| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <stdarg.h> |
| #include <limits.h> |
| |
| #include "v8.h" |
| |
| #include "strtod.h" |
| // #include "cached-powers.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| // 2^53 = 9007199254740992. |
| // Any integer with at most 15 decimal digits will hence fit into a double |
| // (which has a 53bit significand) without loss of precision. |
| static const int kMaxExactDoubleIntegerDecimalDigits = 15; |
| // 2^64 = 18446744073709551616 |
| // Any integer with at most 19 digits will hence fit into a 64bit datatype. |
| static const int kMaxUint64DecimalDigits = 19; |
| // Max double: 1.7976931348623157 x 10^308 |
| // Min non-zero double: 4.9406564584124654 x 10^-324 |
| // Any x >= 10^309 is interpreted as +infinity. |
| // Any x <= 10^-324 is interpreted as 0. |
| // Note that 2.5e-324 (despite being smaller than the min double) will be read |
| // as non-zero (equal to the min non-zero double). |
| static const int kMaxDecimalPower = 309; |
| static const int kMinDecimalPower = -324; |
| |
| static const double exact_powers_of_ten[] = { |
| 1.0, // 10^0 |
| 10.0, |
| 100.0, |
| 1000.0, |
| 10000.0, |
| 100000.0, |
| 1000000.0, |
| 10000000.0, |
| 100000000.0, |
| 1000000000.0, |
| 10000000000.0, // 10^10 |
| 100000000000.0, |
| 1000000000000.0, |
| 10000000000000.0, |
| 100000000000000.0, |
| 1000000000000000.0, |
| 10000000000000000.0, |
| 100000000000000000.0, |
| 1000000000000000000.0, |
| 10000000000000000000.0, |
| 100000000000000000000.0, // 10^20 |
| 1000000000000000000000.0, |
| // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22 |
| 10000000000000000000000.0 |
| }; |
| |
| static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten); |
| |
| |
| extern "C" double gay_strtod(const char* s00, const char** se); |
| |
| static double old_strtod(Vector<const char> buffer, int exponent) { |
| // gay_strtod is broken on Linux,x86. For numbers with few decimal digits |
| // the computation is done using floating-point operations which (on Linux) |
| // are prone to double-rounding errors. |
| // By adding several zeroes to the buffer gay_strtod falls back to a slower |
| // (but correct) algorithm. |
| const int kInsertedZeroesCount = 20; |
| char gay_buffer[1024]; |
| Vector<char> gay_buffer_vector(gay_buffer, sizeof(gay_buffer)); |
| int pos = 0; |
| for (int i = 0; i < buffer.length(); ++i) { |
| gay_buffer_vector[pos++] = buffer[i]; |
| } |
| for (int i = 0; i < kInsertedZeroesCount; ++i) { |
| gay_buffer_vector[pos++] = '0'; |
| } |
| exponent -= kInsertedZeroesCount; |
| gay_buffer_vector[pos++] = 'e'; |
| if (exponent < 0) { |
| gay_buffer_vector[pos++] = '-'; |
| exponent = -exponent; |
| } |
| const int kNumberOfExponentDigits = 5; |
| for (int i = kNumberOfExponentDigits - 1; i >= 0; i--) { |
| gay_buffer_vector[pos + i] = exponent % 10 + '0'; |
| exponent /= 10; |
| } |
| pos += kNumberOfExponentDigits; |
| gay_buffer_vector[pos] = '\0'; |
| return gay_strtod(gay_buffer, NULL); |
| } |
| |
| |
| static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) { |
| for (int i = 0; i < buffer.length(); i++) { |
| if (buffer[i] != '0') { |
| return Vector<const char>(buffer.start() + i, buffer.length() - i); |
| } |
| } |
| return Vector<const char>(buffer.start(), 0); |
| } |
| |
| |
| static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) { |
| for (int i = buffer.length() - 1; i >= 0; --i) { |
| if (buffer[i] != '0') { |
| return Vector<const char>(buffer.start(), i + 1); |
| } |
| } |
| return Vector<const char>(buffer.start(), 0); |
| } |
| |
| |
| uint64_t ReadUint64(Vector<const char> buffer) { |
| ASSERT(buffer.length() <= kMaxUint64DecimalDigits); |
| uint64_t result = 0; |
| for (int i = 0; i < buffer.length(); ++i) { |
| int digit = buffer[i] - '0'; |
| ASSERT(0 <= digit && digit <= 9); |
| result = 10 * result + digit; |
| } |
| return result; |
| } |
| |
| |
| static bool DoubleStrtod(Vector<const char> trimmed, |
| int exponent, |
| double* result) { |
| #if (defined(V8_TARGET_ARCH_IA32) || defined(USE_SIMULATOR)) && !defined(WIN32) |
| // On x86 the floating-point stack can be 64 or 80 bits wide. If it is |
| // 80 bits wide (as is the case on Linux) then double-rounding occurs and the |
| // result is not accurate. |
| // We know that Windows32 uses 64 bits and is therefore accurate. |
| // Note that the ARM simulator is compiled for 32bits. It therefore exhibits |
| // the same problem. |
| return false; |
| #endif |
| if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) { |
| // The trimmed input fits into a double. |
| // If the 10^exponent (resp. 10^-exponent) fits into a double too then we |
| // can compute the result-double simply by multiplying (resp. dividing) the |
| // two numbers. |
| // This is possible because IEEE guarantees that floating-point operations |
| // return the best possible approximation. |
| if (exponent < 0 && -exponent < kExactPowersOfTenSize) { |
| // 10^-exponent fits into a double. |
| *result = static_cast<double>(ReadUint64(trimmed)); |
| *result /= exact_powers_of_ten[-exponent]; |
| return true; |
| } |
| if (0 <= exponent && exponent < kExactPowersOfTenSize) { |
| // 10^exponent fits into a double. |
| *result = static_cast<double>(ReadUint64(trimmed)); |
| *result *= exact_powers_of_ten[exponent]; |
| return true; |
| } |
| int remaining_digits = |
| kMaxExactDoubleIntegerDecimalDigits - trimmed.length(); |
| if ((0 <= exponent) && |
| (exponent - remaining_digits < kExactPowersOfTenSize)) { |
| // The trimmed string was short and we can multiply it with |
| // 10^remaining_digits. As a result the remaining exponent now fits |
| // into a double too. |
| *result = static_cast<double>(ReadUint64(trimmed)); |
| *result *= exact_powers_of_ten[remaining_digits]; |
| *result *= exact_powers_of_ten[exponent - remaining_digits]; |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| |
| double Strtod(Vector<const char> buffer, int exponent) { |
| Vector<const char> left_trimmed = TrimLeadingZeros(buffer); |
| Vector<const char> trimmed = TrimTrailingZeros(left_trimmed); |
| exponent += left_trimmed.length() - trimmed.length(); |
| if (trimmed.length() == 0) return 0.0; |
| if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) return V8_INFINITY; |
| if (exponent + trimmed.length() <= kMinDecimalPower) return 0.0; |
| double result; |
| if (DoubleStrtod(trimmed, exponent, &result)) { |
| return result; |
| } |
| return old_strtod(trimmed, exponent); |
| } |
| |
| } } // namespace v8::internal |