_true, if_false, fall_through);
Visit(expr);
}
void VisitDeclarations(ZoneList<Declaration*>* declarations);
void DeclareGlobals(Handle<FixedArray> pairs);
// Try to perform a comparison as a fast inlined literal compare if
// the operands allow it. Returns true if the compare operations
// has been matched and all code generated; false otherwise.
bool TryLiteralCompare(Token::Value op,
Expression* left,
Expression* right,
Label* if_true,
Label* if_false,
Label* fall_through);
// Platform-specific code for a variable, constant, or function
// declaration. Functions have an initial value.
void EmitDeclaration(Variable* variable,
Variable::Mode mode,
FunctionLiteral* function);
// Platform-specific return sequence
void EmitReturnSequence();
// Platform-specific code sequences for calls
void EmitCallWithStub(Call* expr);
void EmitCallWithIC(Call* expr, Handle<Object> name, RelocInfo::Mode mode);
void EmitKeyedCallWithIC(Call* expr, Expression* key, RelocInfo::Mode mode);
// Platform-specific code for inline runtime calls.
InlineFunctionGenerator FindInlineFunctionGenerator(Runtime::FunctionId id);
void EmitInlineRuntimeCall(CallRuntime* expr);
#define EMIT_INLINE_RUNTIME_CALL(name, x, y) \
void Emit##name(ZoneList<Expression*>* arguments);
INLINE_FUNCTION_LIST(EMIT_INLINE_RUNTIME_CALL)
INLINE_RUNTIME_FUNCTION_LIST(EMIT_INLINE_RUNTIME_CALL)
#undef EMIT_INLINE_RUNTIME_CALL
// Platform-specific code for loading variables.
void EmitLoadGlobalSlotCheckExtensions(Slot* slot,
TypeofState typeof_state,
Label* slow);
MemOperand ContextSlotOperandCheckExtensions(Slot* slot, Label* slow);
void EmitDynamicLoadFromSlotFastCase(Slot* slot,
TypeofState typeof_state,
Label* slow,
Label* done);
void EmitVariableLoad(Variable* expr);
// Platform-specific support for allocating a new closure based on
// the given function info.
void EmitNewClosure(Handle<SharedFunctionInfo> info);
// Platform-specific support for compiling assignments.
// Load a value from a named property.
// The receiver is left on the stack by the IC.
void EmitNamedPropertyLoad(Property* expr);
// Load a value from a keyed property.
// The receiver and the key is left on the stack by the IC.
void EmitKeyedPropertyLoad(Property* expr);
// Apply the compound assignment operator. Expects the left operand on top
// of the stack and the right one in the accumulator.
void EmitBinaryOp(Token::Value op,
OverwriteMode mode);
// Helper functions for generating inlined smi code for certain
// binary operations.
void EmitInlineSmiBinaryOp(Expression* expr,
Token::Value op,
OverwriteMode mode,
Expression* left,
Expression* right,
ConstantOperand constant);
void EmitConstantSmiBinaryOp(Expression* expr,
Token::Value op,
OverwriteMode mode,
bool left_is_constant_smi,
Smi* value);
void EmitConstantSmiBitOp(Expression* expr,
Token::Value op,
OverwriteMode mode,
Smi* value);
void EmitConstantSmiShiftOp(Expression* expr,
Token::Value op,
OverwriteMode mode,
Smi* value);
void EmitConstantSmiAdd(Expression* expr,
OverwriteMode mode,
bool left_is_constant_smi,
Smi* value);
void EmitConstantSmiSub(Expression* expr,
OverwriteMode mode,
bool left_is_constant_smi,
Smi* value);
// Assign to the given expression as if via '='. The right-hand-side value
// is expected in the accumulator.
void EmitAssignment(Expression* expr);
// Complete a variable assignment. The right-hand-side value is expected
// in the accumulator.
void EmitVariableAssignment(Variable* var,
Token::Value op);
// Complete a named property assignment. The receiver is expected on top
// of the stack and the right-hand-side value in the accumulator.
void EmitNamedPropertyAssignment(Assignment* expr);
// Complete a keyed property assignment. The receiver and key are
// expected on top of the stack and the right-hand-side value in the
// accumulator.
void EmitKeyedPropertyAssignment(Assignment* expr);
void SetFunctionPosition(FunctionLiteral* fun);
void SetReturnPosition(FunctionLiteral* fun);
void SetStatementPosition(Statement* stmt);
void SetExpressionPosition(Expression* expr, int pos);
void SetStatementPosition(int pos);
void SetSourcePosition(int pos);
// Non-local control flow support.
void EnterFinallyBlock();
void ExitFinallyBlock();
// Loop nesting counter.
int loop_depth() { return loop_depth_; }
void increment_loop_depth() { loop_depth_++; }
void decrement_loop_depth() {
ASSERT(loop_depth_ > 0);
loop_depth_--;
}
MacroAssembler* masm() { return masm_; }
class ExpressionContext;
const ExpressionContext* context() { return context_; }
void set_new_context(const ExpressionContext* context) { context_ = context; }
Handle<Script> script() { return info_->script(); }
bool is_eval() { return info_->is_eval(); }
FunctionLiteral* function() { return info_->function(); }
Scope* scope() { return info_->scope(); }
static Register result_register();
static Register context_register();
// Helper for calling an IC stub.
void EmitCallIC(Handle<Code> ic, RelocInfo::Mode mode);
// Set fields in the stack frame. Offsets are the frame pointer relative
// offsets defined in, e.g., StandardFrameConstants.
void StoreToFrameField(int frame_offset, Register value);
// Load a value from the current context. Indices are defined as an enum
// in v8::internal::Context.
void LoadContextField(Register dst, int context_index);
// Create an operand for a context field.
MemOperand ContextOperand(Register context, int context_index);
// AST node visit functions.
#define DECLARE_VISIT(type) virtual void Visit##type(type* node);
AST_NODE_LIST(DECLARE_VISIT)
#undef DECLARE_VISIT
// Handles the shortcutted logical binary operations in VisitBinaryOperation.
void EmitLogicalOperation(BinaryOperation* expr);
void VisitForTypeofValue(Expression* expr);
MacroAssembler* masm_;
CompilationInfo* info_;
Label return_label_;
NestedStatement* nesting_stack_;
int loop_depth_;
class ExpressionContext {
public:
explicit ExpressionContext(FullCodeGenerator* codegen)
: masm_(codegen->masm()), old_(codegen->context()), codegen_(codegen) {
codegen->set_new_context(this);
}
virtual ~ExpressionContext() {
codegen_->set_new_context(old_);
}
// Convert constant control flow (true or false) to the result expected for
// this expression context.
virtual void Plug(bool flag) const = 0;
// Emit code to convert a pure value (in a register, slot, as a literal,
// or on top of the stack) into the result expected according to this
// expression context.
virtual void Plug(Register reg) const = 0;
virtual void Plug(Slot* slot) const = 0;
virtual void Plug(Handle<Object> lit) const = 0;
virtual void Plug(Heap::RootListIndex index) const = 0;
virtual void PlugTOS() const = 0;
// Emit code to convert pure control flow to a pair of unbound labels into
// the result expected according to this expression context. The
// implementation may decide to bind either of the labels.
virtual void Plug(Label* materialize_true,
Label* materialize_false) const = 0;
// Emit code to discard count elements from the top of stack, then convert
// a pure value into the result expected according to this expression
// context.
virtual void DropAndPlug(int count, Register reg) const = 0;
// For shortcutting operations || and &&.
virtual void EmitLogicalLeft(BinaryOperation* expr,
Label* eval_right,
Label* done) const = 0;
// Set up branch labels for a test expression. The three Label** parameters
// are output parameters.
virtual void PrepareTest(Label* materialize_true,
Label* materialize_false,
Label** if_true,
Label** if_false,
Label** fall_through) const = 0;
// Returns true if we are evaluating only for side effects (ie if the result
// will be discarded.
virtual bool IsEffect() const { return false; }
// Returns true if we are branching on the value rather than materializing
// it.
virtual bool IsTest() const { return false; }
protected:
FullCodeGenerator* codegen() const { return codegen_; }
MacroAssembler* masm() const { return masm_; }
MacroAssembler* masm_;
private:
const ExpressionContext* old_;
FullCodeGenerator* codegen_;
};
class AccumulatorValueContext : public ExpressionContext {
public:
explicit AccumulatorValueContext(FullCodeGenerator* codegen)
: ExpressionContext(codegen) { }
virtual void Plug(bool flag) const;
virtual void Plug(Register reg) const;
virtual void Plug(Label* materialize_true, Label* materialize_false) const;
virtual void Plug(Slot* slot) const;
virtual void Plug(Handle<Object> lit) const;
virtual void Plug(Heap::RootListIndex) const;
virtual void PlugTOS() const;
virtual void DropAndPlug(int count, Register reg) const;
virtual void EmitLogicalLeft(BinaryOperation* expr,
Label* eval_right,
Label* done) const;
virtual void PrepareTest(Label* materialize_true,
Label* materialize_false,
Label** if_true,
Label** if_false,
Label** fall_through) const;
};
class StackValueContext : public ExpressionContext {
public:
explicit StackValueContext(FullCodeGenerator* codegen)
: ExpressionContext(codegen) { }
virtual void Plug(bool flag) const;
virtual void Plug(Register reg) const;
virtual void Plug(Label* materialize_true, Label* materialize_false) const;
virtual void Plug(Slot* slot) const;
virtual void Plug(Handle<Object> lit) const;
virtual void Plug(Heap::RootListIndex) const;
virtual void PlugTOS() const;
virtual void DropAndPlug(int count, Register reg) const;
virtual void EmitLogicalLeft(BinaryOperation* expr,
Label* eval_right,
Label* done) const;
virtual void PrepareTest(Label* materialize_true,
Label* materialize_false,
Label** if_true,
Label** if_false,
Label** fall_through) const;
};
class TestContext : public ExpressionContext {
public:
explicit TestContext(FullCodeGenerator* codegen,
Label* true_label,
Label* false_label,
Label* fall_through)
: ExpressionContext(codegen),
true_label_(true_label),
false_label_(false_label),
fall_through_(fall_through) { }
static const TestContext* cast(const ExpressionContext* context) {
ASSERT(context->IsTest());
return reinterpret_cast<const TestContext*>(context);
}
Label* true_label() const { return true_label_; }
Label* false_label() const { return false_label_; }
Label* fall_through() const { return fall_through_; }
virtual void Plug(bool flag) const;
virtual void Plug(Register reg) const;
virtual void Plug(Label* materialize_true, Label* materialize_false) const;
virtual void Plug(Slot* slot) const;
virtual void Plug(Handle<Object> lit) const;
virtual void Plug(Heap::RootListIndex) const;
virtual void PlugTOS() const;
virtual void DropAndPlug(int count, Register reg) const;
virtual void EmitLogicalLeft(BinaryOperation* expr,
Label* eval_right,
Label* done) const;
virtual void PrepareTest(Label* materialize_true,
Label* materialize_false,
Label** if_true,
Label** if_false,
Label** fall_through) const;
virtual bool IsTest() const { return true; }
private:
Label* true_label_;
Label* false_label_;
Label* fall_through_;
};
class EffectContext : public ExpressionContext {
public:
explicit EffectContext(FullCodeGenerator* codegen)
: ExpressionContext(codegen) { }
virtual void Plug(bool flag) const;
virtual void Plug(Register reg) const;
virtual void Plug(Label* materialize_true, Label* materialize_false) const;
virtual void Plug(Slot* slot) const;
virtual void Plug(Handle<Object> lit) const;
virtual void Plug(Heap::RootListIndex) const;
virtual void PlugTOS() const;
virtual void DropAndPlug(int count, Register reg) const;
virtual void EmitLogicalLeft(BinaryOperation* expr,
Label* eval_right,
Label* done) const;
virtual void PrepareTest(Label* materialize_true,
Label* materialize_false,
Label** if_true,
Label** if_false,
Label** fall_through) const;
virtual bool IsEffect() const { return true; }
};
const ExpressionContext* context_;
friend class NestedStatement;
DISALLOW_COPY_AND_ASSIGN(FullCodeGenerator);
};
} } // namespace v8::internal
#endif // V8_FULL_CODEGEN_H_