| /* |
| * Copyright (C) 2013 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| /* |
| * Contains implementation of a class EmulatedFakeCamera3 that encapsulates |
| * functionality of an advanced fake camera. |
| */ |
| |
| //#define LOG_NDEBUG 0 |
| #define LOG_TAG "EmulatedCamera_FakeCamera3" |
| #include <utils/Log.h> |
| |
| #include "EmulatedFakeCamera3.h" |
| #include "EmulatedCameraFactory.h" |
| #include <ui/Fence.h> |
| #include <ui/Rect.h> |
| #include <ui/GraphicBufferMapper.h> |
| #include "gralloc_cb.h" |
| #include "fake-pipeline2/Sensor.h" |
| #include "fake-pipeline2/JpegCompressor.h" |
| #include <cmath> |
| |
| namespace android { |
| |
| /** |
| * Constants for camera capabilities |
| */ |
| |
| const int64_t USEC = 1000LL; |
| const int64_t MSEC = USEC * 1000LL; |
| const int64_t SEC = MSEC * 1000LL; |
| |
| const uint32_t EmulatedFakeCamera3::kAvailableFormats[4] = { |
| HAL_PIXEL_FORMAT_RAW_SENSOR, |
| HAL_PIXEL_FORMAT_BLOB, |
| HAL_PIXEL_FORMAT_RGBA_8888, |
| // HAL_PIXEL_FORMAT_YV12, |
| HAL_PIXEL_FORMAT_YCrCb_420_SP |
| }; |
| |
| const uint32_t EmulatedFakeCamera3::kAvailableRawSizes[2] = { |
| 640, 480 |
| // Sensor::kResolution[0], Sensor::kResolution[1] |
| }; |
| |
| const uint64_t EmulatedFakeCamera3::kAvailableRawMinDurations[1] = { |
| (const uint64_t)Sensor::kFrameDurationRange[0] |
| }; |
| |
| const uint32_t EmulatedFakeCamera3::kAvailableProcessedSizesBack[4] = { |
| 640, 480, 320, 240 |
| // Sensor::kResolution[0], Sensor::kResolution[1] |
| }; |
| |
| const uint32_t EmulatedFakeCamera3::kAvailableProcessedSizesFront[4] = { |
| 320, 240, 160, 120 |
| // Sensor::kResolution[0], Sensor::kResolution[1] |
| }; |
| |
| const uint64_t EmulatedFakeCamera3::kAvailableProcessedMinDurations[1] = { |
| (const uint64_t)Sensor::kFrameDurationRange[0] |
| }; |
| |
| const uint32_t EmulatedFakeCamera3::kAvailableJpegSizesBack[2] = { |
| 640, 480 |
| // Sensor::kResolution[0], Sensor::kResolution[1] |
| }; |
| |
| const uint32_t EmulatedFakeCamera3::kAvailableJpegSizesFront[2] = { |
| 320, 240 |
| // Sensor::kResolution[0], Sensor::kResolution[1] |
| }; |
| |
| |
| const uint64_t EmulatedFakeCamera3::kAvailableJpegMinDurations[1] = { |
| (const uint64_t)Sensor::kFrameDurationRange[0] |
| }; |
| |
| /** |
| * 3A constants |
| */ |
| |
| // Default exposure and gain targets for different scenarios |
| const nsecs_t EmulatedFakeCamera3::kNormalExposureTime = 10 * MSEC; |
| const nsecs_t EmulatedFakeCamera3::kFacePriorityExposureTime = 30 * MSEC; |
| const int EmulatedFakeCamera3::kNormalSensitivity = 100; |
| const int EmulatedFakeCamera3::kFacePrioritySensitivity = 400; |
| const float EmulatedFakeCamera3::kExposureTrackRate = 0.1; |
| const int EmulatedFakeCamera3::kPrecaptureMinFrames = 10; |
| const int EmulatedFakeCamera3::kStableAeMaxFrames = 100; |
| const float EmulatedFakeCamera3::kExposureWanderMin = -2; |
| const float EmulatedFakeCamera3::kExposureWanderMax = 1; |
| |
| /** |
| * Camera device lifecycle methods |
| */ |
| |
| EmulatedFakeCamera3::EmulatedFakeCamera3(int cameraId, bool facingBack, |
| struct hw_module_t* module) : |
| EmulatedCamera3(cameraId, module), |
| mFacingBack(facingBack) { |
| ALOGD("Constructing emulated fake camera 3 facing %s", |
| facingBack ? "back" : "front"); |
| |
| for (size_t i = 0; i < CAMERA3_TEMPLATE_COUNT; i++) { |
| mDefaultTemplates[i] = NULL; |
| } |
| } |
| |
| EmulatedFakeCamera3::~EmulatedFakeCamera3() { |
| for (size_t i = 0; i < CAMERA3_TEMPLATE_COUNT; i++) { |
| if (mDefaultTemplates[i] != NULL) { |
| free_camera_metadata(mDefaultTemplates[i]); |
| } |
| } |
| } |
| |
| status_t EmulatedFakeCamera3::Initialize() { |
| ALOGV("%s: E", __FUNCTION__); |
| status_t res; |
| |
| if (mStatus != STATUS_ERROR) { |
| ALOGE("%s: Already initialized!", __FUNCTION__); |
| return INVALID_OPERATION; |
| } |
| |
| res = constructStaticInfo(); |
| if (res != OK) { |
| ALOGE("%s: Unable to allocate static info: %s (%d)", |
| __FUNCTION__, strerror(-res), res); |
| return res; |
| } |
| |
| return EmulatedCamera3::Initialize(); |
| } |
| |
| status_t EmulatedFakeCamera3::connectCamera(hw_device_t** device) { |
| ALOGV("%s: E", __FUNCTION__); |
| Mutex::Autolock l(mLock); |
| status_t res; |
| |
| if (mStatus != STATUS_CLOSED) { |
| ALOGE("%s: Can't connect in state %d", __FUNCTION__, mStatus); |
| return INVALID_OPERATION; |
| } |
| |
| mSensor = new Sensor(); |
| |
| res = mSensor->startUp(); |
| if (res != NO_ERROR) return res; |
| |
| mReadoutThread = new ReadoutThread(this); |
| mJpegCompressor = new JpegCompressor(NULL); |
| |
| res = mReadoutThread->run("EmuCam3::readoutThread"); |
| if (res != NO_ERROR) return res; |
| |
| // Initialize fake 3A |
| |
| mControlMode = ANDROID_CONTROL_MODE_AUTO; |
| mFacePriority = false; |
| mAeMode = ANDROID_CONTROL_AE_MODE_ON_AUTO_FLASH; |
| mAfMode = ANDROID_CONTROL_AF_MODE_AUTO; |
| mAwbMode = ANDROID_CONTROL_AWB_MODE_AUTO; |
| mAeState = ANDROID_CONTROL_AE_STATE_INACTIVE; |
| mAfState = ANDROID_CONTROL_AF_STATE_INACTIVE; |
| mAwbState = ANDROID_CONTROL_AWB_STATE_INACTIVE; |
| mAfTriggerId = 0; |
| mAeTriggerId = 0; |
| mAeCurrentExposureTime = kNormalExposureTime; |
| mAeCurrentSensitivity = kNormalSensitivity; |
| |
| return EmulatedCamera3::connectCamera(device); |
| } |
| |
| status_t EmulatedFakeCamera3::closeCamera() { |
| ALOGV("%s: E", __FUNCTION__); |
| status_t res; |
| { |
| Mutex::Autolock l(mLock); |
| if (mStatus == STATUS_CLOSED) return OK; |
| |
| res = mSensor->shutDown(); |
| if (res != NO_ERROR) { |
| ALOGE("%s: Unable to shut down sensor: %d", __FUNCTION__, res); |
| return res; |
| } |
| mSensor.clear(); |
| |
| mReadoutThread->requestExit(); |
| } |
| |
| mReadoutThread->join(); |
| |
| { |
| Mutex::Autolock l(mLock); |
| // Clear out private stream information |
| for (StreamIterator s = mStreams.begin(); s != mStreams.end(); s++) { |
| PrivateStreamInfo *privStream = |
| static_cast<PrivateStreamInfo*>((*s)->priv); |
| delete privStream; |
| (*s)->priv = NULL; |
| } |
| mStreams.clear(); |
| mReadoutThread.clear(); |
| } |
| |
| return EmulatedCamera3::closeCamera(); |
| } |
| |
| status_t EmulatedFakeCamera3::getCameraInfo(struct camera_info *info) { |
| info->facing = mFacingBack ? CAMERA_FACING_BACK : CAMERA_FACING_FRONT; |
| info->orientation = gEmulatedCameraFactory.getFakeCameraOrientation(); |
| return EmulatedCamera3::getCameraInfo(info); |
| } |
| |
| /** |
| * Camera3 interface methods |
| */ |
| |
| status_t EmulatedFakeCamera3::configureStreams( |
| camera3_stream_configuration *streamList) { |
| Mutex::Autolock l(mLock); |
| ALOGV("%s: %d streams", __FUNCTION__, streamList->num_streams); |
| |
| if (mStatus != STATUS_OPEN && mStatus != STATUS_READY) { |
| ALOGE("%s: Cannot configure streams in state %d", |
| __FUNCTION__, mStatus); |
| return NO_INIT; |
| } |
| |
| /** |
| * Sanity-check input list. |
| */ |
| if (streamList == NULL) { |
| ALOGE("%s: NULL stream configuration", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| |
| if (streamList->streams == NULL) { |
| ALOGE("%s: NULL stream list", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| |
| if (streamList->num_streams < 1) { |
| ALOGE("%s: Bad number of streams requested: %d", __FUNCTION__, |
| streamList->num_streams); |
| return BAD_VALUE; |
| } |
| |
| camera3_stream_t *inputStream = NULL; |
| for (size_t i = 0; i < streamList->num_streams; i++) { |
| camera3_stream_t *newStream = streamList->streams[i]; |
| if (newStream->stream_type == CAMERA3_STREAM_INPUT) { |
| if (inputStream != NULL) { |
| |
| ALOGE("%s: Multiple input streams requested!", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| inputStream = newStream; |
| } |
| } |
| mInputStream = inputStream; |
| |
| /** |
| * Initially mark all existing streams as not alive |
| */ |
| for (StreamIterator s = mStreams.begin(); s != mStreams.end(); ++s) { |
| PrivateStreamInfo *privStream = |
| static_cast<PrivateStreamInfo*>((*s)->priv); |
| privStream->alive = false; |
| } |
| |
| /** |
| * Find new streams and mark still-alive ones |
| */ |
| for (size_t i = 0; i < streamList->num_streams; i++) { |
| camera3_stream_t *newStream = streamList->streams[i]; |
| if (newStream->priv == NULL) { |
| // New stream, construct info |
| PrivateStreamInfo *privStream = new PrivateStreamInfo(); |
| privStream->alive = true; |
| privStream->registered = false; |
| |
| switch (newStream->stream_type) { |
| case CAMERA3_STREAM_OUTPUT: |
| newStream->usage = GRALLOC_USAGE_HW_CAMERA_WRITE; |
| break; |
| case CAMERA3_STREAM_INPUT: |
| newStream->usage = GRALLOC_USAGE_HW_CAMERA_READ; |
| break; |
| case CAMERA3_STREAM_BIDIRECTIONAL: |
| newStream->usage = GRALLOC_USAGE_HW_CAMERA_READ | |
| GRALLOC_USAGE_HW_CAMERA_WRITE; |
| break; |
| } |
| newStream->max_buffers = kMaxBufferCount; |
| newStream->priv = privStream; |
| mStreams.push_back(newStream); |
| } else { |
| // Existing stream, mark as still alive. |
| PrivateStreamInfo *privStream = |
| static_cast<PrivateStreamInfo*>(newStream->priv); |
| privStream->alive = true; |
| } |
| } |
| |
| /** |
| * Reap the dead streams |
| */ |
| for (StreamIterator s = mStreams.begin(); s != mStreams.end();) { |
| PrivateStreamInfo *privStream = |
| static_cast<PrivateStreamInfo*>((*s)->priv); |
| if (!privStream->alive) { |
| (*s)->priv = NULL; |
| delete privStream; |
| s = mStreams.erase(s); |
| } else { |
| ++s; |
| } |
| } |
| |
| /** |
| * Can't reuse settings across configure call |
| */ |
| mPrevSettings.clear(); |
| |
| return OK; |
| } |
| |
| status_t EmulatedFakeCamera3::registerStreamBuffers( |
| const camera3_stream_buffer_set *bufferSet) { |
| ALOGV("%s: E", __FUNCTION__); |
| Mutex::Autolock l(mLock); |
| |
| /** |
| * Sanity checks |
| */ |
| |
| // OK: register streams at any time during configure |
| // (but only once per stream) |
| if (mStatus != STATUS_READY && mStatus != STATUS_ACTIVE) { |
| ALOGE("%s: Cannot register buffers in state %d", |
| __FUNCTION__, mStatus); |
| return NO_INIT; |
| } |
| |
| if (bufferSet == NULL) { |
| ALOGE("%s: NULL buffer set!", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| |
| StreamIterator s = mStreams.begin(); |
| for (; s != mStreams.end(); ++s) { |
| if (bufferSet->stream == *s) break; |
| } |
| if (s == mStreams.end()) { |
| ALOGE("%s: Trying to register buffers for a non-configured stream!", |
| __FUNCTION__); |
| return BAD_VALUE; |
| } |
| |
| /** |
| * Register the buffers. This doesn't mean anything to the emulator besides |
| * marking them off as registered. |
| */ |
| |
| PrivateStreamInfo *privStream = |
| static_cast<PrivateStreamInfo*>((*s)->priv); |
| |
| if (privStream->registered) { |
| ALOGE("%s: Illegal to register buffer more than once", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| |
| privStream->registered = true; |
| |
| return OK; |
| } |
| |
| const camera_metadata_t* EmulatedFakeCamera3::constructDefaultRequestSettings( |
| int type) { |
| ALOGV("%s: E", __FUNCTION__); |
| Mutex::Autolock l(mLock); |
| |
| if (type < 0 || type >= CAMERA2_TEMPLATE_COUNT) { |
| ALOGE("%s: Unknown request settings template: %d", |
| __FUNCTION__, type); |
| return NULL; |
| } |
| |
| /** |
| * Cache is not just an optimization - pointer returned has to live at |
| * least as long as the camera device instance does. |
| */ |
| if (mDefaultTemplates[type] != NULL) { |
| return mDefaultTemplates[type]; |
| } |
| |
| CameraMetadata settings; |
| |
| /** android.request */ |
| |
| static const uint8_t requestType = ANDROID_REQUEST_TYPE_CAPTURE; |
| settings.update(ANDROID_REQUEST_TYPE, &requestType, 1); |
| |
| static const uint8_t metadataMode = ANDROID_REQUEST_METADATA_MODE_FULL; |
| settings.update(ANDROID_REQUEST_METADATA_MODE, &metadataMode, 1); |
| |
| static const int32_t id = 0; |
| settings.update(ANDROID_REQUEST_ID, &id, 1); |
| |
| static const int32_t frameCount = 0; |
| settings.update(ANDROID_REQUEST_FRAME_COUNT, &frameCount, 1); |
| |
| /** android.lens */ |
| |
| static const float focusDistance = 0; |
| settings.update(ANDROID_LENS_FOCUS_DISTANCE, &focusDistance, 1); |
| |
| static const float aperture = 2.8f; |
| settings.update(ANDROID_LENS_APERTURE, &aperture, 1); |
| |
| static const float focalLength = 5.0f; |
| settings.update(ANDROID_LENS_FOCAL_LENGTH, &focalLength, 1); |
| |
| static const float filterDensity = 0; |
| settings.update(ANDROID_LENS_FILTER_DENSITY, &filterDensity, 1); |
| |
| static const uint8_t opticalStabilizationMode = |
| ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF; |
| settings.update(ANDROID_LENS_OPTICAL_STABILIZATION_MODE, |
| &opticalStabilizationMode, 1); |
| |
| // FOCUS_RANGE set only in frame |
| |
| /** android.sensor */ |
| |
| static const int64_t exposureTime = 10 * MSEC; |
| settings.update(ANDROID_SENSOR_EXPOSURE_TIME, &exposureTime, 1); |
| |
| static const int64_t frameDuration = 33333333L; // 1/30 s |
| settings.update(ANDROID_SENSOR_FRAME_DURATION, &frameDuration, 1); |
| |
| static const int32_t sensitivity = 100; |
| settings.update(ANDROID_SENSOR_SENSITIVITY, &sensitivity, 1); |
| |
| // TIMESTAMP set only in frame |
| |
| /** android.flash */ |
| |
| static const uint8_t flashMode = ANDROID_FLASH_MODE_OFF; |
| settings.update(ANDROID_FLASH_MODE, &flashMode, 1); |
| |
| static const uint8_t flashPower = 10; |
| settings.update(ANDROID_FLASH_FIRING_POWER, &flashPower, 1); |
| |
| static const int64_t firingTime = 0; |
| settings.update(ANDROID_FLASH_FIRING_TIME, &firingTime, 1); |
| |
| /** Processing block modes */ |
| uint8_t hotPixelMode = 0; |
| uint8_t demosaicMode = 0; |
| uint8_t noiseMode = 0; |
| uint8_t shadingMode = 0; |
| uint8_t geometricMode = 0; |
| uint8_t colorMode = 0; |
| uint8_t tonemapMode = 0; |
| uint8_t edgeMode = 0; |
| switch (type) { |
| case CAMERA2_TEMPLATE_STILL_CAPTURE: |
| // fall-through |
| case CAMERA2_TEMPLATE_VIDEO_SNAPSHOT: |
| // fall-through |
| case CAMERA2_TEMPLATE_ZERO_SHUTTER_LAG: |
| hotPixelMode = ANDROID_HOT_PIXEL_MODE_HIGH_QUALITY; |
| demosaicMode = ANDROID_DEMOSAIC_MODE_HIGH_QUALITY; |
| noiseMode = ANDROID_NOISE_REDUCTION_MODE_HIGH_QUALITY; |
| shadingMode = ANDROID_SHADING_MODE_HIGH_QUALITY; |
| geometricMode = ANDROID_GEOMETRIC_MODE_HIGH_QUALITY; |
| colorMode = ANDROID_COLOR_CORRECTION_MODE_HIGH_QUALITY; |
| tonemapMode = ANDROID_TONEMAP_MODE_HIGH_QUALITY; |
| edgeMode = ANDROID_EDGE_MODE_HIGH_QUALITY; |
| break; |
| case CAMERA2_TEMPLATE_PREVIEW: |
| // fall-through |
| case CAMERA2_TEMPLATE_VIDEO_RECORD: |
| // fall-through |
| default: |
| hotPixelMode = ANDROID_HOT_PIXEL_MODE_FAST; |
| demosaicMode = ANDROID_DEMOSAIC_MODE_FAST; |
| noiseMode = ANDROID_NOISE_REDUCTION_MODE_FAST; |
| shadingMode = ANDROID_SHADING_MODE_FAST; |
| geometricMode = ANDROID_GEOMETRIC_MODE_FAST; |
| colorMode = ANDROID_COLOR_CORRECTION_MODE_FAST; |
| tonemapMode = ANDROID_TONEMAP_MODE_FAST; |
| edgeMode = ANDROID_EDGE_MODE_FAST; |
| break; |
| } |
| settings.update(ANDROID_HOT_PIXEL_MODE, &hotPixelMode, 1); |
| settings.update(ANDROID_DEMOSAIC_MODE, &demosaicMode, 1); |
| settings.update(ANDROID_NOISE_REDUCTION_MODE, &noiseMode, 1); |
| settings.update(ANDROID_SHADING_MODE, &shadingMode, 1); |
| settings.update(ANDROID_GEOMETRIC_MODE, &geometricMode, 1); |
| settings.update(ANDROID_COLOR_CORRECTION_MODE, &colorMode, 1); |
| settings.update(ANDROID_TONEMAP_MODE, &tonemapMode, 1); |
| settings.update(ANDROID_EDGE_MODE, &edgeMode, 1); |
| |
| /** android.noise */ |
| static const uint8_t noiseStrength = 5; |
| settings.update(ANDROID_NOISE_REDUCTION_STRENGTH, &noiseStrength, 1); |
| |
| /** android.color */ |
| static const float colorTransform[9] = { |
| 1.0f, 0.f, 0.f, |
| 0.f, 1.f, 0.f, |
| 0.f, 0.f, 1.f |
| }; |
| settings.update(ANDROID_COLOR_CORRECTION_TRANSFORM, colorTransform, 9); |
| |
| /** android.tonemap */ |
| static const float tonemapCurve[4] = { |
| 0.f, 0.f, |
| 1.f, 1.f |
| }; |
| settings.update(ANDROID_TONEMAP_CURVE_RED, tonemapCurve, 4); |
| settings.update(ANDROID_TONEMAP_CURVE_GREEN, tonemapCurve, 4); |
| settings.update(ANDROID_TONEMAP_CURVE_BLUE, tonemapCurve, 4); |
| |
| /** android.edge */ |
| static const uint8_t edgeStrength = 5; |
| settings.update(ANDROID_EDGE_STRENGTH, &edgeStrength, 1); |
| |
| /** android.scaler */ |
| static const int32_t cropRegion[3] = { |
| 0, 0, (int32_t)Sensor::kResolution[0] |
| }; |
| settings.update(ANDROID_SCALER_CROP_REGION, cropRegion, 3); |
| |
| /** android.jpeg */ |
| static const uint8_t jpegQuality = 80; |
| settings.update(ANDROID_JPEG_QUALITY, &jpegQuality, 1); |
| |
| static const int32_t thumbnailSize[2] = { |
| 640, 480 |
| }; |
| settings.update(ANDROID_JPEG_THUMBNAIL_SIZE, thumbnailSize, 2); |
| |
| static const uint8_t thumbnailQuality = 80; |
| settings.update(ANDROID_JPEG_THUMBNAIL_QUALITY, &thumbnailQuality, 1); |
| |
| static const double gpsCoordinates[2] = { |
| 0, 0 |
| }; |
| settings.update(ANDROID_JPEG_GPS_COORDINATES, gpsCoordinates, 2); |
| |
| static const uint8_t gpsProcessingMethod[32] = "None"; |
| settings.update(ANDROID_JPEG_GPS_PROCESSING_METHOD, gpsProcessingMethod, 32); |
| |
| static const int64_t gpsTimestamp = 0; |
| settings.update(ANDROID_JPEG_GPS_TIMESTAMP, &gpsTimestamp, 1); |
| |
| static const int32_t jpegOrientation = 0; |
| settings.update(ANDROID_JPEG_ORIENTATION, &jpegOrientation, 1); |
| |
| /** android.stats */ |
| |
| static const uint8_t faceDetectMode = |
| ANDROID_STATISTICS_FACE_DETECT_MODE_OFF; |
| settings.update(ANDROID_STATISTICS_FACE_DETECT_MODE, &faceDetectMode, 1); |
| |
| static const uint8_t histogramMode = ANDROID_STATISTICS_HISTOGRAM_MODE_OFF; |
| settings.update(ANDROID_STATISTICS_HISTOGRAM_MODE, &histogramMode, 1); |
| |
| static const uint8_t sharpnessMapMode = |
| ANDROID_STATISTICS_SHARPNESS_MAP_MODE_OFF; |
| settings.update(ANDROID_STATISTICS_SHARPNESS_MAP_MODE, &sharpnessMapMode, 1); |
| |
| // faceRectangles, faceScores, faceLandmarks, faceIds, histogram, |
| // sharpnessMap only in frames |
| |
| /** android.control */ |
| |
| uint8_t controlIntent = 0; |
| switch (type) { |
| case CAMERA2_TEMPLATE_PREVIEW: |
| controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_PREVIEW; |
| break; |
| case CAMERA2_TEMPLATE_STILL_CAPTURE: |
| controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_STILL_CAPTURE; |
| break; |
| case CAMERA2_TEMPLATE_VIDEO_RECORD: |
| controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_RECORD; |
| break; |
| case CAMERA2_TEMPLATE_VIDEO_SNAPSHOT: |
| controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_VIDEO_SNAPSHOT; |
| break; |
| case CAMERA2_TEMPLATE_ZERO_SHUTTER_LAG: |
| controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_ZERO_SHUTTER_LAG; |
| break; |
| default: |
| controlIntent = ANDROID_CONTROL_CAPTURE_INTENT_CUSTOM; |
| break; |
| } |
| settings.update(ANDROID_CONTROL_CAPTURE_INTENT, &controlIntent, 1); |
| |
| static const uint8_t controlMode = ANDROID_CONTROL_MODE_AUTO; |
| settings.update(ANDROID_CONTROL_MODE, &controlMode, 1); |
| |
| static const uint8_t effectMode = ANDROID_CONTROL_EFFECT_MODE_OFF; |
| settings.update(ANDROID_CONTROL_EFFECT_MODE, &effectMode, 1); |
| |
| static const uint8_t sceneMode = ANDROID_CONTROL_SCENE_MODE_FACE_PRIORITY; |
| settings.update(ANDROID_CONTROL_SCENE_MODE, &sceneMode, 1); |
| |
| static const uint8_t aeMode = ANDROID_CONTROL_AE_MODE_ON_AUTO_FLASH; |
| settings.update(ANDROID_CONTROL_AE_MODE, &aeMode, 1); |
| |
| static const uint8_t aeLock = ANDROID_CONTROL_AE_LOCK_OFF; |
| settings.update(ANDROID_CONTROL_AE_LOCK, &aeLock, 1); |
| |
| static const int32_t controlRegions[5] = { |
| 0, 0, (int32_t)Sensor::kResolution[0], (int32_t)Sensor::kResolution[1], |
| 1000 |
| }; |
| settings.update(ANDROID_CONTROL_AE_REGIONS, controlRegions, 5); |
| |
| static const int32_t aeExpCompensation = 0; |
| settings.update(ANDROID_CONTROL_AE_EXPOSURE_COMPENSATION, &aeExpCompensation, 1); |
| |
| static const int32_t aeTargetFpsRange[2] = { |
| 10, 30 |
| }; |
| settings.update(ANDROID_CONTROL_AE_TARGET_FPS_RANGE, aeTargetFpsRange, 2); |
| |
| static const uint8_t aeAntibandingMode = |
| ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO; |
| settings.update(ANDROID_CONTROL_AE_ANTIBANDING_MODE, &aeAntibandingMode, 1); |
| |
| static const uint8_t awbMode = |
| ANDROID_CONTROL_AWB_MODE_AUTO; |
| settings.update(ANDROID_CONTROL_AWB_MODE, &awbMode, 1); |
| |
| static const uint8_t awbLock = ANDROID_CONTROL_AWB_LOCK_OFF; |
| settings.update(ANDROID_CONTROL_AWB_LOCK, &awbLock, 1); |
| |
| settings.update(ANDROID_CONTROL_AWB_REGIONS, controlRegions, 5); |
| |
| uint8_t afMode = 0; |
| switch (type) { |
| case CAMERA2_TEMPLATE_PREVIEW: |
| afMode = ANDROID_CONTROL_AF_MODE_AUTO; |
| break; |
| case CAMERA2_TEMPLATE_STILL_CAPTURE: |
| afMode = ANDROID_CONTROL_AF_MODE_AUTO; |
| break; |
| case CAMERA2_TEMPLATE_VIDEO_RECORD: |
| afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO; |
| break; |
| case CAMERA2_TEMPLATE_VIDEO_SNAPSHOT: |
| afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO; |
| break; |
| case CAMERA2_TEMPLATE_ZERO_SHUTTER_LAG: |
| afMode = ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE; |
| break; |
| default: |
| afMode = ANDROID_CONTROL_AF_MODE_AUTO; |
| break; |
| } |
| settings.update(ANDROID_CONTROL_AF_MODE, &afMode, 1); |
| |
| settings.update(ANDROID_CONTROL_AF_REGIONS, controlRegions, 5); |
| |
| static const uint8_t vstabMode = |
| ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF; |
| settings.update(ANDROID_CONTROL_VIDEO_STABILIZATION_MODE, &vstabMode, 1); |
| |
| // aeState, awbState, afState only in frame |
| |
| mDefaultTemplates[type] = settings.release(); |
| |
| return mDefaultTemplates[type]; |
| } |
| |
| status_t EmulatedFakeCamera3::processCaptureRequest( |
| camera3_capture_request *request) { |
| |
| Mutex::Autolock l(mLock); |
| status_t res; |
| |
| /** Validation */ |
| |
| if (mStatus < STATUS_READY) { |
| ALOGE("%s: Can't submit capture requests in state %d", __FUNCTION__, |
| mStatus); |
| return INVALID_OPERATION; |
| } |
| |
| if (request == NULL) { |
| ALOGE("%s: NULL request!", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| |
| uint32_t frameNumber = request->frame_number; |
| |
| if (request->settings == NULL && mPrevSettings.isEmpty()) { |
| ALOGE("%s: Request %d: NULL settings for first request after" |
| "configureStreams()", __FUNCTION__, frameNumber); |
| return BAD_VALUE; |
| } |
| |
| if (request->input_buffer != NULL && |
| request->input_buffer->stream != mInputStream) { |
| ALOGE("%s: Request %d: Input buffer not from input stream!", |
| __FUNCTION__, frameNumber); |
| return BAD_VALUE; |
| } |
| |
| if (request->num_output_buffers < 1 || request->output_buffers == NULL) { |
| ALOGE("%s: Request %d: No output buffers provided!", |
| __FUNCTION__, frameNumber); |
| return BAD_VALUE; |
| } |
| |
| // Validate all buffers, starting with input buffer if it's given |
| |
| ssize_t idx; |
| const camera3_stream_buffer_t *b; |
| if (request->input_buffer != NULL) { |
| idx = -1; |
| b = request->input_buffer; |
| } else { |
| idx = 0; |
| b = request->output_buffers; |
| } |
| do { |
| PrivateStreamInfo *priv = |
| static_cast<PrivateStreamInfo*>(b->stream->priv); |
| if (priv == NULL) { |
| ALOGE("%s: Request %d: Buffer %d: Unconfigured stream!", |
| __FUNCTION__, frameNumber, idx); |
| return BAD_VALUE; |
| } |
| if (!priv->alive || !priv->registered) { |
| ALOGE("%s: Request %d: Buffer %d: Unregistered or dead stream!", |
| __FUNCTION__, frameNumber, idx); |
| return BAD_VALUE; |
| } |
| if (b->status != CAMERA3_BUFFER_STATUS_OK) { |
| ALOGE("%s: Request %d: Buffer %d: Status not OK!", |
| __FUNCTION__, frameNumber, idx); |
| return BAD_VALUE; |
| } |
| if (b->release_fence != -1) { |
| ALOGE("%s: Request %d: Buffer %d: Has a release fence!", |
| __FUNCTION__, frameNumber, idx); |
| return BAD_VALUE; |
| } |
| if (b->buffer == NULL) { |
| ALOGE("%s: Request %d: Buffer %d: NULL buffer handle!", |
| __FUNCTION__, frameNumber, idx); |
| return BAD_VALUE; |
| } |
| idx++; |
| b = &(request->output_buffers[idx]); |
| } while (idx < (ssize_t)request->num_output_buffers); |
| |
| // TODO: Validate settings parameters |
| |
| /** |
| * Start processing this request |
| */ |
| |
| mStatus = STATUS_ACTIVE; |
| |
| CameraMetadata settings; |
| |
| if (request->settings == NULL) { |
| settings.acquire(mPrevSettings); |
| } else { |
| settings = request->settings; |
| } |
| |
| res = process3A(settings); |
| if (res != OK) { |
| return res; |
| } |
| |
| // TODO: Handle reprocessing |
| |
| /** |
| * Get ready for sensor config |
| */ |
| |
| nsecs_t exposureTime; |
| nsecs_t frameDuration; |
| uint32_t sensitivity; |
| |
| exposureTime = settings.find(ANDROID_SENSOR_EXPOSURE_TIME).data.i64[0]; |
| frameDuration = settings.find(ANDROID_SENSOR_FRAME_DURATION).data.i64[0]; |
| sensitivity = settings.find(ANDROID_SENSOR_SENSITIVITY).data.i32[0]; |
| |
| Buffers *sensorBuffers = new Buffers(); |
| Vector<camera3_stream_buffer> *buffers = new Vector<camera3_stream_buffer>(); |
| |
| sensorBuffers->setCapacity(request->num_output_buffers); |
| buffers->setCapacity(request->num_output_buffers); |
| |
| // Process all the buffers we got for output, constructing internal buffer |
| // structures for them, and lock them for writing. |
| for (size_t i = 0; i < request->num_output_buffers; i++) { |
| const camera3_stream_buffer &srcBuf = request->output_buffers[i]; |
| const cb_handle_t *privBuffer = |
| static_cast<const cb_handle_t*>(*srcBuf.buffer); |
| StreamBuffer destBuf; |
| destBuf.streamId = kGenericStreamId; |
| destBuf.width = srcBuf.stream->width; |
| destBuf.height = srcBuf.stream->height; |
| destBuf.format = privBuffer->format; // Use real private format |
| destBuf.stride = srcBuf.stream->width; // TODO: query from gralloc |
| destBuf.buffer = srcBuf.buffer; |
| |
| // Wait on fence |
| sp<Fence> bufferAcquireFence = new Fence(srcBuf.acquire_fence); |
| res = bufferAcquireFence->wait(kFenceTimeoutMs); |
| if (res == TIMED_OUT) { |
| ALOGE("%s: Request %d: Buffer %d: Fence timed out after %d ms", |
| __FUNCTION__, frameNumber, i, kFenceTimeoutMs); |
| } |
| if (res == OK) { |
| // Lock buffer for writing |
| const Rect rect(destBuf.width, destBuf.height); |
| res = GraphicBufferMapper::get().lock(*(destBuf.buffer), |
| GRALLOC_USAGE_HW_CAMERA_WRITE, rect, (void**)&(destBuf.img)); |
| if (res != OK) { |
| ALOGE("%s: Request %d: Buffer %d: Unable to lock buffer", |
| __FUNCTION__, frameNumber, i); |
| } |
| } |
| |
| if (res != OK) { |
| // Either waiting or locking failed. Unlock locked buffers and bail out. |
| for (size_t j = 0; j < i; j++) { |
| GraphicBufferMapper::get().unlock( |
| *(request->output_buffers[i].buffer)); |
| } |
| return NO_INIT; |
| } |
| |
| sensorBuffers->push_back(destBuf); |
| buffers->push_back(srcBuf); |
| } |
| |
| /** |
| * Wait until the in-flight queue has room |
| */ |
| res = mReadoutThread->waitForReadout(); |
| if (res != OK) { |
| return NO_INIT; |
| } |
| |
| /** |
| * Wait until sensor's ready. This waits for lengthy amounts of time with |
| * mLock held, but the interface spec is that no other calls may by done to |
| * the HAL by the framework while process_capture_request is happening. |
| */ |
| int syncTimeoutCount = 0; |
| while(!mSensor->waitForVSync(kSyncWaitTimeout)) { |
| if (mStatus == STATUS_ERROR) { |
| return NO_INIT; |
| } |
| if (syncTimeoutCount == kMaxSyncTimeoutCount) { |
| ALOGE("%s: Request %d: Sensor sync timed out after %lld ms", |
| __FUNCTION__, frameNumber, |
| kSyncWaitTimeout * kMaxSyncTimeoutCount / 1000000); |
| return NO_INIT; |
| } |
| syncTimeoutCount++; |
| } |
| |
| /** |
| * Configure sensor and queue up the request to the readout thread |
| */ |
| mSensor->setExposureTime(exposureTime); |
| mSensor->setFrameDuration(frameDuration); |
| mSensor->setSensitivity(sensitivity); |
| mSensor->setDestinationBuffers(sensorBuffers); |
| |
| ReadoutThread::Request r; |
| r.frameNumber = request->frame_number; |
| r.settings = settings; |
| r.sensorBuffers = sensorBuffers; |
| r.buffers = buffers; |
| |
| mReadoutThread->queueCaptureRequest(r); |
| |
| // Cache the settings for next time |
| mPrevSettings.acquire(settings); |
| |
| return OK; |
| } |
| |
| /** Debug methods */ |
| |
| void EmulatedFakeCamera3::dump(int fd) { |
| |
| } |
| |
| /** Tag query methods */ |
| const char* EmulatedFakeCamera3::getVendorSectionName(uint32_t tag) { |
| return NULL; |
| } |
| |
| const char* EmulatedFakeCamera3::getVendorTagName(uint32_t tag) { |
| return NULL; |
| } |
| |
| int EmulatedFakeCamera3::getVendorTagType(uint32_t tag) { |
| return 0; |
| } |
| |
| /** |
| * Private methods |
| */ |
| |
| status_t EmulatedFakeCamera3::constructStaticInfo() { |
| |
| CameraMetadata info; |
| // android.lens |
| |
| // 5 cm min focus distance for back camera, infinity (fixed focus) for front |
| const float minFocusDistance = mFacingBack ? 1.0/0.05 : 0.0; |
| info.update(ANDROID_LENS_INFO_MINIMUM_FOCUS_DISTANCE, |
| &minFocusDistance, 1); |
| |
| // 5 m hyperfocal distance for back camera, infinity (fixed focus) for front |
| const float hyperFocalDistance = mFacingBack ? 1.0/5.0 : 0.0; |
| info.update(ANDROID_LENS_INFO_HYPERFOCAL_DISTANCE, |
| &minFocusDistance, 1); |
| |
| static const float focalLength = 3.30f; // mm |
| info.update(ANDROID_LENS_INFO_AVAILABLE_FOCAL_LENGTHS, |
| &focalLength, 1); |
| static const float aperture = 2.8f; |
| info.update(ANDROID_LENS_INFO_AVAILABLE_APERTURES, |
| &aperture, 1); |
| static const float filterDensity = 0; |
| info.update(ANDROID_LENS_INFO_AVAILABLE_FILTER_DENSITIES, |
| &filterDensity, 1); |
| static const uint8_t availableOpticalStabilization = |
| ANDROID_LENS_OPTICAL_STABILIZATION_MODE_OFF; |
| info.update(ANDROID_LENS_INFO_AVAILABLE_OPTICAL_STABILIZATION, |
| &availableOpticalStabilization, 1); |
| |
| static const int32_t lensShadingMapSize[] = {1, 1}; |
| info.update(ANDROID_LENS_INFO_SHADING_MAP_SIZE, lensShadingMapSize, |
| sizeof(lensShadingMapSize)/sizeof(int32_t)); |
| |
| static const float lensShadingMap[3 * 1 * 1 ] = |
| { 1.f, 1.f, 1.f }; |
| info.update(ANDROID_LENS_INFO_SHADING_MAP, lensShadingMap, |
| sizeof(lensShadingMap)/sizeof(float)); |
| |
| // Identity transform |
| static const int32_t geometricCorrectionMapSize[] = {2, 2}; |
| info.update(ANDROID_LENS_INFO_GEOMETRIC_CORRECTION_MAP_SIZE, |
| geometricCorrectionMapSize, |
| sizeof(geometricCorrectionMapSize)/sizeof(int32_t)); |
| |
| static const float geometricCorrectionMap[2 * 3 * 2 * 2] = { |
| 0.f, 0.f, 0.f, 0.f, 0.f, 0.f, |
| 1.f, 0.f, 1.f, 0.f, 1.f, 0.f, |
| 0.f, 1.f, 0.f, 1.f, 0.f, 1.f, |
| 1.f, 1.f, 1.f, 1.f, 1.f, 1.f}; |
| info.update(ANDROID_LENS_INFO_GEOMETRIC_CORRECTION_MAP, |
| geometricCorrectionMap, |
| sizeof(geometricCorrectionMap)/sizeof(float)); |
| |
| uint8_t lensFacing = mFacingBack ? |
| ANDROID_LENS_FACING_BACK : ANDROID_LENS_FACING_FRONT; |
| info.update(ANDROID_LENS_FACING, &lensFacing, 1); |
| |
| float lensPosition[3]; |
| if (mFacingBack) { |
| // Back-facing camera is center-top on device |
| lensPosition[0] = 0; |
| lensPosition[1] = 20; |
| lensPosition[2] = -5; |
| } else { |
| // Front-facing camera is center-right on device |
| lensPosition[0] = 20; |
| lensPosition[1] = 20; |
| lensPosition[2] = 0; |
| } |
| info.update(ANDROID_LENS_POSITION, lensPosition, sizeof(lensPosition)/ |
| sizeof(float)); |
| |
| // android.sensor |
| |
| info.update(ANDROID_SENSOR_INFO_EXPOSURE_TIME_RANGE, |
| Sensor::kExposureTimeRange, 2); |
| |
| info.update(ANDROID_SENSOR_INFO_MAX_FRAME_DURATION, |
| &Sensor::kFrameDurationRange[1], 1); |
| |
| info.update(ANDROID_SENSOR_INFO_AVAILABLE_SENSITIVITIES, |
| (int32_t*)Sensor::kAvailableSensitivities, |
| sizeof(Sensor::kAvailableSensitivities) |
| /sizeof(uint32_t)); |
| |
| info.update(ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT, |
| &Sensor::kColorFilterArrangement, 1); |
| |
| static const float sensorPhysicalSize[2] = {3.20f, 2.40f}; // mm |
| info.update(ANDROID_SENSOR_INFO_PHYSICAL_SIZE, |
| sensorPhysicalSize, 2); |
| |
| info.update(ANDROID_SENSOR_INFO_PIXEL_ARRAY_SIZE, |
| (int32_t*)Sensor::kResolution, 2); |
| |
| info.update(ANDROID_SENSOR_INFO_ACTIVE_ARRAY_SIZE, |
| (int32_t*)Sensor::kResolution, 2); |
| |
| info.update(ANDROID_SENSOR_INFO_WHITE_LEVEL, |
| (int32_t*)&Sensor::kMaxRawValue, 1); |
| |
| static const int32_t blackLevelPattern[4] = { |
| (int32_t)Sensor::kBlackLevel, (int32_t)Sensor::kBlackLevel, |
| (int32_t)Sensor::kBlackLevel, (int32_t)Sensor::kBlackLevel |
| }; |
| info.update(ANDROID_SENSOR_BLACK_LEVEL_PATTERN, |
| blackLevelPattern, sizeof(blackLevelPattern)/sizeof(int32_t)); |
| |
| //TODO: sensor color calibration fields |
| |
| // android.flash |
| static const uint8_t flashAvailable = 0; |
| info.update(ANDROID_FLASH_INFO_AVAILABLE, &flashAvailable, 1); |
| |
| static const int64_t flashChargeDuration = 0; |
| info.update(ANDROID_FLASH_INFO_CHARGE_DURATION, &flashChargeDuration, 1); |
| |
| // android.tonemap |
| |
| static const int32_t tonemapCurvePoints = 128; |
| info.update(ANDROID_TONEMAP_MAX_CURVE_POINTS, &tonemapCurvePoints, 1); |
| |
| // android.scaler |
| |
| info.update(ANDROID_SCALER_AVAILABLE_FORMATS, |
| (int32_t*)kAvailableFormats, |
| sizeof(kAvailableFormats)/sizeof(uint32_t)); |
| |
| info.update(ANDROID_SCALER_AVAILABLE_RAW_SIZES, |
| (int32_t*)kAvailableRawSizes, |
| sizeof(kAvailableRawSizes)/sizeof(uint32_t)); |
| |
| info.update(ANDROID_SCALER_AVAILABLE_RAW_MIN_DURATIONS, |
| (int64_t*)kAvailableRawMinDurations, |
| sizeof(kAvailableRawMinDurations)/sizeof(uint64_t)); |
| |
| if (mFacingBack) { |
| info.update(ANDROID_SCALER_AVAILABLE_PROCESSED_SIZES, |
| (int32_t*)kAvailableProcessedSizesBack, |
| sizeof(kAvailableProcessedSizesBack)/sizeof(uint32_t)); |
| } else { |
| info.update(ANDROID_SCALER_AVAILABLE_PROCESSED_SIZES, |
| (int32_t*)kAvailableProcessedSizesFront, |
| sizeof(kAvailableProcessedSizesFront)/sizeof(uint32_t)); |
| } |
| |
| info.update(ANDROID_SCALER_AVAILABLE_PROCESSED_MIN_DURATIONS, |
| (int64_t*)kAvailableProcessedMinDurations, |
| sizeof(kAvailableProcessedMinDurations)/sizeof(uint64_t)); |
| |
| if (mFacingBack) { |
| info.update(ANDROID_SCALER_AVAILABLE_JPEG_SIZES, |
| (int32_t*)kAvailableJpegSizesBack, |
| sizeof(kAvailableJpegSizesBack)/sizeof(uint32_t)); |
| } else { |
| info.update(ANDROID_SCALER_AVAILABLE_JPEG_SIZES, |
| (int32_t*)kAvailableJpegSizesFront, |
| sizeof(kAvailableJpegSizesFront)/sizeof(uint32_t)); |
| } |
| |
| info.update(ANDROID_SCALER_AVAILABLE_JPEG_MIN_DURATIONS, |
| (int64_t*)kAvailableJpegMinDurations, |
| sizeof(kAvailableJpegMinDurations)/sizeof(uint64_t)); |
| |
| static const int32_t maxZoom = 10; |
| info.update(ANDROID_SCALER_AVAILABLE_MAX_DIGITAL_ZOOM, |
| &maxZoom, 1); |
| |
| // android.jpeg |
| |
| static const int32_t jpegThumbnailSizes[] = { |
| 0, 0, |
| 160, 120, |
| 320, 240 |
| }; |
| info.update(ANDROID_JPEG_AVAILABLE_THUMBNAIL_SIZES, |
| jpegThumbnailSizes, sizeof(jpegThumbnailSizes)/sizeof(int32_t)); |
| |
| static const int32_t jpegMaxSize = JpegCompressor::kMaxJpegSize; |
| info.update(ANDROID_JPEG_MAX_SIZE, &jpegMaxSize, 1); |
| |
| // android.stats |
| |
| static const uint8_t availableFaceDetectModes[] = { |
| ANDROID_STATISTICS_FACE_DETECT_MODE_OFF, |
| ANDROID_STATISTICS_FACE_DETECT_MODE_SIMPLE, |
| ANDROID_STATISTICS_FACE_DETECT_MODE_FULL |
| }; |
| |
| info.update(ANDROID_STATISTICS_INFO_AVAILABLE_FACE_DETECT_MODES, |
| availableFaceDetectModes, |
| sizeof(availableFaceDetectModes)); |
| |
| static const int32_t maxFaceCount = 8; |
| info.update(ANDROID_STATISTICS_INFO_MAX_FACE_COUNT, |
| &maxFaceCount, 1); |
| |
| static const int32_t histogramSize = 64; |
| info.update(ANDROID_STATISTICS_INFO_HISTOGRAM_BUCKET_COUNT, |
| &histogramSize, 1); |
| |
| static const int32_t maxHistogramCount = 1000; |
| info.update(ANDROID_STATISTICS_INFO_MAX_HISTOGRAM_COUNT, |
| &maxHistogramCount, 1); |
| |
| static const int32_t sharpnessMapSize[2] = {64, 64}; |
| info.update(ANDROID_STATISTICS_INFO_SHARPNESS_MAP_SIZE, |
| sharpnessMapSize, sizeof(sharpnessMapSize)/sizeof(int32_t)); |
| |
| static const int32_t maxSharpnessMapValue = 1000; |
| info.update(ANDROID_STATISTICS_INFO_MAX_SHARPNESS_MAP_VALUE, |
| &maxSharpnessMapValue, 1); |
| |
| // android.control |
| |
| static const uint8_t availableSceneModes[] = { |
| ANDROID_CONTROL_SCENE_MODE_UNSUPPORTED |
| }; |
| info.update(ANDROID_CONTROL_AVAILABLE_SCENE_MODES, |
| availableSceneModes, sizeof(availableSceneModes)); |
| |
| static const uint8_t availableEffects[] = { |
| ANDROID_CONTROL_EFFECT_MODE_OFF |
| }; |
| info.update(ANDROID_CONTROL_AVAILABLE_EFFECTS, |
| availableEffects, sizeof(availableEffects)); |
| |
| int32_t max3aRegions = 0; |
| info.update(ANDROID_CONTROL_MAX_REGIONS, |
| &max3aRegions, 1); |
| |
| static const uint8_t availableAeModes[] = { |
| ANDROID_CONTROL_AE_MODE_OFF, |
| ANDROID_CONTROL_AE_MODE_ON |
| }; |
| info.update(ANDROID_CONTROL_AE_AVAILABLE_MODES, |
| availableAeModes, sizeof(availableAeModes)); |
| |
| static const camera_metadata_rational exposureCompensationStep = { |
| 1, 3 |
| }; |
| info.update(ANDROID_CONTROL_AE_COMPENSATION_STEP, |
| &exposureCompensationStep, 1); |
| |
| int32_t exposureCompensationRange[] = {-9, 9}; |
| info.update(ANDROID_CONTROL_AE_COMPENSATION_RANGE, |
| exposureCompensationRange, |
| sizeof(exposureCompensationRange)/sizeof(int32_t)); |
| |
| static const int32_t availableTargetFpsRanges[] = { |
| 5, 30, 15, 30 |
| }; |
| info.update(ANDROID_CONTROL_AE_AVAILABLE_TARGET_FPS_RANGES, |
| availableTargetFpsRanges, |
| sizeof(availableTargetFpsRanges)/sizeof(int32_t)); |
| |
| static const uint8_t availableAntibandingModes[] = { |
| ANDROID_CONTROL_AE_ANTIBANDING_MODE_OFF, |
| ANDROID_CONTROL_AE_ANTIBANDING_MODE_AUTO |
| }; |
| info.update(ANDROID_CONTROL_AE_AVAILABLE_ANTIBANDING_MODES, |
| availableAntibandingModes, sizeof(availableAntibandingModes)); |
| |
| static const uint8_t availableAwbModes[] = { |
| ANDROID_CONTROL_AWB_MODE_OFF, |
| ANDROID_CONTROL_AWB_MODE_AUTO, |
| ANDROID_CONTROL_AWB_MODE_INCANDESCENT, |
| ANDROID_CONTROL_AWB_MODE_FLUORESCENT, |
| ANDROID_CONTROL_AWB_MODE_DAYLIGHT, |
| ANDROID_CONTROL_AWB_MODE_SHADE |
| }; |
| info.update(ANDROID_CONTROL_AWB_AVAILABLE_MODES, |
| availableAwbModes, sizeof(availableAwbModes)); |
| |
| static const uint8_t availableAfModesBack[] = { |
| ANDROID_CONTROL_AF_MODE_OFF, |
| ANDROID_CONTROL_AF_MODE_AUTO, |
| ANDROID_CONTROL_AF_MODE_MACRO, |
| ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO, |
| ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE |
| }; |
| |
| static const uint8_t availableAfModesFront[] = { |
| ANDROID_CONTROL_AF_MODE_OFF |
| }; |
| |
| if (mFacingBack) { |
| info.update(ANDROID_CONTROL_AF_AVAILABLE_MODES, |
| availableAfModesBack, sizeof(availableAfModesBack)); |
| } else { |
| info.update(ANDROID_CONTROL_AF_AVAILABLE_MODES, |
| availableAfModesFront, sizeof(availableAfModesFront)); |
| } |
| |
| static const uint8_t availableVstabModes[] = { |
| ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_OFF |
| }; |
| info.update(ANDROID_CONTROL_AVAILABLE_VIDEO_STABILIZATION_MODES, |
| availableVstabModes, sizeof(availableVstabModes)); |
| |
| mCameraInfo = info.release(); |
| |
| return OK; |
| } |
| |
| status_t EmulatedFakeCamera3::process3A(CameraMetadata &settings) { |
| /** |
| * Extract top-level 3A controls |
| */ |
| status_t res; |
| |
| bool facePriority = false; |
| |
| camera_metadata_entry e; |
| |
| e = settings.find(ANDROID_CONTROL_MODE); |
| if (e.count == 0) { |
| ALOGE("%s: No control mode entry!", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| uint8_t controlMode = e.data.u8[0]; |
| |
| e = settings.find(ANDROID_CONTROL_SCENE_MODE); |
| if (e.count == 0) { |
| ALOGE("%s: No scene mode entry!", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| uint8_t sceneMode = e.data.u8[0]; |
| |
| if (controlMode == ANDROID_CONTROL_MODE_OFF) { |
| mAeState = ANDROID_CONTROL_AE_STATE_INACTIVE; |
| mAfState = ANDROID_CONTROL_AF_STATE_INACTIVE; |
| mAwbState = ANDROID_CONTROL_AWB_STATE_INACTIVE; |
| update3A(settings); |
| return OK; |
| } else if (controlMode == ANDROID_CONTROL_MODE_USE_SCENE_MODE) { |
| switch(sceneMode) { |
| case ANDROID_CONTROL_SCENE_MODE_FACE_PRIORITY: |
| mFacePriority = true; |
| break; |
| default: |
| ALOGE("%s: Emulator doesn't support scene mode %d", |
| __FUNCTION__, sceneMode); |
| return BAD_VALUE; |
| } |
| } else { |
| mFacePriority = false; |
| } |
| |
| // controlMode == AUTO or sceneMode = FACE_PRIORITY |
| // Process individual 3A controls |
| |
| res = doFakeAE(settings); |
| if (res != OK) return res; |
| |
| res = doFakeAF(settings); |
| if (res != OK) return res; |
| |
| res = doFakeAWB(settings); |
| if (res != OK) return res; |
| |
| update3A(settings); |
| return OK; |
| } |
| |
| status_t EmulatedFakeCamera3::doFakeAE(CameraMetadata &settings) { |
| camera_metadata_entry e; |
| |
| e = settings.find(ANDROID_CONTROL_AE_MODE); |
| if (e.count == 0) { |
| ALOGE("%s: No AE mode entry!", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| uint8_t aeMode = e.data.u8[0]; |
| |
| switch (aeMode) { |
| case ANDROID_CONTROL_AE_MODE_OFF: |
| // AE is OFF |
| mAeState = ANDROID_CONTROL_AE_STATE_INACTIVE; |
| return OK; |
| case ANDROID_CONTROL_AE_MODE_ON: |
| // OK for AUTO modes |
| break; |
| default: |
| ALOGE("%s: Emulator doesn't support AE mode %d", |
| __FUNCTION__, aeMode); |
| return BAD_VALUE; |
| } |
| |
| e = settings.find(ANDROID_CONTROL_AE_LOCK); |
| if (e.count == 0) { |
| ALOGE("%s: No AE lock entry!", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| bool aeLocked = (e.data.u8[0] == ANDROID_CONTROL_AE_LOCK_ON); |
| |
| e = settings.find(ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER); |
| bool precaptureTrigger = false; |
| if (e.count != 0) { |
| precaptureTrigger = |
| (e.data.u8[0] == ANDROID_CONTROL_AE_PRECAPTURE_TRIGGER_START); |
| } |
| |
| if (precaptureTrigger) { |
| ALOGV("%s: Pre capture trigger = %d", __FUNCTION__, precaptureTrigger); |
| } else if (e.count > 0) { |
| ALOGV("%s: Pre capture trigger was present? %d", |
| __FUNCTION__, |
| e.count); |
| } |
| |
| // If we have an aePrecaptureTrigger, aePrecaptureId should be set too |
| if (e.count != 0) { |
| e = settings.find(ANDROID_CONTROL_AE_PRECAPTURE_ID); |
| |
| if (e.count == 0) { |
| ALOGE("%s: When android.control.aePrecaptureTrigger is set " |
| " in the request, aePrecaptureId needs to be set as well", |
| __FUNCTION__); |
| return BAD_VALUE; |
| } |
| |
| mAeTriggerId = e.data.i32[0]; |
| } |
| |
| if (precaptureTrigger || mAeState == ANDROID_CONTROL_AE_STATE_PRECAPTURE) { |
| // Run precapture sequence |
| if (mAeState != ANDROID_CONTROL_AE_STATE_PRECAPTURE) { |
| mAeCounter = 0; |
| } |
| |
| if (mFacePriority) { |
| mAeTargetExposureTime = kFacePriorityExposureTime; |
| } else { |
| mAeTargetExposureTime = kNormalExposureTime; |
| } |
| |
| if (mAeCounter > kPrecaptureMinFrames && |
| (mAeTargetExposureTime - mAeCurrentExposureTime) < |
| mAeTargetExposureTime / 10) { |
| // Done with precapture |
| mAeCounter = 0; |
| mAeState = aeLocked ? ANDROID_CONTROL_AE_STATE_LOCKED : |
| ANDROID_CONTROL_AE_STATE_CONVERGED; |
| } else { |
| // Converge some more |
| mAeCurrentExposureTime += |
| (mAeTargetExposureTime - mAeCurrentExposureTime) * |
| kExposureTrackRate; |
| mAeCounter++; |
| mAeState = ANDROID_CONTROL_AE_STATE_PRECAPTURE; |
| } |
| |
| } else if (!aeLocked) { |
| // Run standard occasional AE scan |
| switch (mAeState) { |
| case ANDROID_CONTROL_AE_STATE_CONVERGED: |
| case ANDROID_CONTROL_AE_STATE_INACTIVE: |
| mAeCounter++; |
| if (mAeCounter > kStableAeMaxFrames) { |
| mAeTargetExposureTime = |
| mFacePriority ? kFacePriorityExposureTime : |
| kNormalExposureTime; |
| float exposureStep = ((double)rand() / RAND_MAX) * |
| (kExposureWanderMax - kExposureWanderMin) + |
| kExposureWanderMin; |
| mAeTargetExposureTime *= std::pow(2, exposureStep); |
| mAeState = ANDROID_CONTROL_AE_STATE_SEARCHING; |
| } |
| break; |
| case ANDROID_CONTROL_AE_STATE_SEARCHING: |
| mAeCurrentExposureTime += |
| (mAeTargetExposureTime - mAeCurrentExposureTime) * |
| kExposureTrackRate; |
| if (abs(mAeTargetExposureTime - mAeCurrentExposureTime) < |
| mAeTargetExposureTime / 10) { |
| // Close enough |
| mAeState = ANDROID_CONTROL_AE_STATE_CONVERGED; |
| mAeCounter = 0; |
| } |
| break; |
| case ANDROID_CONTROL_AE_STATE_LOCKED: |
| mAeState = ANDROID_CONTROL_AE_STATE_CONVERGED; |
| mAeCounter = 0; |
| break; |
| default: |
| ALOGE("%s: Emulator in unexpected AE state %d", |
| __FUNCTION__, mAeState); |
| return INVALID_OPERATION; |
| } |
| } else { |
| // AE is locked |
| mAeState = ANDROID_CONTROL_AE_STATE_LOCKED; |
| } |
| |
| return OK; |
| } |
| |
| status_t EmulatedFakeCamera3::doFakeAF(CameraMetadata &settings) { |
| camera_metadata_entry e; |
| |
| e = settings.find(ANDROID_CONTROL_AF_MODE); |
| if (e.count == 0) { |
| ALOGE("%s: No AF mode entry!", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| uint8_t afMode = e.data.u8[0]; |
| |
| e = settings.find(ANDROID_CONTROL_AF_TRIGGER); |
| typedef camera_metadata_enum_android_control_af_trigger af_trigger_t; |
| af_trigger_t afTrigger; |
| // If we have an afTrigger, afTriggerId should be set too |
| if (e.count != 0) { |
| afTrigger = static_cast<af_trigger_t>(e.data.u8[0]); |
| |
| e = settings.find(ANDROID_CONTROL_AF_TRIGGER_ID); |
| |
| if (e.count == 0) { |
| ALOGE("%s: When android.control.afTrigger is set " |
| " in the request, afTriggerId needs to be set as well", |
| __FUNCTION__); |
| return BAD_VALUE; |
| } |
| |
| mAfTriggerId = e.data.i32[0]; |
| } else { |
| afTrigger = ANDROID_CONTROL_AF_TRIGGER_IDLE; |
| } |
| |
| // TODO: implement AF triggering semantic |
| |
| switch (afMode) { |
| case ANDROID_CONTROL_AF_MODE_OFF: |
| mAfState = ANDROID_CONTROL_AF_STATE_INACTIVE; |
| return OK; |
| case ANDROID_CONTROL_AF_MODE_AUTO: |
| case ANDROID_CONTROL_AF_MODE_MACRO: |
| case ANDROID_CONTROL_AF_MODE_CONTINUOUS_VIDEO: |
| case ANDROID_CONTROL_AF_MODE_CONTINUOUS_PICTURE: |
| if (!mFacingBack) { |
| ALOGE("%s: Front camera doesn't support AF mode %d", |
| __FUNCTION__, afMode); |
| return BAD_VALUE; |
| } |
| // OK |
| break; |
| default: |
| ALOGE("%s: Emulator doesn't support AF mode %d", |
| __FUNCTION__, afMode); |
| return BAD_VALUE; |
| } |
| |
| |
| return OK; |
| } |
| |
| status_t EmulatedFakeCamera3::doFakeAWB(CameraMetadata &settings) { |
| camera_metadata_entry e; |
| |
| e = settings.find(ANDROID_CONTROL_AWB_MODE); |
| if (e.count == 0) { |
| ALOGE("%s: No AWB mode entry!", __FUNCTION__); |
| return BAD_VALUE; |
| } |
| uint8_t awbMode = e.data.u8[0]; |
| |
| // TODO: Add white balance simulation |
| |
| switch (awbMode) { |
| case ANDROID_CONTROL_AWB_MODE_OFF: |
| mAwbState = ANDROID_CONTROL_AWB_STATE_INACTIVE; |
| return OK; |
| case ANDROID_CONTROL_AWB_MODE_AUTO: |
| case ANDROID_CONTROL_AWB_MODE_INCANDESCENT: |
| case ANDROID_CONTROL_AWB_MODE_FLUORESCENT: |
| case ANDROID_CONTROL_AWB_MODE_DAYLIGHT: |
| case ANDROID_CONTROL_AWB_MODE_SHADE: |
| // OK |
| break; |
| default: |
| ALOGE("%s: Emulator doesn't support AWB mode %d", |
| __FUNCTION__, awbMode); |
| return BAD_VALUE; |
| } |
| |
| return OK; |
| } |
| |
| |
| void EmulatedFakeCamera3::update3A(CameraMetadata &settings) { |
| if (mAeState != ANDROID_CONTROL_AE_STATE_INACTIVE) { |
| settings.update(ANDROID_SENSOR_EXPOSURE_TIME, |
| &mAeCurrentExposureTime, 1); |
| settings.update(ANDROID_SENSOR_SENSITIVITY, |
| &mAeCurrentSensitivity, 1); |
| } |
| |
| settings.update(ANDROID_CONTROL_AE_STATE, |
| &mAeState, 1); |
| settings.update(ANDROID_CONTROL_AF_STATE, |
| &mAfState, 1); |
| settings.update(ANDROID_CONTROL_AWB_STATE, |
| &mAwbState, 1); |
| /** |
| * TODO: Trigger IDs need a think-through |
| */ |
| settings.update(ANDROID_CONTROL_AE_PRECAPTURE_ID, |
| &mAeTriggerId, 1); |
| settings.update(ANDROID_CONTROL_AF_TRIGGER_ID, |
| &mAfTriggerId, 1); |
| } |
| |
| void EmulatedFakeCamera3::signalReadoutIdle() { |
| Mutex::Autolock l(mLock); |
| // Need to chek isIdle again because waiting on mLock may have allowed |
| // something to be placed in the in-flight queue. |
| if (mStatus == STATUS_ACTIVE && mReadoutThread->isIdle()) { |
| ALOGV("Now idle"); |
| mStatus = STATUS_READY; |
| } |
| } |
| |
| EmulatedFakeCamera3::ReadoutThread::ReadoutThread(EmulatedFakeCamera3 *parent) : |
| mParent(parent) { |
| } |
| |
| EmulatedFakeCamera3::ReadoutThread::~ReadoutThread() { |
| for (List<Request>::iterator i = mInFlightQueue.begin(); |
| i != mInFlightQueue.end(); i++) { |
| delete i->buffers; |
| delete i->sensorBuffers; |
| } |
| } |
| |
| void EmulatedFakeCamera3::ReadoutThread::queueCaptureRequest(const Request &r) { |
| Mutex::Autolock l(mLock); |
| |
| mInFlightQueue.push_back(r); |
| mInFlightSignal.signal(); |
| } |
| |
| bool EmulatedFakeCamera3::ReadoutThread::isIdle() { |
| Mutex::Autolock l(mLock); |
| return mInFlightQueue.empty() && !mThreadActive; |
| } |
| |
| status_t EmulatedFakeCamera3::ReadoutThread::waitForReadout() { |
| status_t res; |
| Mutex::Autolock l(mLock); |
| int loopCount = 0; |
| while (mInFlightQueue.size() >= kMaxQueueSize) { |
| res = mInFlightSignal.waitRelative(mLock, kWaitPerLoop); |
| if (res != OK && res != TIMED_OUT) { |
| ALOGE("%s: Error waiting for in-flight queue to shrink", |
| __FUNCTION__); |
| return INVALID_OPERATION; |
| } |
| if (loopCount == kMaxWaitLoops) { |
| ALOGE("%s: Timed out waiting for in-flight queue to shrink", |
| __FUNCTION__); |
| return TIMED_OUT; |
| } |
| loopCount++; |
| } |
| return OK; |
| } |
| |
| bool EmulatedFakeCamera3::ReadoutThread::threadLoop() { |
| status_t res; |
| |
| // First wait for a request from the in-flight queue |
| |
| if (mCurrentRequest.settings.isEmpty()) { |
| Mutex::Autolock l(mLock); |
| if (mInFlightQueue.empty()) { |
| res = mInFlightSignal.waitRelative(mLock, kWaitPerLoop); |
| if (res == TIMED_OUT) { |
| return true; |
| } else if (res != NO_ERROR) { |
| ALOGE("%s: Error waiting for capture requests: %d", |
| __FUNCTION__, res); |
| return false; |
| } |
| } |
| mCurrentRequest.frameNumber = mInFlightQueue.begin()->frameNumber; |
| mCurrentRequest.settings.acquire(mInFlightQueue.begin()->settings); |
| mCurrentRequest.buffers = mInFlightQueue.begin()->buffers; |
| mCurrentRequest.sensorBuffers = mInFlightQueue.begin()->sensorBuffers; |
| mInFlightQueue.erase(mInFlightQueue.begin()); |
| mInFlightSignal.signal(); |
| mThreadActive = true; |
| } |
| |
| // Then wait for it to be delivered from the sensor |
| |
| nsecs_t captureTime; |
| bool gotFrame = |
| mParent->mSensor->waitForNewFrame(kWaitPerLoop, &captureTime); |
| if (!gotFrame) return true; |
| |
| // Check if we need to JPEG encode a buffer |
| |
| for (size_t i = 0; i < mCurrentRequest.buffers->size(); i++) { |
| if ((*mCurrentRequest.buffers)[i].stream->format == |
| HAL_PIXEL_FORMAT_BLOB) { |
| res = mParent->mJpegCompressor-> |
| compressSynchronous(mCurrentRequest.sensorBuffers); |
| if (res != OK) { |
| ALOGE("%s: Error compressing output buffer: %s (%d)", |
| __FUNCTION__, strerror(-res), res); |
| } |
| } |
| } |
| |
| // Got everything, construct result |
| |
| camera3_capture_result result; |
| |
| mCurrentRequest.settings.update(ANDROID_SENSOR_TIMESTAMP, |
| &captureTime, 1); |
| |
| for (size_t i = 0; i < mCurrentRequest.buffers->size(); i++) { |
| camera3_stream_buffer &buf = mCurrentRequest.buffers->editItemAt(i); |
| |
| GraphicBufferMapper::get().unlock(*buf.buffer); |
| |
| buf.status = CAMERA3_BUFFER_STATUS_OK; |
| buf.acquire_fence = -1; |
| buf.release_fence = -1; |
| } |
| |
| result.frame_number = mCurrentRequest.frameNumber; |
| result.result = mCurrentRequest.settings.getAndLock(); |
| result.num_output_buffers = mCurrentRequest.buffers->size(); |
| result.output_buffers = mCurrentRequest.buffers->array(); |
| |
| // Go idle if queue is empty, before sending result |
| bool signalIdle = false; |
| { |
| Mutex::Autolock l(mLock); |
| if (mInFlightQueue.empty()) { |
| mThreadActive = false; |
| signalIdle = true; |
| } |
| } |
| if (signalIdle) mParent->signalReadoutIdle(); |
| |
| // Send it off to the framework |
| |
| mParent->sendCaptureResult(&result); |
| |
| // Clean up |
| mCurrentRequest.settings.unlock(result.result); |
| |
| delete mCurrentRequest.buffers; |
| mCurrentRequest.buffers = NULL; |
| delete mCurrentRequest.sensorBuffers; |
| mCurrentRequest.sensorBuffers = NULL; |
| mCurrentRequest.settings.clear(); |
| |
| return true; |
| } |
| |
| |
| }; // namespace android |