blob: b359ec758d100e615e84a4c0ff8f61e04916242f [file] [log] [blame]
/***********************************************************************
*
M* Modul: lwmon.c
M*
M* Content: LWMON specific U-Boot commands.
*
* (C) Copyright 2001, 2002
* DENX Software Engineering
* Wolfgang Denk, wd@denx.de
* All rights reserved.
*
D* Design: wd@denx.de
C* Coding: wd@denx.de
V* Verification: dzu@denx.de
*
* See file CREDITS for list of people who contributed to this
* project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
***********************************************************************/
/*---------------------------- Headerfiles ----------------------------*/
#include <common.h>
#include <mpc8xx.h>
#include <commproc.h>
#include <i2c.h>
#include <command.h>
#include <malloc.h>
#include <post.h>
#include <linux/types.h>
#include <linux/string.h> /* for strdup */
/*------------------------ Local prototypes ---------------------------*/
static long int dram_size (long int, long int *, long int);
static void kbd_init (void);
static int compare_magic (uchar *kbd_data, uchar *str);
/*--------------------- Local macros and constants --------------------*/
#define _NOT_USED_ 0xFFFFFFFF
#ifdef CONFIG_MODEM_SUPPORT
static int key_pressed(void);
extern void disable_putc(void);
#endif /* CONFIG_MODEM_SUPPORT */
/*
* 66 MHz SDRAM access using UPM A
*/
const uint sdram_table[] =
{
#if defined(CFG_MEMORY_75) || defined(CFG_MEMORY_8E)
/*
* Single Read. (Offset 0 in UPM RAM)
*/
0x1F0DFC04, 0xEEAFBC04, 0x11AF7C04, 0xEFBAFC00,
0x1FF5FC47, /* last */
/*
* SDRAM Initialization (offset 5 in UPM RAM)
*
* This is no UPM entry point. The following definition uses
* the remaining space to establish an initialization
* sequence, which is executed by a RUN command.
*
*/
0x1FF5FC34, 0xEFEABC34, 0x1FB57C35, /* last */
/*
* Burst Read. (Offset 8 in UPM RAM)
*/
0x1F0DFC04, 0xEEAFBC04, 0x10AF7C04, 0xF0AFFC00,
0xF0AFFC00, 0xF1AFFC00, 0xEFBAFC00, 0x1FF5FC47, /* last */
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
/*
* Single Write. (Offset 18 in UPM RAM)
*/
0x1F2DFC04, 0xEEABBC00, 0x01B27C04, 0x1FF5FC47, /* last */
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
/*
* Burst Write. (Offset 20 in UPM RAM)
*/
0x1F0DFC04, 0xEEABBC00, 0x10A77C00, 0xF0AFFC00,
0xF0AFFC00, 0xE1BAFC04, 0x01FF5FC47, /* last */
_NOT_USED_,
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
/*
* Refresh (Offset 30 in UPM RAM)
*/
0x1FFD7C84, 0xFFFFFC04, 0xFFFFFC04, 0xFFFFFC04,
0xFFFFFC84, 0xFFFFFC07, /* last */
_NOT_USED_, _NOT_USED_,
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
/*
* Exception. (Offset 3c in UPM RAM)
*/
0x7FFFFC07, /* last */
0xFFFFFCFF, 0xFFFFFCFF, 0xFFFFFCFF,
#endif
#ifdef CFG_MEMORY_7E
/*
* Single Read. (Offset 0 in UPM RAM)
*/
0x0E2DBC04, 0x11AF7C04, 0xEFBAFC00, 0x1FF5FC47, /* last */
_NOT_USED_,
/*
* SDRAM Initialization (offset 5 in UPM RAM)
*
* This is no UPM entry point. The following definition uses
* the remaining space to establish an initialization
* sequence, which is executed by a RUN command.
*
*/
0x1FF5FC34, 0xEFEABC34, 0x1FB57C35, /* last */
/*
* Burst Read. (Offset 8 in UPM RAM)
*/
0x0E2DBC04, 0x10AF7C04, 0xF0AFFC00, 0xF0AFFC00,
0xF1AFFC00, 0xEFBAFC00, 0x1FF5FC47, /* last */
_NOT_USED_,
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
/*
* Single Write. (Offset 18 in UPM RAM)
*/
0x0E29BC04, 0x01B27C04, 0x1FF5FC47, /* last */
_NOT_USED_,
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
/*
* Burst Write. (Offset 20 in UPM RAM)
*/
0x0E29BC04, 0x10A77C00, 0xF0AFFC00, 0xF0AFFC00,
0xE1BAFC04, 0x1FF5FC47, /* last */
_NOT_USED_, _NOT_USED_,
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
/*
* Refresh (Offset 30 in UPM RAM)
*/
0x1FFD7C84, 0xFFFFFC04, 0xFFFFFC04, 0xFFFFFC04,
0xFFFFFC84, 0xFFFFFC07, /* last */
_NOT_USED_, _NOT_USED_,
_NOT_USED_, _NOT_USED_, _NOT_USED_, _NOT_USED_,
/*
* Exception. (Offset 3c in UPM RAM)
*/
0x7FFFFC07, /* last */
0xFFFFFCFF, 0xFFFFFCFF, 0xFFFFFCFF,
#endif
};
/*
* Check Board Identity:
*
*/
/***********************************************************************
F* Function: int checkboard (void) P*A*Z*
*
P* Parameters: none
P*
P* Returnvalue: int - 0 is always returned
*
Z* Intention: This function is the checkboard() method implementation
Z* for the lwmon board. Only a standard message is printed.
*
D* Design: wd@denx.de
C* Coding: wd@denx.de
V* Verification: dzu@denx.de
***********************************************************************/
int checkboard (void)
{
puts ("Board: Litronic Monitor IV\n");
return (0);
}
/***********************************************************************
F* Function: long int initdram (int board_type) P*A*Z*
*
P* Parameters: int board_type
P* - Usually type of the board - ignored here.
P*
P* Returnvalue: long int
P* - Size of initialized memory
*
Z* Intention: This function is the initdram() method implementation
Z* for the lwmon board.
Z* The memory controller is initialized to access the
Z* DRAM.
*
D* Design: wd@denx.de
C* Coding: wd@denx.de
V* Verification: dzu@denx.de
***********************************************************************/
long int initdram (int board_type)
{
volatile immap_t *immr = (immap_t *) CFG_IMMR;
volatile memctl8xx_t *memctl = &immr->im_memctl;
long int size_b0;
long int size8, size9;
int i;
/*
* Configure UPMA for SDRAM
*/
upmconfig (UPMA, (uint *)sdram_table, sizeof(sdram_table)/sizeof(uint));
memctl->memc_mptpr = CFG_MPTPR;
/* burst length=4, burst type=sequential, CAS latency=2 */
memctl->memc_mar = CFG_MAR;
/*
* Map controller bank 3 to the SDRAM bank at preliminary address.
*/
memctl->memc_or3 = CFG_OR3_PRELIM;
memctl->memc_br3 = CFG_BR3_PRELIM;
/* initialize memory address register */
memctl->memc_mamr = CFG_MAMR_8COL; /* refresh not enabled yet */
/* mode initialization (offset 5) */
udelay (200); /* 0x80006105 */
memctl->memc_mcr = MCR_OP_RUN | MCR_MB_CS3 | MCR_MLCF (1) | MCR_MAD (0x05);
/* run 2 refresh sequence with 4-beat refresh burst (offset 0x30) */
udelay (1); /* 0x80006130 */
memctl->memc_mcr = MCR_OP_RUN | MCR_MB_CS3 | MCR_MLCF (1) | MCR_MAD (0x30);
udelay (1); /* 0x80006130 */
memctl->memc_mcr = MCR_OP_RUN | MCR_MB_CS3 | MCR_MLCF (1) | MCR_MAD (0x30);
udelay (1); /* 0x80006106 */
memctl->memc_mcr = MCR_OP_RUN | MCR_MB_CS3 | MCR_MLCF (1) | MCR_MAD (0x06);
memctl->memc_mamr |= MAMR_PTBE; /* refresh enabled */
udelay (200);
/* Need at least 10 DRAM accesses to stabilize */
for (i = 0; i < 10; ++i) {
volatile unsigned long *addr =
(volatile unsigned long *) SDRAM_BASE3_PRELIM;
unsigned long val;
val = *(addr + i);
*(addr + i) = val;
}
/*
* Check Bank 0 Memory Size for re-configuration
*
* try 8 column mode
*/
size8 = dram_size (CFG_MAMR_8COL, (ulong *)SDRAM_BASE3_PRELIM, SDRAM_MAX_SIZE);
udelay (1000);
/*
* try 9 column mode
*/
size9 = dram_size (CFG_MAMR_9COL, (ulong *)SDRAM_BASE3_PRELIM, SDRAM_MAX_SIZE);
if (size8 < size9) { /* leave configuration at 9 columns */
size_b0 = size9;
memctl->memc_mamr = CFG_MAMR_9COL | MAMR_PTBE;
udelay (500);
} else { /* back to 8 columns */
size_b0 = size8;
memctl->memc_mamr = CFG_MAMR_8COL | MAMR_PTBE;
udelay (500);
}
/*
* Final mapping:
*/
memctl->memc_or3 = ((-size_b0) & 0xFFFF0000) |
OR_CSNT_SAM | OR_G5LS | SDRAM_TIMING;
memctl->memc_br3 = (CFG_SDRAM_BASE & BR_BA_MSK) | BR_MS_UPMA | BR_V;
udelay (1000);
return (size_b0);
}
/***********************************************************************
F* Function: static long int dram_size (long int mamr_value,
F* long int *base,
F* long int maxsize) P*A*Z*
*
P* Parameters: long int mamr_value
P* - Value for MAMR for the test
P* long int *base
P* - Base address for the test
P* long int maxsize
P* - Maximum size to test for
P*
P* Returnvalue: long int
P* - Size of probed memory
*
Z* Intention: Check memory range for valid RAM. A simple memory test
Z* determines the actually available RAM size between
Z* addresses `base' and `base + maxsize'. Some (not all)
Z* hardware errors are detected:
Z* - short between address lines
Z* - short between data lines
*
D* Design: wd@denx.de
C* Coding: wd@denx.de
V* Verification: dzu@denx.de
***********************************************************************/
static long int dram_size (long int mamr_value, long int *base, long int maxsize)
{
volatile immap_t *immr = (immap_t *) CFG_IMMR;
volatile memctl8xx_t *memctl = &immr->im_memctl;
volatile long int *addr;
ulong cnt, val;
ulong save[32]; /* to make test non-destructive */
unsigned char i = 0;
memctl->memc_mamr = mamr_value;
for (cnt = maxsize / sizeof (long); cnt > 0; cnt >>= 1) {
addr = base + cnt; /* pointer arith! */
save[i++] = *addr;
*addr = ~cnt;
}
/* write 0 to base address */
addr = base;
save[i] = *addr;
*addr = 0;
/* check at base address */
if ((val = *addr) != 0) {
*addr = save[i];
return (0);
}
for (cnt = 1; cnt <= maxsize / sizeof (long); cnt <<= 1) {
addr = base + cnt; /* pointer arith! */
val = *addr;
*addr = save[--i];
if (val != (~cnt)) {
return (cnt * sizeof (long));
}
}
return (maxsize);
}
/* ------------------------------------------------------------------------- */
#ifndef PB_ENET_TENA
# define PB_ENET_TENA ((uint)0x00002000) /* PB 18 */
#endif
/***********************************************************************
F* Function: int board_pre_init (void) P*A*Z*
*
P* Parameters: none
P*
P* Returnvalue: int
P* - 0 is always returned.
*
Z* Intention: This function is the board_pre_init() method implementation
Z* for the lwmon board.
Z* Disable Ethernet TENA on Port B.
*
D* Design: wd@denx.de
C* Coding: wd@denx.de
V* Verification: dzu@denx.de
***********************************************************************/
int board_pre_init (void)
{
volatile immap_t *immr = (immap_t *) CFG_IMMR;
/* Disable Ethernet TENA on Port B
* Necessary because of pull up in COM3 port.
*
* This is just a preliminary fix, intended to turn off TENA
* as soon as possible to avoid noise on the network. Once
* I²C is running we will make sure the interface is
* correctly initialized.
*/
immr->im_cpm.cp_pbpar &= ~PB_ENET_TENA;
immr->im_cpm.cp_pbodr &= ~PB_ENET_TENA;
immr->im_cpm.cp_pbdat &= ~PB_ENET_TENA; /* set to 0 = disabled */
immr->im_cpm.cp_pbdir |= PB_ENET_TENA;
return (0);
}
/* ------------------------------------------------------------------------- */
/***********************************************************************
F* Function: void reset_phy (void) P*A*Z*
*
P* Parameters: none
P*
P* Returnvalue: none
*
Z* Intention: Reset the PHY. In the lwmon case we do this by the
Z* signaling the PIC I/O expander.
*
D* Design: wd@denx.de
C* Coding: wd@denx.de
V* Verification: dzu@denx.de
***********************************************************************/
void reset_phy (void)
{
uchar c;
#ifdef DEBUG
printf ("### Switch on Ethernet for SCC2 ###\n");
#endif
c = pic_read (0x61);
#ifdef DEBUG
printf ("Old PIC read: reg_61 = 0x%02x\n", c);
#endif
c |= 0x40; /* disable COM3 */
c &= ~0x80; /* enable Ethernet */
pic_write (0x61, c);
#ifdef DEBUG
c = pic_read (0x61);
printf ("New PIC read: reg_61 = 0x%02x\n", c);
#endif
udelay (1000);
}
/*------------------------- Keyboard controller -----------------------*/
/* command codes */
#define KEYBD_CMD_READ_KEYS 0x01
#define KEYBD_CMD_READ_VERSION 0x02
#define KEYBD_CMD_READ_STATUS 0x03
#define KEYBD_CMD_RESET_ERRORS 0x10
/* status codes */
#define KEYBD_STATUS_MASK 0x3F
#define KEYBD_STATUS_H_RESET 0x20
#define KEYBD_STATUS_BROWNOUT 0x10
#define KEYBD_STATUS_WD_RESET 0x08
#define KEYBD_STATUS_OVERLOAD 0x04
#define KEYBD_STATUS_ILLEGAL_WR 0x02
#define KEYBD_STATUS_ILLEGAL_RD 0x01
/* Number of bytes returned from Keyboard Controller */
#define KEYBD_VERSIONLEN 2 /* version information */
#define KEYBD_DATALEN 9 /* normal key scan data */
/* maximum number of "magic" key codes that can be assigned */
static uchar kbd_addr = CFG_I2C_KEYBD_ADDR;
static uchar *key_match (uchar *);
#define KEYBD_SET_DEBUGMODE '#' /* Magic key to enable debug output */
/***********************************************************************
F* Function: int board_postclk_init (void) P*A*Z*
*
P* Parameters: none
P*
P* Returnvalue: int
P* - 0 is always returned.
*
Z* Intention: This function is the board_postclk_init() method implementation
Z* for the lwmon board.
*
***********************************************************************/
int board_postclk_init (void)
{
DECLARE_GLOBAL_DATA_PTR;
kbd_init();
#ifdef CONFIG_MODEM_SUPPORT
if (key_pressed()) {
disable_putc(); /* modem doesn't understand banner etc */
gd->do_mdm_init = 1;
}
#endif
return (0);
}
static void kbd_init (void)
{
DECLARE_GLOBAL_DATA_PTR;
uchar kbd_data[KEYBD_DATALEN];
uchar tmp_data[KEYBD_DATALEN];
uchar val, errcd;
int i;
i2c_init (CFG_I2C_SPEED, CFG_I2C_SLAVE);
gd->kbd_status = 0;
/* Read initial keyboard error code */
val = KEYBD_CMD_READ_STATUS;
i2c_write (kbd_addr, 0, 0, &val, 1);
i2c_read (kbd_addr, 0, 0, &errcd, 1);
/* clear unused bits */
errcd &= KEYBD_STATUS_MASK;
/* clear "irrelevant" bits. Recommended by Martin Rajek, LWN */
errcd &= ~(KEYBD_STATUS_H_RESET|KEYBD_STATUS_BROWNOUT);
if (errcd) {
gd->kbd_status |= errcd << 8;
}
/* Reset error code and verify */
val = KEYBD_CMD_RESET_ERRORS;
i2c_write (kbd_addr, 0, 0, &val, 1);
udelay(1000); /* delay NEEDED by keyboard PIC !!! */
val = KEYBD_CMD_READ_STATUS;
i2c_write (kbd_addr, 0, 0, &val, 1);
i2c_read (kbd_addr, 0, 0, &val, 1);
val &= KEYBD_STATUS_MASK; /* clear unused bits */
if (val) { /* permanent error, report it */
gd->kbd_status |= val;
return;
}
/*
* Read current keyboard state.
*
* After the error reset it may take some time before the
* keyboard PIC picks up a valid keyboard scan - the total
* scan time is approx. 1.6 ms (information by Martin Rajek,
* 28 Sep 2002). We read a couple of times for the keyboard
* to stabilize, using a big enough delay.
* 10 times should be enough. If the data is still changing,
* we use what we get :-(
*/
memset (tmp_data, 0xFF, KEYBD_DATALEN); /* impossible value */
for (i=0; i<10; ++i) {
val = KEYBD_CMD_READ_KEYS;
i2c_write (kbd_addr, 0, 0, &val, 1);
i2c_read (kbd_addr, 0, 0, kbd_data, KEYBD_DATALEN);
if (memcmp(kbd_data, tmp_data, KEYBD_DATALEN) == 0) {
/* consistent state, done */
break;
}
/* remeber last state, delay, and retry */
memcpy (tmp_data, kbd_data, KEYBD_DATALEN);
udelay (5000);
}
}
/***********************************************************************
F* Function: int misc_init_r (void) P*A*Z*
*
P* Parameters: none
P*
P* Returnvalue: int
P* - 0 is always returned, even in the case of a keyboard
P* error.
*
Z* Intention: This function is the misc_init_r() method implementation
Z* for the lwmon board.
Z* The keyboard controller is initialized and the result
Z* of a read copied to the environment variable "keybd".
Z* If KEYBD_SET_DEBUGMODE is defined, a check is made for
Z* this key, and if found display to the LCD will be enabled.
Z* The keys in "keybd" are checked against the magic
Z* keycommands defined in the environment.
Z* See also key_match().
*
D* Design: wd@denx.de
C* Coding: wd@denx.de
V* Verification: dzu@denx.de
***********************************************************************/
int misc_init_r (void)
{
DECLARE_GLOBAL_DATA_PTR;
uchar kbd_data[KEYBD_DATALEN];
uchar keybd_env[2 * KEYBD_DATALEN + 1];
uchar kbd_init_status = gd->kbd_status >> 8;
uchar kbd_status = gd->kbd_status;
uchar val;
uchar *str;
int i;
if (kbd_init_status) {
printf ("KEYBD: Error %02X\n", kbd_init_status);
}
if (kbd_status) { /* permanent error, report it */
printf ("*** Keyboard error code %02X ***\n", kbd_status);
sprintf (keybd_env, "%02X", kbd_status);
setenv ("keybd", keybd_env);
return 0;
}
/*
* Now we know that we have a working keyboard, so disable
* all output to the LCD except when a key press is detected.
*/
if ((console_assign (stdout, "serial") < 0) ||
(console_assign (stderr, "serial") < 0)) {
printf ("Can't assign serial port as output device\n");
}
/* Read Version */
val = KEYBD_CMD_READ_VERSION;
i2c_write (kbd_addr, 0, 0, &val, 1);
i2c_read (kbd_addr, 0, 0, kbd_data, KEYBD_VERSIONLEN);
printf ("KEYBD: Version %d.%d\n", kbd_data[0], kbd_data[1]);
/* Read current keyboard state */
val = KEYBD_CMD_READ_KEYS;
i2c_write (kbd_addr, 0, 0, &val, 1);
i2c_read (kbd_addr, 0, 0, kbd_data, KEYBD_DATALEN);
for (i = 0; i < KEYBD_DATALEN; ++i) {
sprintf (keybd_env + i + i, "%02X", kbd_data[i]);
}
setenv ("keybd", keybd_env);
str = strdup (key_match (kbd_data)); /* decode keys */
#ifdef KEYBD_SET_DEBUGMODE
if (kbd_data[0] == KEYBD_SET_DEBUGMODE) { /* set debug mode */
if ((console_assign (stdout, "lcd") < 0) ||
(console_assign (stderr, "lcd") < 0)) {
printf ("Can't assign LCD display as output device\n");
}
}
#endif /* KEYBD_SET_DEBUGMODE */
#ifdef CONFIG_PREBOOT /* automatically configure "preboot" command on key match */
setenv ("preboot", str); /* set or delete definition */
#endif /* CONFIG_PREBOOT */
if (str != NULL) {
free (str);
}
return (0);
}
#ifdef CONFIG_PREBOOT
static uchar kbd_magic_prefix[] = "key_magic";
static uchar kbd_command_prefix[] = "key_cmd";
static int compare_magic (uchar *kbd_data, uchar *str)
{
uchar compare[KEYBD_DATALEN-1];
uchar *nxt;
int i;
/* Don't include modifier byte */
memcpy (compare, kbd_data+1, KEYBD_DATALEN-1);
for (; str != NULL; str = (*nxt) ? nxt+1 : nxt) {
uchar c;
int k;
c = (uchar) simple_strtoul (str, (char **) (&nxt), 16);
if (str == nxt) { /* invalid character */
break;
}
/*
* Check if this key matches the input.
* Set matches to zero, so they match only once
* and we can find duplicates or extra keys
*/
for (k = 0; k < sizeof(compare); ++k) {
if (compare[k] == '\0') /* only non-zero entries */
continue;
if (c == compare[k]) { /* found matching key */
compare[k] = '\0';
break;
}
}
if (k == sizeof(compare)) {
return -1; /* unmatched key */
}
}
/*
* A full match leaves no keys in the `compare' array,
*/
for (i = 0; i < sizeof(compare); ++i) {
if (compare[i])
{
return -1;
}
}
return 0;
}
/***********************************************************************
F* Function: static uchar *key_match (uchar *kbd_data) P*A*Z*
*
P* Parameters: uchar *kbd_data
P* - The keys to match against our magic definitions
P*
P* Returnvalue: uchar *
P* - != NULL: Pointer to the corresponding command(s)
P* NULL: No magic is about to happen
*
Z* Intention: Check if pressed key(s) match magic sequence,
Z* and return the command string associated with that key(s).
Z*
Z* If no key press was decoded, NULL is returned.
Z*
Z* Note: the first character of the argument will be
Z* overwritten with the "magic charcter code" of the
Z* decoded key(s), or '\0'.
Z*
Z* Note: the string points to static environment data
Z* and must be saved before you call any function that
Z* modifies the environment.
*
D* Design: wd@denx.de
C* Coding: wd@denx.de
V* Verification: dzu@denx.de
***********************************************************************/
static uchar *key_match (uchar *kbd_data)
{
uchar magic[sizeof (kbd_magic_prefix) + 1];
uchar *suffix;
uchar *kbd_magic_keys;
/*
* The following string defines the characters that can pe appended
* to "key_magic" to form the names of environment variables that
* hold "magic" key codes, i. e. such key codes that can cause
* pre-boot actions. If the string is empty (""), then only
* "key_magic" is checked (old behaviour); the string "125" causes
* checks for "key_magic1", "key_magic2" and "key_magic5", etc.
*/
if ((kbd_magic_keys = getenv ("magic_keys")) == NULL)
kbd_magic_keys = "";
/* loop over all magic keys;
* use '\0' suffix in case of empty string
*/
for (suffix=kbd_magic_keys; *suffix || suffix==kbd_magic_keys; ++suffix) {
sprintf (magic, "%s%c", kbd_magic_prefix, *suffix);
#if 0
printf ("### Check magic \"%s\"\n", magic);
#endif
if (compare_magic(kbd_data, getenv(magic)) == 0) {
uchar cmd_name[sizeof (kbd_command_prefix) + 1];
char *cmd;
sprintf (cmd_name, "%s%c", kbd_command_prefix, *suffix);
cmd = getenv (cmd_name);
#if 0
printf ("### Set PREBOOT to $(%s): \"%s\"\n",
cmd_name, cmd ? cmd : "<<NULL>>");
#endif
*kbd_data = *suffix;
return (cmd);
}
}
#if 0
printf ("### Delete PREBOOT\n");
#endif
*kbd_data = '\0';
return (NULL);
}
#endif /* CONFIG_PREBOOT */
/*---------------Board Special Commands: PIC read/write ---------------*/
#if (CONFIG_COMMANDS & CFG_CMD_BSP)
/***********************************************************************
F* Function: int do_pic (cmd_tbl_t *cmdtp, int flag,
F* int argc, char *argv[]) P*A*Z*
*
P* Parameters: cmd_tbl_t *cmdtp
P* - Pointer to our command table entry
P* int flag
P* - If the CMD_FLAG_REPEAT bit is set, then this call is
P* a repetition
P* int argc
P* - Argument count
P* char *argv[]
P* - Array of the actual arguments
P*
P* Returnvalue: int
P* - 0 The command was handled successfully
P* 1 An error occurred
*
Z* Intention: Implement the "pic [read|write]" commands.
Z* The read subcommand takes one argument, the register,
Z* whereas the write command takes two, the register and
Z* the new value.
*
D* Design: wd@denx.de
C* Coding: wd@denx.de
V* Verification: dzu@denx.de
***********************************************************************/
int do_pic (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
uchar reg, val;
switch (argc) {
case 3: /* PIC read reg */
if (strcmp (argv[1], "read") != 0)
break;
reg = simple_strtoul (argv[2], NULL, 16);
printf ("PIC read: reg %02x: %02x\n\n", reg, pic_read (reg));
return 0;
case 4: /* PIC write reg val */
if (strcmp (argv[1], "write") != 0)
break;
reg = simple_strtoul (argv[2], NULL, 16);
val = simple_strtoul (argv[3], NULL, 16);
printf ("PIC write: reg %02x val 0x%02x: %02x => ",
reg, val, pic_read (reg));
pic_write (reg, val);
printf ("%02x\n\n", pic_read (reg));
return 0;
default:
break;
}
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
cmd_tbl_t U_BOOT_CMD(pic) = MK_CMD_ENTRY(
"pic", 4, 1, do_pic,
"pic - read and write PIC registers\n",
"read reg - read PIC register `reg'\n"
"pic write reg val - write value `val' to PIC register `reg'\n"
);
/***********************************************************************
F* Function: int do_kbd (cmd_tbl_t *cmdtp, int flag,
F* int argc, char *argv[]) P*A*Z*
*
P* Parameters: cmd_tbl_t *cmdtp
P* - Pointer to our command table entry
P* int flag
P* - If the CMD_FLAG_REPEAT bit is set, then this call is
P* a repetition
P* int argc
P* - Argument count
P* char *argv[]
P* - Array of the actual arguments
P*
P* Returnvalue: int
P* - 0 is always returned.
*
Z* Intention: Implement the "kbd" command.
Z* The keyboard status is read. The result is printed on
Z* the console and written into the "keybd" environment
Z* variable.
*
D* Design: wd@denx.de
C* Coding: wd@denx.de
V* Verification: dzu@denx.de
***********************************************************************/
int do_kbd (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
uchar kbd_data[KEYBD_DATALEN];
uchar keybd_env[2 * KEYBD_DATALEN + 1];
uchar val;
int i;
#if 0 /* Done in kbd_init */
i2c_init (CFG_I2C_SPEED, CFG_I2C_SLAVE);
#endif
/* Read keys */
val = KEYBD_CMD_READ_KEYS;
i2c_write (kbd_addr, 0, 0, &val, 1);
i2c_read (kbd_addr, 0, 0, kbd_data, KEYBD_DATALEN);
puts ("Keys:");
for (i = 0; i < KEYBD_DATALEN; ++i) {
sprintf (keybd_env + i + i, "%02X", kbd_data[i]);
printf (" %02x", kbd_data[i]);
}
putc ('\n');
setenv ("keybd", keybd_env);
return 0;
}
cmd_tbl_t U_BOOT_CMD(kdb) = MK_CMD_ENTRY(
"kbd", 1, 1, do_kbd,
"kbd - read keyboard status\n",
NULL
);
/* Read and set LSB switch */
#define CFG_PC_TXD1_ENA 0x0008 /* PC.12 */
/***********************************************************************
F* Function: int do_lsb (cmd_tbl_t *cmdtp, int flag,
F* int argc, char *argv[]) P*A*Z*
*
P* Parameters: cmd_tbl_t *cmdtp
P* - Pointer to our command table entry
P* int flag
P* - If the CMD_FLAG_REPEAT bit is set, then this call is
P* a repetition
P* int argc
P* - Argument count
P* char *argv[]
P* - Array of the actual arguments
P*
P* Returnvalue: int
P* - 0 The command was handled successfully
P* 1 An error occurred
*
Z* Intention: Implement the "lsb [on|off]" commands.
Z* The lsb is switched according to the first parameter by
Z* by signaling the PIC I/O expander.
Z* Called with no arguments, the current setting is
Z* printed.
*
D* Design: wd@denx.de
C* Coding: wd@denx.de
V* Verification: dzu@denx.de
***********************************************************************/
int do_lsb (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[])
{
uchar val;
immap_t *immr = (immap_t *) CFG_IMMR;
switch (argc) {
case 1: /* lsb - print setting */
val = pic_read (0x60);
printf ("LSB is o%s\n", (val & 0x20) ? "n" : "ff");
return 0;
case 2: /* lsb on or lsb off - set switch */
val = pic_read (0x60);
if (strcmp (argv[1], "on") == 0) {
val |= 0x20;
immr->im_ioport.iop_pcpar &= ~(CFG_PC_TXD1_ENA);
immr->im_ioport.iop_pcdat |= CFG_PC_TXD1_ENA;
immr->im_ioport.iop_pcdir |= CFG_PC_TXD1_ENA;
} else if (strcmp (argv[1], "off") == 0) {
val &= ~0x20;
immr->im_ioport.iop_pcpar &= ~(CFG_PC_TXD1_ENA);
immr->im_ioport.iop_pcdat &= ~(CFG_PC_TXD1_ENA);
immr->im_ioport.iop_pcdir |= CFG_PC_TXD1_ENA;
} else {
break;
}
pic_write (0x60, val);
return 0;
default:
break;
}
printf ("Usage:\n%s\n", cmdtp->usage);
return 1;
}
cmd_tbl_t U_BOOT_CMD(lsb) = MK_CMD_ENTRY(
"lsb", 2, 1, do_lsb,
"lsb - check and set LSB switch\n",
"on - switch LSB on\n"
"lsb off - switch LSB off\n"
"lsb - print current setting\n"
);
#endif /* CFG_CMD_BSP */
/*----------------------------- Utilities -----------------------------*/
/***********************************************************************
F* Function: uchar pic_read (uchar reg) P*A*Z*
*
P* Parameters: uchar reg
P* - Register to read
P*
P* Returnvalue: uchar
P* - Value read from register
*
Z* Intention: Read a register from the PIC I/O expander.
*
D* Design: wd@denx.de
C* Coding: wd@denx.de
V* Verification: dzu@denx.de
***********************************************************************/
uchar pic_read (uchar reg)
{
return (i2c_reg_read (CFG_I2C_PICIO_ADDR, reg));
}
/***********************************************************************
F* Function: void pic_write (uchar reg, uchar val) P*A*Z*
*
P* Parameters: uchar reg
P* - Register to read
P* uchar val
P* - Value to write
P*
P* Returnvalue: none
*
Z* Intention: Write to a register on the PIC I/O expander.
*
D* Design: wd@denx.de
C* Coding: wd@denx.de
V* Verification: dzu@denx.de
***********************************************************************/
void pic_write (uchar reg, uchar val)
{
i2c_reg_write (CFG_I2C_PICIO_ADDR, reg, val);
}
/*---------------------- Board Control Functions ----------------------*/
/***********************************************************************
F* Function: void board_poweroff (void) P*A*Z*
*
P* Parameters: none
P*
P* Returnvalue: none
*
Z* Intention: Turn off the battery power and loop endless, so this
Z* should better be the last function you call...
*
D* Design: wd@denx.de
C* Coding: wd@denx.de
V* Verification: dzu@denx.de
***********************************************************************/
void board_poweroff (void)
{
/* Turn battery off */
((volatile immap_t *)CFG_IMMR)->im_ioport.iop_pcdat &= ~(1 << (31 - 13));
while (1);
}
#ifdef CONFIG_MODEM_SUPPORT
static int key_pressed(void)
{
uchar kbd_data[KEYBD_DATALEN];
uchar val;
/* Read keys */
val = KEYBD_CMD_READ_KEYS;
i2c_write (kbd_addr, 0, 0, &val, 1);
i2c_read (kbd_addr, 0, 0, kbd_data, KEYBD_DATALEN);
return (compare_magic(kbd_data, CONFIG_MODEM_KEY_MAGIC) == 0);
}
#endif /* CONFIG_MODEM_SUPPORT */