| /* ===-- floatundidf.c - Implement __floatundidf ---------------------------=== |
| * |
| * The LLVM Compiler Infrastructure |
| * |
| * This file is distributed under the University of Illinois Open Source |
| * License. See LICENSE.TXT for details. |
| * |
| * ===----------------------------------------------------------------------=== |
| * |
| * This file implements __floatundidf for the compiler_rt library. |
| * |
| * ===----------------------------------------------------------------------=== |
| */ |
| |
| #if !defined(__GNUC__) || __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ < 7) || defined(ARCH_X86) |
| // ARM gcc >= 4.7 implements this in libgcc |
| #include "int_lib.h" |
| #include <float.h> |
| |
| /* Returns: convert a to a double, rounding toward even. */ |
| |
| /* Assumption: double is a IEEE 64 bit floating point type |
| * du_int is a 64 bit integral type |
| */ |
| |
| /* seee eeee eeee mmmm mmmm mmmm mmmm mmmm | mmmm mmmm mmmm mmmm mmmm mmmm mmmm mmmm */ |
| |
| #ifndef __SOFT_FP__ |
| /* Support for systems that have hardware floating-point; we'll set the inexact flag |
| * as a side-effect of this computation. |
| */ |
| |
| #include <stdint.h> |
| |
| double |
| __floatundidf(du_int a) |
| { |
| static const double twop52 = 0x1.0p52; |
| static const double twop84 = 0x1.0p84; |
| static const double twop84_plus_twop52 = 0x1.00000001p84; |
| |
| union { uint64_t x; double d; } high = { .d = twop84 }; |
| union { uint64_t x; double d; } low = { .d = twop52 }; |
| |
| high.x |= a >> 32; |
| low.x |= a & UINT64_C(0x00000000ffffffff); |
| |
| const double result = (high.d - twop84_plus_twop52) + low.d; |
| return result; |
| } |
| |
| #else |
| /* Support for systems that don't have hardware floating-point; there are no flags to |
| * set, and we don't want to code-gen to an unknown soft-float implementation. |
| */ |
| |
| double |
| __floatundidf(du_int a) |
| { |
| if (a == 0) |
| return 0.0; |
| const unsigned N = sizeof(du_int) * CHAR_BIT; |
| int sd = N - __builtin_clzll(a); /* number of significant digits */ |
| int e = sd - 1; /* exponent */ |
| if (sd > DBL_MANT_DIG) |
| { |
| /* start: 0000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQxxxxxxxxxxxxxxxxxx |
| * finish: 000000000000000000000000000000000000001xxxxxxxxxxxxxxxxxxxxxxPQR |
| * 12345678901234567890123456 |
| * 1 = msb 1 bit |
| * P = bit DBL_MANT_DIG-1 bits to the right of 1 |
| * Q = bit DBL_MANT_DIG bits to the right of 1 |
| * R = "or" of all bits to the right of Q |
| */ |
| switch (sd) |
| { |
| case DBL_MANT_DIG + 1: |
| a <<= 1; |
| break; |
| case DBL_MANT_DIG + 2: |
| break; |
| default: |
| a = (a >> (sd - (DBL_MANT_DIG+2))) | |
| ((a & ((du_int)(-1) >> ((N + DBL_MANT_DIG+2) - sd))) != 0); |
| }; |
| /* finish: */ |
| a |= (a & 4) != 0; /* Or P into R */ |
| ++a; /* round - this step may add a significant bit */ |
| a >>= 2; /* dump Q and R */ |
| /* a is now rounded to DBL_MANT_DIG or DBL_MANT_DIG+1 bits */ |
| if (a & ((du_int)1 << DBL_MANT_DIG)) |
| { |
| a >>= 1; |
| ++e; |
| } |
| /* a is now rounded to DBL_MANT_DIG bits */ |
| } |
| else |
| { |
| a <<= (DBL_MANT_DIG - sd); |
| /* a is now rounded to DBL_MANT_DIG bits */ |
| } |
| double_bits fb; |
| fb.u.high = ((e + 1023) << 20) | /* exponent */ |
| ((su_int)(a >> 32) & 0x000FFFFF); /* mantissa-high */ |
| fb.u.low = (su_int)a; /* mantissa-low */ |
| return fb.f; |
| } |
| #endif |
| #endif |