| //===-- ValueEnumerator.cpp - Number values and types for bitcode writer --===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // This file implements the ValueEnumerator class. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "ValueEnumerator.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/Constants.h" |
| #include "llvm/DerivedTypes.h" |
| #include "llvm/Module.h" |
| #include "llvm/ValueSymbolTable.h" |
| #include "llvm/Instructions.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/raw_ostream.h" |
| #include <algorithm> |
| using namespace llvm; |
| |
| namespace llvm_2_9 { |
| |
| static bool isIntegerValue(const std::pair<const Value*, unsigned> &V) { |
| return V.first->getType()->isIntegerTy(); |
| } |
| |
| /// ValueEnumerator - Enumerate module-level information. |
| ValueEnumerator::ValueEnumerator(const Module *M) { |
| // Enumerate the global variables. |
| for (Module::const_global_iterator I = M->global_begin(), |
| E = M->global_end(); I != E; ++I) |
| EnumerateValue(I); |
| |
| // Enumerate the functions. |
| for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I) { |
| EnumerateValue(I); |
| EnumerateAttributes(cast<Function>(I)->getAttributes()); |
| } |
| |
| // Enumerate the aliases. |
| for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); |
| I != E; ++I) |
| EnumerateValue(I); |
| |
| // Remember what is the cutoff between globalvalue's and other constants. |
| unsigned FirstConstant = Values.size(); |
| |
| // Enumerate the global variable initializers. |
| for (Module::const_global_iterator I = M->global_begin(), |
| E = M->global_end(); I != E; ++I) |
| if (I->hasInitializer()) |
| EnumerateValue(I->getInitializer()); |
| |
| // Enumerate the aliasees. |
| for (Module::const_alias_iterator I = M->alias_begin(), E = M->alias_end(); |
| I != E; ++I) |
| EnumerateValue(I->getAliasee()); |
| |
| // Insert constants and metadata that are named at module level into the slot |
| // pool so that the module symbol table can refer to them... |
| EnumerateValueSymbolTable(M->getValueSymbolTable()); |
| EnumerateNamedMetadata(M); |
| |
| SmallVector<std::pair<unsigned, MDNode*>, 8> MDs; |
| |
| // Enumerate types used by function bodies and argument lists. |
| for (Module::const_iterator F = M->begin(), E = M->end(); F != E; ++F) { |
| |
| for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); |
| I != E; ++I) |
| EnumerateType(I->getType()); |
| |
| for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E;++I){ |
| for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); |
| OI != E; ++OI) { |
| if (MDNode *MD = dyn_cast<MDNode>(*OI)) |
| if (MD->isFunctionLocal() && MD->getFunction()) |
| // These will get enumerated during function-incorporation. |
| continue; |
| EnumerateOperandType(*OI); |
| } |
| EnumerateType(I->getType()); |
| if (const CallInst *CI = dyn_cast<CallInst>(I)) |
| EnumerateAttributes(CI->getAttributes()); |
| else if (const InvokeInst *II = dyn_cast<InvokeInst>(I)) |
| EnumerateAttributes(II->getAttributes()); |
| |
| // Enumerate metadata attached with this instruction. |
| MDs.clear(); |
| I->getAllMetadataOtherThanDebugLoc(MDs); |
| for (unsigned i = 0, e = MDs.size(); i != e; ++i) |
| EnumerateMetadata(MDs[i].second); |
| |
| if (!I->getDebugLoc().isUnknown()) { |
| MDNode *Scope, *IA; |
| I->getDebugLoc().getScopeAndInlinedAt(Scope, IA, I->getContext()); |
| if (Scope) EnumerateMetadata(Scope); |
| if (IA) EnumerateMetadata(IA); |
| } |
| } |
| } |
| |
| // Optimize constant ordering. |
| OptimizeConstants(FirstConstant, Values.size()); |
| } |
| |
| unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const { |
| InstructionMapType::const_iterator I = InstructionMap.find(Inst); |
| assert(I != InstructionMap.end() && "Instruction is not mapped!"); |
| return I->second; |
| } |
| |
| void ValueEnumerator::setInstructionID(const Instruction *I) { |
| InstructionMap[I] = InstructionCount++; |
| } |
| |
| unsigned ValueEnumerator::getValueID(const Value *V) const { |
| if (isa<MDNode>(V) || isa<MDString>(V)) { |
| ValueMapType::const_iterator I = MDValueMap.find(V); |
| assert(I != MDValueMap.end() && "Value not in slotcalculator!"); |
| return I->second-1; |
| } |
| |
| ValueMapType::const_iterator I = ValueMap.find(V); |
| assert(I != ValueMap.end() && "Value not in slotcalculator!"); |
| return I->second-1; |
| } |
| |
| void ValueEnumerator::dump() const { |
| print(dbgs(), ValueMap, "Default"); |
| dbgs() << '\n'; |
| print(dbgs(), MDValueMap, "MetaData"); |
| dbgs() << '\n'; |
| } |
| |
| void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map, |
| const char *Name) const { |
| |
| OS << "Map Name: " << Name << "\n"; |
| OS << "Size: " << Map.size() << "\n"; |
| for (ValueMapType::const_iterator I = Map.begin(), |
| E = Map.end(); I != E; ++I) { |
| |
| const Value *V = I->first; |
| if (V->hasName()) |
| OS << "Value: " << V->getName(); |
| else |
| OS << "Value: [null]\n"; |
| V->dump(); |
| |
| OS << " Uses(" << std::distance(V->use_begin(),V->use_end()) << "):"; |
| for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end(); |
| UI != UE; ++UI) { |
| if (UI != V->use_begin()) |
| OS << ","; |
| if((*UI)->hasName()) |
| OS << " " << (*UI)->getName(); |
| else |
| OS << " [null]"; |
| |
| } |
| OS << "\n\n"; |
| } |
| } |
| |
| // Optimize constant ordering. |
| namespace { |
| struct CstSortPredicate { |
| ValueEnumerator &VE; |
| explicit CstSortPredicate(ValueEnumerator &ve) : VE(ve) {} |
| bool operator()(const std::pair<const Value*, unsigned> &LHS, |
| const std::pair<const Value*, unsigned> &RHS) { |
| // Sort by plane. |
| if (LHS.first->getType() != RHS.first->getType()) |
| return VE.getTypeID(LHS.first->getType()) < |
| VE.getTypeID(RHS.first->getType()); |
| // Then by frequency. |
| return LHS.second > RHS.second; |
| } |
| }; |
| } |
| |
| /// OptimizeConstants - Reorder constant pool for denser encoding. |
| void ValueEnumerator::OptimizeConstants(unsigned CstStart, unsigned CstEnd) { |
| if (CstStart == CstEnd || CstStart+1 == CstEnd) return; |
| |
| CstSortPredicate P(*this); |
| std::stable_sort(Values.begin()+CstStart, Values.begin()+CstEnd, P); |
| |
| // Ensure that integer constants are at the start of the constant pool. This |
| // is important so that GEP structure indices come before gep constant exprs. |
| std::partition(Values.begin()+CstStart, Values.begin()+CstEnd, |
| isIntegerValue); |
| |
| // Rebuild the modified portion of ValueMap. |
| for (; CstStart != CstEnd; ++CstStart) |
| ValueMap[Values[CstStart].first] = CstStart+1; |
| } |
| |
| |
| /// EnumerateValueSymbolTable - Insert all of the values in the specified symbol |
| /// table into the values table. |
| void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) { |
| for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end(); |
| VI != VE; ++VI) |
| EnumerateValue(VI->getValue()); |
| } |
| |
| /// EnumerateNamedMetadata - Insert all of the values referenced by |
| /// named metadata in the specified module. |
| void ValueEnumerator::EnumerateNamedMetadata(const Module *M) { |
| for (Module::const_named_metadata_iterator I = M->named_metadata_begin(), |
| E = M->named_metadata_end(); I != E; ++I) |
| EnumerateNamedMDNode(I); |
| } |
| |
| void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) { |
| for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i) |
| EnumerateMetadata(MD->getOperand(i)); |
| } |
| |
| /// EnumerateMDNodeOperands - Enumerate all non-function-local values |
| /// and types referenced by the given MDNode. |
| void ValueEnumerator::EnumerateMDNodeOperands(const MDNode *N) { |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { |
| if (Value *V = N->getOperand(i)) { |
| if (isa<MDNode>(V) || isa<MDString>(V)) |
| EnumerateMetadata(V); |
| else if (!isa<Instruction>(V) && !isa<Argument>(V)) |
| EnumerateValue(V); |
| } else |
| EnumerateType(Type::getVoidTy(N->getContext())); |
| } |
| } |
| |
| void ValueEnumerator::EnumerateMetadata(const Value *MD) { |
| assert((isa<MDNode>(MD) || isa<MDString>(MD)) && "Invalid metadata kind"); |
| |
| // Enumerate the type of this value. |
| EnumerateType(MD->getType()); |
| |
| const MDNode *N = dyn_cast<MDNode>(MD); |
| |
| // In the module-level pass, skip function-local nodes themselves, but |
| // do walk their operands. |
| if (N && N->isFunctionLocal() && N->getFunction()) { |
| EnumerateMDNodeOperands(N); |
| return; |
| } |
| |
| // Check to see if it's already in! |
| unsigned &MDValueID = MDValueMap[MD]; |
| if (MDValueID) { |
| // Increment use count. |
| MDValues[MDValueID-1].second++; |
| return; |
| } |
| MDValues.push_back(std::make_pair(MD, 1U)); |
| MDValueID = MDValues.size(); |
| |
| // Enumerate all non-function-local operands. |
| if (N) |
| EnumerateMDNodeOperands(N); |
| } |
| |
| /// EnumerateFunctionLocalMetadataa - Incorporate function-local metadata |
| /// information reachable from the given MDNode. |
| void ValueEnumerator::EnumerateFunctionLocalMetadata(const MDNode *N) { |
| assert(N->isFunctionLocal() && N->getFunction() && |
| "EnumerateFunctionLocalMetadata called on non-function-local mdnode!"); |
| |
| // Enumerate the type of this value. |
| EnumerateType(N->getType()); |
| |
| // Check to see if it's already in! |
| unsigned &MDValueID = MDValueMap[N]; |
| if (MDValueID) { |
| // Increment use count. |
| MDValues[MDValueID-1].second++; |
| return; |
| } |
| MDValues.push_back(std::make_pair(N, 1U)); |
| MDValueID = MDValues.size(); |
| |
| // To incoroporate function-local information visit all function-local |
| // MDNodes and all function-local values they reference. |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| if (Value *V = N->getOperand(i)) { |
| if (MDNode *O = dyn_cast<MDNode>(V)) { |
| if (O->isFunctionLocal() && O->getFunction()) |
| EnumerateFunctionLocalMetadata(O); |
| } else if (isa<Instruction>(V) || isa<Argument>(V)) |
| EnumerateValue(V); |
| } |
| |
| // Also, collect all function-local MDNodes for easy access. |
| FunctionLocalMDs.push_back(N); |
| } |
| |
| void ValueEnumerator::EnumerateValue(const Value *V) { |
| assert(!V->getType()->isVoidTy() && "Can't insert void values!"); |
| assert(!isa<MDNode>(V) && !isa<MDString>(V) && |
| "EnumerateValue doesn't handle Metadata!"); |
| |
| // Check to see if it's already in! |
| unsigned &ValueID = ValueMap[V]; |
| if (ValueID) { |
| // Increment use count. |
| Values[ValueID-1].second++; |
| return; |
| } |
| |
| // Enumerate the type of this value. |
| EnumerateType(V->getType()); |
| |
| if (const Constant *C = dyn_cast<Constant>(V)) { |
| if (isa<GlobalValue>(C)) { |
| // Initializers for globals are handled explicitly elsewhere. |
| } else if (C->getNumOperands()) { |
| // If a constant has operands, enumerate them. This makes sure that if a |
| // constant has uses (for example an array of const ints), that they are |
| // inserted also. |
| |
| // We prefer to enumerate them with values before we enumerate the user |
| // itself. This makes it more likely that we can avoid forward references |
| // in the reader. We know that there can be no cycles in the constants |
| // graph that don't go through a global variable. |
| for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); |
| I != E; ++I) |
| if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress. |
| EnumerateValue(*I); |
| |
| // Finally, add the value. Doing this could make the ValueID reference be |
| // dangling, don't reuse it. |
| Values.push_back(std::make_pair(V, 1U)); |
| ValueMap[V] = Values.size(); |
| return; |
| } else if (const ConstantDataSequential *CDS = |
| dyn_cast<ConstantDataSequential>(C)) { |
| // For our legacy handling of the new ConstantDataSequential type, we |
| // need to enumerate the individual elements, as well as mark the |
| // outer constant as used. |
| for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) |
| EnumerateValue(CDS->getElementAsConstant(i)); |
| Values.push_back(std::make_pair(V, 1U)); |
| ValueMap[V] = Values.size(); |
| return; |
| } |
| } |
| |
| // Add the value. |
| Values.push_back(std::make_pair(V, 1U)); |
| ValueID = Values.size(); |
| } |
| |
| |
| void ValueEnumerator::EnumerateType(Type *Ty) { |
| unsigned *TypeID = &TypeMap[Ty]; |
| |
| // We've already seen this type. |
| if (*TypeID) |
| return; |
| |
| // If it is a non-anonymous struct, mark the type as being visited so that we |
| // don't recursively visit it. This is safe because we allow forward |
| // references of these in the bitcode reader. |
| if (StructType *STy = dyn_cast<StructType>(Ty)) |
| if (!STy->isLiteral()) |
| *TypeID = ~0U; |
| |
| // Enumerate all of the subtypes before we enumerate this type. This ensures |
| // that the type will be enumerated in an order that can be directly built. |
| for (Type::subtype_iterator I = Ty->subtype_begin(), E = Ty->subtype_end(); |
| I != E; ++I) |
| EnumerateType(*I); |
| |
| // Refresh the TypeID pointer in case the table rehashed. |
| TypeID = &TypeMap[Ty]; |
| |
| // Check to see if we got the pointer another way. This can happen when |
| // enumerating recursive types that hit the base case deeper than they start. |
| // |
| // If this is actually a struct that we are treating as forward ref'able, |
| // then emit the definition now that all of its contents are available. |
| if (*TypeID && *TypeID != ~0U) |
| return; |
| |
| // Add this type now that its contents are all happily enumerated. |
| Types.push_back(Ty); |
| |
| *TypeID = Types.size(); |
| } |
| |
| // Enumerate the types for the specified value. If the value is a constant, |
| // walk through it, enumerating the types of the constant. |
| void ValueEnumerator::EnumerateOperandType(const Value *V) { |
| EnumerateType(V->getType()); |
| |
| if (const Constant *C = dyn_cast<Constant>(V)) { |
| // If this constant is already enumerated, ignore it, we know its type must |
| // be enumerated. |
| if (ValueMap.count(V)) return; |
| |
| // This constant may have operands, make sure to enumerate the types in |
| // them. |
| for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) { |
| const Value *Op = C->getOperand(i); |
| |
| // Don't enumerate basic blocks here, this happens as operands to |
| // blockaddress. |
| if (isa<BasicBlock>(Op)) continue; |
| |
| EnumerateOperandType(Op); |
| } |
| |
| if (const MDNode *N = dyn_cast<MDNode>(V)) { |
| for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) |
| if (Value *Elem = N->getOperand(i)) |
| EnumerateOperandType(Elem); |
| } |
| } else if (isa<MDString>(V) || isa<MDNode>(V)) |
| EnumerateMetadata(V); |
| } |
| |
| void ValueEnumerator::EnumerateAttributes(const AttrListPtr &PAL) { |
| if (PAL.isEmpty()) return; // null is always 0. |
| // Do a lookup. |
| unsigned &Entry = AttributeMap[PAL.getRawPointer()]; |
| if (Entry == 0) { |
| // Never saw this before, add it. |
| Attributes.push_back(PAL); |
| Entry = Attributes.size(); |
| } |
| } |
| |
| void ValueEnumerator::incorporateFunction(const Function &F) { |
| InstructionCount = 0; |
| NumModuleValues = Values.size(); |
| NumModuleMDValues = MDValues.size(); |
| |
| // Adding function arguments to the value table. |
| for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); |
| I != E; ++I) |
| EnumerateValue(I); |
| |
| FirstFuncConstantID = Values.size(); |
| |
| // Add all function-level constants to the value table. |
| for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) |
| for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); |
| OI != E; ++OI) { |
| if ((isa<Constant>(*OI) && !isa<GlobalValue>(*OI)) || |
| isa<InlineAsm>(*OI)) |
| EnumerateValue(*OI); |
| } |
| BasicBlocks.push_back(BB); |
| ValueMap[BB] = BasicBlocks.size(); |
| } |
| |
| // Optimize the constant layout. |
| OptimizeConstants(FirstFuncConstantID, Values.size()); |
| |
| // Add the function's parameter attributes so they are available for use in |
| // the function's instruction. |
| EnumerateAttributes(F.getAttributes()); |
| |
| FirstInstID = Values.size(); |
| |
| SmallVector<MDNode *, 8> FnLocalMDVector; |
| // Add all of the instructions. |
| for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { |
| for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I!=E; ++I) { |
| for (User::const_op_iterator OI = I->op_begin(), E = I->op_end(); |
| OI != E; ++OI) { |
| if (MDNode *MD = dyn_cast<MDNode>(*OI)) |
| if (MD->isFunctionLocal() && MD->getFunction()) |
| // Enumerate metadata after the instructions they might refer to. |
| FnLocalMDVector.push_back(MD); |
| } |
| |
| SmallVector<std::pair<unsigned, MDNode*>, 8> MDs; |
| I->getAllMetadataOtherThanDebugLoc(MDs); |
| for (unsigned i = 0, e = MDs.size(); i != e; ++i) { |
| MDNode *N = MDs[i].second; |
| if (N->isFunctionLocal() && N->getFunction()) |
| FnLocalMDVector.push_back(N); |
| } |
| |
| if (!I->getType()->isVoidTy()) |
| EnumerateValue(I); |
| } |
| } |
| |
| // Add all of the function-local metadata. |
| for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) |
| EnumerateFunctionLocalMetadata(FnLocalMDVector[i]); |
| } |
| |
| void ValueEnumerator::purgeFunction() { |
| /// Remove purged values from the ValueMap. |
| for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i) |
| ValueMap.erase(Values[i].first); |
| for (unsigned i = NumModuleMDValues, e = MDValues.size(); i != e; ++i) |
| MDValueMap.erase(MDValues[i].first); |
| for (unsigned i = 0, e = BasicBlocks.size(); i != e; ++i) |
| ValueMap.erase(BasicBlocks[i]); |
| |
| Values.resize(NumModuleValues); |
| MDValues.resize(NumModuleMDValues); |
| BasicBlocks.clear(); |
| FunctionLocalMDs.clear(); |
| } |
| |
| static void IncorporateFunctionInfoGlobalBBIDs(const Function *F, |
| DenseMap<const BasicBlock*, unsigned> &IDMap) { |
| unsigned Counter = 0; |
| for (Function::const_iterator BB = F->begin(), E = F->end(); BB != E; ++BB) |
| IDMap[BB] = ++Counter; |
| } |
| |
| /// getGlobalBasicBlockID - This returns the function-specific ID for the |
| /// specified basic block. This is relatively expensive information, so it |
| /// should only be used by rare constructs such as address-of-label. |
| unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const { |
| unsigned &Idx = GlobalBasicBlockIDs[BB]; |
| if (Idx != 0) |
| return Idx-1; |
| |
| IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs); |
| return getGlobalBasicBlockID(BB); |
| } |
| |
| } // end llvm_2_9 namespace |