blob: aca1b7a6f902c9f71ea1ad99ae7c11b7a29ca261 [file] [log] [blame]
/*
* fsm.c
*
* Copyright(c) 1998 - 2009 Texas Instruments. All rights reserved.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
* * Neither the name Texas Instruments nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/** \file fsm.c
* \brief finite state machine source code
*
* \see fsm.h
*/
/***************************************************************************/
/* */
/* MODULE: fsm.c */
/* PURPOSE: Finite State Machine source code */
/* */
/***************************************************************************/
#define __FILE_ID__ FILE_ID_127
#include "tidef.h"
#include "osApi.h"
#include "report.h"
#include "fsm.h"
/* Constants */
/* Enumerations */
/* Typedefs */
/* Structures */
/* External data definitions */
/* External functions definitions */
/* Function prototypes */
/**
*
* fsm_Init - Initialize the FSM structure
*
* \b Description:
*
* Init The FSM structure. If matrix argument is NULL, allocate memory for
* new matrix.
*
* \b ARGS:
*
* O - pFsm - the generated FSM module \n
* I - noOfStates - Number of states in the module \n
* I - noOfStates - Number of events in the module \n
* I/O - matrix - the state event matrix
* I - transFunc - Transition finction for the state machine \n
*
* \b RETURNS:
*
* TI_OK on success, TI_NOK on failure
*
* \sa fsm_Event
*/
TI_STATUS fsm_Create(TI_HANDLE hOs,
fsm_stateMachine_t **pFsm,
TI_UINT8 MaxNoOfStates,
TI_UINT8 MaxNoOfEvents)
{
/* check for perliminary conditions */
if ((pFsm == NULL) || (MaxNoOfStates == 0) || (MaxNoOfEvents == 0))
{
return TI_NOK;
}
/* allocate memory for FSM context */
*pFsm = (fsm_stateMachine_t *)os_memoryAlloc(hOs, sizeof(fsm_stateMachine_t));
if (*pFsm == NULL)
{
return TI_NOK;
}
os_memoryZero(hOs, (*pFsm), sizeof(fsm_stateMachine_t));
/* allocate memory for FSM matrix */
(*pFsm)->stateEventMatrix = (fsm_Matrix_t)os_memoryAlloc(hOs, MaxNoOfStates * MaxNoOfEvents * sizeof(fsm_actionCell_t));
if ((*pFsm)->stateEventMatrix == NULL)
{
os_memoryFree(hOs, *pFsm, sizeof(fsm_stateMachine_t));
return TI_NOK;
}
os_memoryZero(hOs, (*pFsm)->stateEventMatrix,
(MaxNoOfStates * MaxNoOfEvents * sizeof(fsm_actionCell_t)));
/* update pFsm structure with parameters */
(*pFsm)->MaxNoOfStates = MaxNoOfStates;
(*pFsm)->MaxNoOfEvents = MaxNoOfEvents;
return(TI_OK);
}
/**
*
* fsm_Unload - free all memory allocated to FSM structure
*
* \b Description:
*
* Unload the FSM structure.
*
* \b ARGS:
*
* O - pFsm - the generated FSM module \n
* I - noOfStates - Number of states in the module \n
* I - noOfStates - Number of events in the module \n
* I/O - matrix - the state event matrix
* I - transFunc - Transition finction for the state machine \n
*
* \b RETURNS:
*
* TI_OK on success, TI_NOK on failure
*
* \sa fsm_Event
*/
TI_STATUS fsm_Unload(TI_HANDLE hOs,
fsm_stateMachine_t *pFsm)
{
/* check for perliminary conditions */
if (pFsm == NULL)
{
return TI_NOK;
}
/* free memory of FSM matrix */
if (pFsm->stateEventMatrix != NULL)
{
os_memoryFree(hOs, pFsm->stateEventMatrix,
pFsm->MaxNoOfStates * pFsm->MaxNoOfEvents * sizeof(fsm_actionCell_t));
}
/* free memory for FSM context (no need to check for null) */
os_memoryFree(hOs, pFsm, sizeof(fsm_stateMachine_t));
return(TI_OK);
}
/**
*
* fsm_Init - Initialize the FSM structure
*
* \b Description:
*
* Init The FSM structure. If matrix argument is NULL, allocate memory for
* new matrix.
*
* \b ARGS:
*
* O - pFsm - the generated FSM module \n
* I - noOfStates - Number of states in the module \n
* I - noOfStates - Number of events in the module \n
* I/O - matrix - the state event matrix
* I - transFunc - Transition finction for the state machine \n
*
* \b RETURNS:
*
* TI_OK on success, TI_NOK on failure
*
* \sa fsm_Event
*/
TI_STATUS fsm_Config(fsm_stateMachine_t *pFsm,
fsm_Matrix_t pMatrix,
TI_UINT8 ActiveNoOfStates,
TI_UINT8 ActiveNoOfEvents,
fsm_eventActivation_t transFunc,
TI_HANDLE hOs)
{
/* check for perliminary conditions */
if ((pFsm == NULL) ||
(pMatrix == NULL))
{
return TI_NOK;
}
if ((ActiveNoOfStates > pFsm->MaxNoOfStates) ||
(ActiveNoOfEvents > pFsm->MaxNoOfEvents))
{
return TI_NOK;
}
/* copy matrix to FSM context */
os_memoryCopy(hOs, (void *)pFsm->stateEventMatrix, (void *)pMatrix,
ActiveNoOfStates * ActiveNoOfEvents * sizeof(fsm_actionCell_t));
/* update pFsm structure with parameters */
pFsm->ActiveNoOfStates = ActiveNoOfStates;
pFsm->ActiveNoOfEvents = ActiveNoOfEvents;
pFsm->transitionFunc = transFunc;
return(TI_OK);
}
/**
*
* fsm_Event - perform event transition in the matrix
*
* \b Description:
*
* Perform event transition in the matrix
*
* \b ARGS:
*
* I - pFsm - the generated FSM module \n
* I/O - currentState - current state of the SM \n
* I - event - event causing transition \n
* I - pData - data for activation function \n
*
* \b RETURNS:
*
* TI_OK on success, TI_NOK on failure
*
* \sa fsm_Init
*/
TI_STATUS fsm_Event(fsm_stateMachine_t *pFsm,
TI_UINT8 *currentState,
TI_UINT8 event,
void *pData)
{
TI_UINT8 oldState;
TI_STATUS status;
/* check for FSM existance */
if (pFsm == NULL)
{
return TI_NOK;
}
/* boundary check */
if ((*currentState >= pFsm->ActiveNoOfStates) || (event >= pFsm->ActiveNoOfEvents))
{
return TI_NOK;
}
oldState = *currentState;
/* update current state */
*currentState = pFsm->stateEventMatrix[(*currentState * pFsm->ActiveNoOfEvents) + event].nextState;
/* activate transition function */
if ((*pFsm->stateEventMatrix[(oldState * pFsm->ActiveNoOfEvents) + event].actionFunc) == NULL)
{
return TI_NOK;
}
status = (*pFsm->stateEventMatrix[(oldState * pFsm->ActiveNoOfEvents) + event].actionFunc)(pData);
return status;
}
/**
*
* fsm_GetNextState - Retrun the next state for a given current state and an event.
*
* \b Description:
*
* Retrun the next state for a given current state and an event.
*
* \b ARGS:
*
* I - pFsm - the generated FSM module \n
* I - currentState - current state of the SM \n
* I - event - event causing transition \n
* O - nextState - returned next state \n
*
* \b RETURNS:
*
* TI_OK on success, TI_NOK on failure
*
* \sa
*/
TI_STATUS fsm_GetNextState(fsm_stateMachine_t *pFsm,
TI_UINT8 currentState,
TI_UINT8 event,
TI_UINT8 *nextState)
{
if (pFsm != NULL)
{
if ((currentState < pFsm->ActiveNoOfStates) && (event < pFsm->ActiveNoOfEvents))
{
*nextState = pFsm->stateEventMatrix[(currentState * pFsm->ActiveNoOfEvents) + event].nextState;
return(TI_OK);
}
}
return(TI_NOK);
}
TI_STATUS action_nop(void *pData)
{
return TI_OK;
}