blob: 5214df50e66cdd9633ce22fdcc2c64d0f1878039 [file] [log] [blame]
/*
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008 Apple Inc. All rights reserved.
* Copyright (C) 2006 Alexey Proskuryakov (ap@webkit.org)
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef KJS_JS_IMMEDIATE_H
#define KJS_JS_IMMEDIATE_H
#include <wtf/Assertions.h>
#include <wtf/AlwaysInline.h>
#include <wtf/MathExtras.h>
#include <limits>
#include <limits.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdlib.h>
namespace JSC {
class ExecState;
class JSCell;
class JSObject;
class JSValue;
class UString;
inline JSValue* noValue() { return 0; }
inline void* asPointer(JSValue* value) { return value; }
/*
* A JSValue* is either a pointer to a cell (a heap-allocated object) or an immediate (a type-tagged
* value masquerading as a pointer). The low two bits in a JSValue* are available for type tagging
* because allocator alignment guarantees they will be 00 in cell pointers.
*
* For example, on a 32 bit system:
*
* JSCell*: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 00
* [ high 30 bits: pointer address ] [ low 2 bits -- always 0 ]
* JSImmediate: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX TT
* [ high 30 bits: 'payload' ] [ low 2 bits -- tag ]
*
* Where the bottom two bits are non-zero they either indicate that the immediate is a 31 bit signed
* integer, or they mark the value as being an immediate of a type other than integer, with a secondary
* tag used to indicate the exact type.
*
* Where the lowest bit is set (TT is equal to 01 or 11) the high 31 bits form a 31 bit signed int value.
* Where TT is equal to 10 this indicates this is a type of immediate other than an integer, and the next
* two bits will form an extended tag.
*
* 31 bit signed int: XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX X1
* [ high 30 bits of the value ] [ high bit part of value ]
* Other: YYYYYYYYYYYYYYYYYYYYYYYYYYYY ZZ 10
* [ extended 'payload' ] [ extended tag ] [ tag 'other' ]
*
* Where the first bit of the extended tag is set this flags the value as being a boolean, and the following
* bit would flag the value as undefined. If neither bits are set, the value is null.
*
* Other: YYYYYYYYYYYYYYYYYYYYYYYYYYYY UB 10
* [ extended 'payload' ] [ undefined | bool ] [ tag 'other' ]
*
* For boolean value the lowest bit in the payload holds the value of the bool, all remaining bits are zero.
* For undefined or null immediates the payload is zero.
*
* Boolean: 000000000000000000000000000V 01 10
* [ boolean value ] [ bool ] [ tag 'other' ]
* Undefined: 0000000000000000000000000000 10 10
* [ zero ] [ undefined ] [ tag 'other' ]
* Null: 0000000000000000000000000000 00 10
* [ zero ] [ zero ] [ tag 'other' ]
*/
class JSImmediate {
private:
friend class CTI; // Whooo!
static const uintptr_t TagMask = 0x3u; // primary tag is 2 bits long
static const uintptr_t TagBitTypeInteger = 0x1u; // bottom bit set indicates integer, this dominates the following bit
static const uintptr_t TagBitTypeOther = 0x2u; // second bit set indicates immediate other than an integer
static const uintptr_t ExtendedTagMask = 0xCu; // extended tag holds a further two bits
static const uintptr_t ExtendedTagBitBool = 0x4u;
static const uintptr_t ExtendedTagBitUndefined = 0x8u;
static const uintptr_t FullTagTypeMask = TagMask | ExtendedTagMask;
static const uintptr_t FullTagTypeBool = TagBitTypeOther | ExtendedTagBitBool;
static const uintptr_t FullTagTypeUndefined = TagBitTypeOther | ExtendedTagBitUndefined;
static const uintptr_t FullTagTypeNull = TagBitTypeOther;
static const uint32_t IntegerPayloadShift = 1u;
static const uint32_t ExtendedPayloadShift = 4u;
static const uintptr_t ExtendedPayloadBitBoolValue = 1 << ExtendedPayloadShift;
public:
static ALWAYS_INLINE bool isImmediate(JSValue* v)
{
return rawValue(v) & TagMask;
}
static ALWAYS_INLINE bool isNumber(JSValue* v)
{
return rawValue(v) & TagBitTypeInteger;
}
static ALWAYS_INLINE bool isPositiveNumber(JSValue* v)
{
// A single mask to check for the sign bit and the number tag all at once.
return (rawValue(v) & (0x80000000 | TagBitTypeInteger)) == TagBitTypeInteger;
}
static ALWAYS_INLINE bool isBoolean(JSValue* v)
{
return (rawValue(v) & FullTagTypeMask) == FullTagTypeBool;
}
static ALWAYS_INLINE bool isUndefinedOrNull(JSValue* v)
{
// Undefined and null share the same value, bar the 'undefined' bit in the extended tag.
return (rawValue(v) & ~ExtendedTagBitUndefined) == FullTagTypeNull;
}
static bool isNegative(JSValue* v)
{
ASSERT(isNumber(v));
return rawValue(v) & 0x80000000;
}
static JSValue* from(char);
static JSValue* from(signed char);
static JSValue* from(unsigned char);
static JSValue* from(short);
static JSValue* from(unsigned short);
static JSValue* from(int);
static JSValue* from(unsigned);
static JSValue* from(long);
static JSValue* from(unsigned long);
static JSValue* from(long long);
static JSValue* from(unsigned long long);
static JSValue* from(double);
static ALWAYS_INLINE bool isEitherImmediate(JSValue* v1, JSValue* v2)
{
return (rawValue(v1) | rawValue(v2)) & TagMask;
}
static ALWAYS_INLINE bool isAnyImmediate(JSValue* v1, JSValue* v2, JSValue* v3)
{
return (rawValue(v1) | rawValue(v2) | rawValue(v3)) & TagMask;
}
static ALWAYS_INLINE bool areBothImmediate(JSValue* v1, JSValue* v2)
{
return isImmediate(v1) & isImmediate(v2);
}
static ALWAYS_INLINE bool areBothImmediateNumbers(JSValue* v1, JSValue* v2)
{
return rawValue(v1) & rawValue(v2) & TagBitTypeInteger;
}
static ALWAYS_INLINE JSValue* andImmediateNumbers(JSValue* v1, JSValue* v2)
{
ASSERT(areBothImmediateNumbers(v1, v2));
return makeValue(rawValue(v1) & rawValue(v2));
}
static ALWAYS_INLINE JSValue* xorImmediateNumbers(JSValue* v1, JSValue* v2)
{
ASSERT(areBothImmediateNumbers(v1, v2));
return makeValue((rawValue(v1) ^ rawValue(v2)) | TagBitTypeInteger);
}
static ALWAYS_INLINE JSValue* orImmediateNumbers(JSValue* v1, JSValue* v2)
{
ASSERT(areBothImmediateNumbers(v1, v2));
return makeValue(rawValue(v1) | rawValue(v2));
}
static ALWAYS_INLINE JSValue* rightShiftImmediateNumbers(JSValue* val, JSValue* shift)
{
ASSERT(areBothImmediateNumbers(val, shift));
return makeValue((static_cast<intptr_t>(rawValue(val)) >> ((rawValue(shift) >> IntegerPayloadShift) & 0x1f)) | TagBitTypeInteger);
}
static ALWAYS_INLINE bool canDoFastAdditiveOperations(JSValue* v)
{
// Number is non-negative and an operation involving two of these can't overflow.
// Checking for allowed negative numbers takes more time than it's worth on SunSpider.
return (rawValue(v) & (TagBitTypeInteger + (3u << 30))) == TagBitTypeInteger;
}
static ALWAYS_INLINE JSValue* addImmediateNumbers(JSValue* v1, JSValue* v2)
{
ASSERT(canDoFastAdditiveOperations(v1));
ASSERT(canDoFastAdditiveOperations(v2));
return makeValue(rawValue(v1) + rawValue(v2) - TagBitTypeInteger);
}
static ALWAYS_INLINE JSValue* subImmediateNumbers(JSValue* v1, JSValue* v2)
{
ASSERT(canDoFastAdditiveOperations(v1));
ASSERT(canDoFastAdditiveOperations(v2));
return makeValue(rawValue(v1) - rawValue(v2) + TagBitTypeInteger);
}
static ALWAYS_INLINE JSValue* incImmediateNumber(JSValue* v)
{
ASSERT(canDoFastAdditiveOperations(v));
return makeValue(rawValue(v) + (1 << IntegerPayloadShift));
}
static ALWAYS_INLINE JSValue* decImmediateNumber(JSValue* v)
{
ASSERT(canDoFastAdditiveOperations(v));
return makeValue(rawValue(v) - (1 << IntegerPayloadShift));
}
static double toDouble(JSValue*);
static bool toBoolean(JSValue*);
static JSObject* toObject(JSValue*, ExecState*);
static UString toString(JSValue*);
static bool getUInt32(JSValue*, uint32_t&);
static bool getTruncatedInt32(JSValue*, int32_t&);
static bool getTruncatedUInt32(JSValue*, uint32_t&);
static int32_t getTruncatedInt32(JSValue*);
static uint32_t getTruncatedUInt32(JSValue*);
static JSValue* trueImmediate();
static JSValue* falseImmediate();
static JSValue* undefinedImmediate();
static JSValue* nullImmediate();
static JSValue* zeroImmediate();
static JSValue* oneImmediate();
static JSValue* impossibleValue();
static JSObject* prototype(JSValue*, ExecState*);
private:
static const int minImmediateInt = ((-INT_MAX) - 1) >> IntegerPayloadShift;
static const int maxImmediateInt = INT_MAX >> IntegerPayloadShift;
static const unsigned maxImmediateUInt = maxImmediateInt;
static ALWAYS_INLINE JSValue* makeValue(uintptr_t integer)
{
return reinterpret_cast<JSValue*>(integer);
}
static ALWAYS_INLINE JSValue* makeInt(int32_t value)
{
return makeValue((value << IntegerPayloadShift) | TagBitTypeInteger);
}
static ALWAYS_INLINE JSValue* makeBool(bool b)
{
return makeValue((static_cast<uintptr_t>(b) << ExtendedPayloadShift) | FullTagTypeBool);
}
static ALWAYS_INLINE JSValue* makeUndefined()
{
return makeValue(FullTagTypeUndefined);
}
static ALWAYS_INLINE JSValue* makeNull()
{
return makeValue(FullTagTypeNull);
}
static ALWAYS_INLINE int32_t intValue(JSValue* v)
{
return static_cast<int32_t>(static_cast<intptr_t>(rawValue(v)) >> IntegerPayloadShift);
}
static ALWAYS_INLINE uint32_t uintValue(JSValue* v)
{
return static_cast<uint32_t>(rawValue(v) >> IntegerPayloadShift);
}
static ALWAYS_INLINE bool boolValue(JSValue* v)
{
return rawValue(v) & ExtendedPayloadBitBoolValue;
}
static ALWAYS_INLINE uintptr_t rawValue(JSValue* v)
{
return reinterpret_cast<uintptr_t>(v);
}
static double nonInlineNaN();
};
ALWAYS_INLINE JSValue* JSImmediate::trueImmediate() { return makeBool(true); }
ALWAYS_INLINE JSValue* JSImmediate::falseImmediate() { return makeBool(false); }
ALWAYS_INLINE JSValue* JSImmediate::undefinedImmediate() { return makeUndefined(); }
ALWAYS_INLINE JSValue* JSImmediate::nullImmediate() { return makeNull(); }
ALWAYS_INLINE JSValue* JSImmediate::zeroImmediate() { return makeInt(0); }
ALWAYS_INLINE JSValue* JSImmediate::oneImmediate() { return makeInt(1); }
// This value is impossible because 0x4 is not a valid pointer but a tag of 0 would indicate non-immediate
ALWAYS_INLINE JSValue* JSImmediate::impossibleValue() { return makeValue(0x4); }
ALWAYS_INLINE bool JSImmediate::toBoolean(JSValue* v)
{
ASSERT(isImmediate(v));
uintptr_t bits = rawValue(v);
return (bits & TagBitTypeInteger)
? bits != TagBitTypeInteger // !0 ints
: bits == (FullTagTypeBool | ExtendedPayloadBitBoolValue); // bool true
}
ALWAYS_INLINE uint32_t JSImmediate::getTruncatedUInt32(JSValue* v)
{
ASSERT(isNumber(v));
return intValue(v);
}
ALWAYS_INLINE JSValue* JSImmediate::from(char i)
{
return makeInt(i);
}
ALWAYS_INLINE JSValue* JSImmediate::from(signed char i)
{
return makeInt(i);
}
ALWAYS_INLINE JSValue* JSImmediate::from(unsigned char i)
{
return makeInt(i);
}
ALWAYS_INLINE JSValue* JSImmediate::from(short i)
{
return makeInt(i);
}
ALWAYS_INLINE JSValue* JSImmediate::from(unsigned short i)
{
return makeInt(i);
}
ALWAYS_INLINE JSValue* JSImmediate::from(int i)
{
if ((i < minImmediateInt) | (i > maxImmediateInt))
return noValue();
return makeInt(i);
}
ALWAYS_INLINE JSValue* JSImmediate::from(unsigned i)
{
if (i > maxImmediateUInt)
return noValue();
return makeInt(i);
}
ALWAYS_INLINE JSValue* JSImmediate::from(long i)
{
if ((i < minImmediateInt) | (i > maxImmediateInt))
return noValue();
return makeInt(i);
}
ALWAYS_INLINE JSValue* JSImmediate::from(unsigned long i)
{
if (i > maxImmediateUInt)
return noValue();
return makeInt(i);
}
ALWAYS_INLINE JSValue* JSImmediate::from(long long i)
{
if ((i < minImmediateInt) | (i > maxImmediateInt))
return noValue();
return makeInt(static_cast<uintptr_t>(i));
}
ALWAYS_INLINE JSValue* JSImmediate::from(unsigned long long i)
{
if (i > maxImmediateUInt)
return noValue();
return makeInt(static_cast<uintptr_t>(i));
}
ALWAYS_INLINE JSValue* JSImmediate::from(double d)
{
const int intVal = static_cast<int>(d);
if ((intVal < minImmediateInt) | (intVal > maxImmediateInt))
return noValue();
// Check for data loss from conversion to int.
if (intVal != d || (!intVal && signbit(d)))
return noValue();
return makeInt(intVal);
}
ALWAYS_INLINE int32_t JSImmediate::getTruncatedInt32(JSValue* v)
{
ASSERT(isNumber(v));
return intValue(v);
}
ALWAYS_INLINE double JSImmediate::toDouble(JSValue* v)
{
ASSERT(isImmediate(v));
int i;
if (isNumber(v))
i = intValue(v);
else if (rawValue(v) == FullTagTypeUndefined)
return nonInlineNaN();
else
i = rawValue(v) >> ExtendedPayloadShift;
return i;
}
ALWAYS_INLINE bool JSImmediate::getUInt32(JSValue* v, uint32_t& i)
{
i = uintValue(v);
return isPositiveNumber(v);
}
ALWAYS_INLINE bool JSImmediate::getTruncatedInt32(JSValue* v, int32_t& i)
{
i = intValue(v);
return isNumber(v);
}
ALWAYS_INLINE bool JSImmediate::getTruncatedUInt32(JSValue* v, uint32_t& i)
{
return getUInt32(v, i);
}
ALWAYS_INLINE JSValue* jsUndefined()
{
return JSImmediate::undefinedImmediate();
}
inline JSValue* jsNull()
{
return JSImmediate::nullImmediate();
}
inline JSValue* jsBoolean(bool b)
{
return b ? JSImmediate::trueImmediate() : JSImmediate::falseImmediate();
}
} // namespace JSC
#endif