blob: bf221105a006a8dbadb157d74d45dfe4fbcecbae [file] [log] [blame]
/*
* CDDL HEADER START
*
* The contents of this file are subject to the terms
* of the Common Development and Distribution License
* (the "License"). You may not use this file except
* in compliance with the License.
*
* You can obtain a copy of the license at
* src/OPENSOLARIS.LICENSE
* or http://www.opensolaris.org/os/licensing.
* See the License for the specific language governing
* permissions and limitations under the License.
*
* When distributing Covered Code, include this CDDL
* HEADER in each file and include the License file at
* usr/src/OPENSOLARIS.LICENSE. If applicable,
* add the following below this CDDL HEADER, with the
* fields enclosed by brackets "[]" replaced with your
* own identifying information: Portions Copyright [yyyy]
* [name of copyright owner]
*
* CDDL HEADER END
*/
/*
* Copyright 2005 Sun Microsystems, Inc. All rights reserved.
* Use is subject to license terms.
*/
/*
* The "cascade" test case is a multiprocess/multithread batten-passing model
* using lock primitives alone for synchronisation. Threads are arranged in a
* ring. Each thread has two locks of its own on which it blocks, and is able
* to manipulate the two locks belonging to the thread which follows it in the
* ring.
*
* The number of threads (nthreads) is specified by the generic libMicro -P/-T
* options. With nthreads == 1 (the default) the uncontended case can be timed.
*
* The main logic is generic and allows any simple blocking API to be tested.
* The API-specific component is clearly indicated.
*/
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
#include <sys/mman.h>
#include "libmicro.h"
typedef struct {
int ts_once;
int ts_id;
int ts_us0; /* our lock indices */
int ts_us1;
int ts_them0; /* their lock indices */
int ts_them1;
} tsd_t;
static int nthreads;
/*
* API-specific code BEGINS here
*/
static int opto = 0;
static int opts = 0;
static int nlocks;
static pthread_mutex_t *mxs;
static pthread_cond_t *cvs;
static int *conds;
int
benchmark_init()
{
lm_tsdsize = sizeof (tsd_t);
(void) sprintf(lm_optstr, "os");
lm_defN = "cscd_cond";
(void) sprintf(lm_usage,
" [-o] (do signal outside mutex)\n"
" [-s] (force PTHREAD_PROCESS_SHARED)\n"
"notes: thread cascade using pthread_conds\n");
return (0);
}
/*ARGSUSED*/
int
benchmark_optswitch(int opt, char *optarg)
{
switch (opt) {
case 'o':
opto = 1;
break;
case 's':
opts = 1;
break;
default:
return (-1);
}
return (0);
}
int
benchmark_initrun()
{
int i;
int e = 0;
pthread_mutexattr_t ma;
pthread_condattr_t ca;
nthreads = lm_optP * lm_optT;
nlocks = nthreads * 2;
/*LINTED*/
mxs = (pthread_mutex_t *)mmap(NULL,
nlocks * sizeof (pthread_mutex_t),
PROT_READ | PROT_WRITE,
MAP_ANON | MAP_SHARED,
-1, 0L);
if (mxs == MAP_FAILED) {
return (1);
}
/*LINTED*/
cvs = (pthread_cond_t *)mmap(NULL,
nlocks * sizeof (pthread_cond_t),
PROT_READ | PROT_WRITE,
MAP_ANON | MAP_SHARED,
-1, 0L);
if (cvs == MAP_FAILED) {
return (1);
}
/*LINTED*/
conds = (int *)mmap(NULL,
nlocks * sizeof (pthread_cond_t),
PROT_READ | PROT_WRITE,
MAP_ANON | MAP_SHARED,
-1, 0L);
if (conds == MAP_FAILED) {
return (1);
}
(void) pthread_mutexattr_init(&ma);
(void) pthread_condattr_init(&ca);
if (lm_optP > 1 || opts) {
(void) pthread_mutexattr_setpshared(&ma,
PTHREAD_PROCESS_SHARED);
(void) pthread_condattr_setpshared(&ca,
PTHREAD_PROCESS_SHARED);
} else {
(void) pthread_mutexattr_setpshared(&ma,
PTHREAD_PROCESS_PRIVATE);
(void) pthread_condattr_setpshared(&ca,
PTHREAD_PROCESS_PRIVATE);
}
for (i = 0; i < nlocks; i++) {
(void) pthread_mutex_init(&mxs[i], &ma);
(void) pthread_cond_init(&cvs[i], &ca);
conds[i] = 0;
}
return (e);
}
int
block(int index)
{
(void) pthread_mutex_lock(&mxs[index]);
while (conds[index] != 0) {
(void) pthread_cond_wait(&cvs[index], &mxs[index]);
}
conds[index] = 1;
(void) pthread_mutex_unlock(&mxs[index]);
return (0);
}
int
unblock(int index)
{
(void) pthread_mutex_lock(&mxs[index]);
conds[index] = 0;
if (opto) {
(void) pthread_mutex_unlock(&mxs[index]);
(void) pthread_cond_signal(&cvs[index]);
} else {
(void) pthread_cond_signal(&cvs[index]);
(void) pthread_mutex_unlock(&mxs[index]);
}
return (0);
}
/*
* API-specific code ENDS here
*/
int
benchmark_initbatch(void *tsd)
{
tsd_t *ts = (tsd_t *)tsd;
int e = 0;
if (ts->ts_once == 0) {
int us, them;
us = (getpindex() * lm_optT) + gettindex();
them = (us + 1) % (lm_optP * lm_optT);
ts->ts_id = us;
/* lock index asignment for us and them */
ts->ts_us0 = (us * 2);
ts->ts_us1 = (us * 2) + 1;
if (us < nthreads - 1) {
/* straight-thru connection to them */
ts->ts_them0 = (them * 2);
ts->ts_them1 = (them * 2) + 1;
} else {
/* cross-over connection to them */
ts->ts_them0 = (them * 2) + 1;
ts->ts_them1 = (them * 2);
}
ts->ts_once = 1;
}
/* block their first move */
e += block(ts->ts_them0);
return (e);
}
int
benchmark(void *tsd, result_t *res)
{
tsd_t *ts = (tsd_t *)tsd;
int i;
int e = 0;
/* wait to be unblocked (id == 0 will not block) */
e += block(ts->ts_us0);
for (i = 0; i < lm_optB; i += 2) {
/* allow them to block us again */
e += unblock(ts->ts_us0);
/* block their next + 1 move */
e += block(ts->ts_them1);
/* unblock their next move */
e += unblock(ts->ts_them0);
/* wait for them to unblock us */
e += block(ts->ts_us1);
/* repeat with locks reversed */
e += unblock(ts->ts_us1);
e += block(ts->ts_them0);
e += unblock(ts->ts_them1);
e += block(ts->ts_us0);
}
/* finish batch with nothing blocked */
e += unblock(ts->ts_them0);
e += unblock(ts->ts_us0);
res->re_count = i;
res->re_errors = e;
return (0);
}